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Abstract
Pendred Syndrome is a form of syndromic hearing loss characterized by sensorineural hearing

loss, inner ear malformations, and irregularities of the thyroid and temporal bone. Pendred

Syndrome is predominantly caused by genetic mutations in SLC26A4, but FOXL1 and KCNJ10

may also be involved. Treatment involves using cochlear implantation to target hearing loss,

which is associated with positive outcomes. Treatments for other effects of Pendred Syndrome

include anticholinergics or benzodiazepines to treat vertigo and levothyroxine for hypothyroid

patients. This review compiles the most recent information about Pendred Syndrome, and it

provides a summary of the etiology, pathogenesis, and physical effects of the disorder.

1. Introduction
Hearing loss affects 1–3 children in every 1000 [1]–[3]. Hearing loss is often caused by genetic

defects that impair the development of proteins in the hearing pathway. It can be classified as

nonsyndromic or syndromic. Nonsyndromic hearing loss, not characterized by other signs and

symptoms, affects 70% of patients. Syndromic hearing loss occurs when other organ

abnormalities are present, such as effects on the kidneys, eyes, or heart [2]. Over 400

syndromes associated with hearing loss demonstrate different phenotypic and genetic

heterogeneity [4], [5].

First discovered in 1896 by doctor Vaughan Pendred, Pendred Syndrome (PS) is a form of

syndromic hearing loss accounting for 4% of hereditary deafness [6], [7]. PS is characterized by

sensorineural hearing loss, inner ear malformation, vestibular dysfunction, thyroid and temporal

bone abnormalities, and abnormal organification of iodide. It is an autosomal-recessive disorder

that is caused by rare inherited germline mutations in one of three genes: SLC26A4, FOXL1,

and KCNJ10 [8], [9].

2. Genetic Causes
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2.1 SLC26A4/PDS gene

The SLC26A4 gene consists of 21 exons located at the DFNB4 locus. It encodes the pendrin

protein, which comprises 780 amino acids and is a multifunctional exchanger protein found in

the thyroid, inner ear, and kidney. A lack of pendrin causes Pendred Syndrome. The SLC26A4

gene, in patients with Pendred Syndrome, the mutation of the gene leads to an intracellular ionic

imbalance [10]. SLC26A4 is expressed by an Iodide/Chloride exchange in the thyroid [11] and

Cl-/HCO3- exchange in the inner ear [12]. These exchanges occur during late embryonic and

early postnatal development of the inner ear [13]. Pendrin also allows bicarbonate transport into

the cochlear endolymph, which bathes the inner ear’s sensory cells to help convey information

about sound, position, and balance [14]. Mutated pendrin may lead to iodide organification

defects [15]. Most patients with PS have pathogenic variants and biallelic mutations in the

SLC26A4 gene [8], [9]. Biallelic mutations of SLC26A4 are associated with abnormal iodide

organification, increased thyroid gland volume, severe hearing loss, and bilateral enlarged

vestibular aqueduct. Despite Pendred being characterized as an autosomal-recessive disorder,

a single mutated allele of SLC26A4 presents with less severe consequences, and some may

have normal iodide organification, normal thyroid gland volume, less severe hearing loss, and

bilateral/unilateral EVA. The prevalence of a mutated SLC26A4 gene in PS patients is estimated

at around 90%, which marks SLC26A4 as one of the most commonly mutated genes in

Pendred Syndrome [16].

SLC26A4 Effect on Thyroid

The thyroidal iodine organification defect common in PS results in the development of a goiter,

which later becomes nodular [17]. Typically, potassium perchlorate transports iodide into thyroid

folliculocytes across the basolateral membrane. However, in PS, high amounts of iodide are

discharged in the thyroid. Despite Scott et al’s proposition that normal thyroid function in NSEVA

(nonsyndromic enlarged vestibular aqueduct) patients is the consequence of residual activity

encoded by mutated SLC26A4 variants [18], analysis of Ito et al [19] concluded that an enlarged

thyroid and PS is dependent on the presence of 2 mutant SLC26A4 alleles, and NSEVA is

associated with 1 or 0 mutant alleles [16], [20], [21].
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SLC26A4 Effect on Auditory System

An Enlarged Vestibular Aqueduct (EVA) is a vestibular aqueduct exceeding 1.5 mm, measured

between the common crus and external aperture. While Pendred Syndrome is characterized by

the enlargement of the vestibular aqueduct, not all EVA patients have SLC26A4 mutations. In

50% of EVA populations, no mutations of SLC26A4 are detected [19]. Typically, Pendred

Syndrome patients display cochlear hypoplasia secondary to a small or absent cochlear nerve,

expansion of the scala media (cochlear duct), or an enlargement of the endolymphatic sac and

duct [6], [22]–[24]. Due to additional oxidative stress, abnormal cell stretching, and impaired

cell-to-cell communication in the stria vascularis, PS is associated with a reduced endocochlear

potential [12], [25]–[27].

Hearing loss begins in the first few years of life, and is sensorineural or mixed, typically

asymmetric, ranging from mild to profound. Sensorineural hearing loss occurs after inner ear

damage. Mixed hearing loss occurs after damage in the outer or middle ear and in the inner ear

or the nerve pathway to the brain. Hearing fluctuates downward following head trauma or

barotrauma. In 92% of ears with SLC26A4 mutations, hearing loss fluctuation is observed, and

some progressed at 1 decibel/year without environmental factors [16], [28], [29]. The type of

mutation does not affect the severity of hearing loss, which is associated with the number of

mutant alleles. Two mutant alleles result in more significant and fluctuating hearing loss when

compared to those with one or zero mutant alleles [16], [20], [29], [30]. Hearing loss is also not

associated with the severity of the enlarged vestibular aqueduct, suggesting that endolymphatic

hydrops are not responsible for hearing loss [29], [31].
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Figure 1: Vestibular aqueduct and endolymphatic sac and duct expressed normally and

abnormally. (Reference: [19])

4

https://www.zotero.org/google-docs/?r50Wy4


Figure 2: depicts that mutant mice have a larger endolymphatic duct and sac and vestibular

aqueduct. Binary transgenic mice have less enlargement compared to mutant mice. (Reference:

[13])
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Figure 3: Depicts a normal vestibular aqueduct versus a dilated vestibular aqueduct present in a

Pendred patient with mutated EphA2 and SLC26A4. (Reference: [32])

SLC26A4 Mutation Variants

8,647 different mutations of SLC26A4 have been reported, and 487 are classified as pathogenic

[33]. The majority of mutations present in Pendred Syndrome are missense mutations, where

mutant proteins are retained in the endoplasmic reticulum. Other possible mutations include

nonsense mutations, splicing mutations, partial duplications, insertions, and deletions. Highly

variable regions of mutations are exon 8, 19, 10, 17, and 15 [34]. These mutations affect iodide

transport, which disrupts the protein function due to resulting iodide organification defects [15].

Common mutations include E29Q, V138F, G209V, L236P, IVS8+1 G>A, R409H, T410M, T416P,

Y78C, T193I, F355S, L445W, Y530H, S694P, D724N, 2127delT [16].
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Figure 4: (Reference: [16]).

Variants in mutations also reflect ethnic differences. Three founder mutations in SLC26A4 have

been identified in Caucasians, which are c.707T>C, c.1246A>C, and c.1001+ 1G>A mutations.

The majority of mutations reported in China included the C.919-2 A>G mutation and C.2168A>G

mutation. In South America and North America mutations C.1826T>G and C.1001 + 1G>A are

more common, whereas C.2168A>G mutations are present in Koreans [35]. Recently, CEVA

(Caucasian EVA) has been discovered to be a recessive mutant allele that is present in a

pathogenic variant of SLC26A4, and is generally identified in Caucasian patients. CEVA

includes 12 variants in introns or intergenic regions upstream of SLC26A4 [36].

In one case study, a patient was found with a compound heterozygosity variant in a mutated

C.1174A>T. This affects amino acid position 535-729 in the STAS domain that affects protein

function. In another patient with EVA, p.V690A, a missense mutation, was located on the same

amino acid position, however there was no functional defect. One combination of compound

heterozygosity (both parent genes harbor different mutations) present in SLC26A4 is the C.1341

+ 1G>C mutation and the C.2069T>C, which are classified as disease-causing mutations, or

DM. Using these classifications, enlarged vestibular aqueduct syndrome can be detected during

neonatal hearing screening [16].

8

https://www.zotero.org/google-docs/?or9w0K
https://www.zotero.org/google-docs/?AC99Qd
https://www.zotero.org/google-docs/?R7LY41
https://www.zotero.org/google-docs/?dKgUfW


Ephrins and Pendrin

Figure 5: Illustrates effects of SLC26A4 and EphA2 mutations exhibited in Pendred Syndrome

(Reference: [32])

EphA2 is another gene implicated in the development of PS. Typically, Pendrin is a binding

partner of EPHA2. EPH receptors interact with plasma-membrane-bound ephrin ligands.

Ephrins are categorized into two subclasses, A subclass (ligands for GPI-anchored EphA

receptors) and B subclass (ligands for EphB1-6 tyrosine kinase receptors). EphB/ephrin-B2 is

responsible for regulating vascular endothelial growth factor receptors such as VEGFR, which

are responsible for transmembrane protein localization and compartmentalization of cells in

epithelial tissue formation. Loss of ephrin-B2 results in abnormalities in the inner ear, disrupting

cell proliferation, cell survival, folding of the endolymphatic epithelium, and abnormally formed

otoconia [37].

As SLC26A4 is responsible for making Pendrin, a mutated SLC26A4 will impact protein

EPHA2’s function. EphA2-null and ephrin-B2 deficient mice both exhibit abnormal structures in

9

https://www.zotero.org/google-docs/?ugorw2
https://www.zotero.org/google-docs/?J8RqW0


epithelial tissues and mislocalization of pendrin in the inner ear and thyroid [32]. However,

stimulation of EphA2 and ephrin-B2 causes EphA2 and pendrin to move inside the cell from the

outer membrane. This leads to a weaker self-activation of EphA2 compared to when activated

with ephrin-A1. Due to EphA2’s inability to bind with ephrin-B2, it results in a failure of ephrin-B2

to induce internalization of pendrin. PS patients that bear a mono-allelic mutation of SLC26A4

will typically have point mutations that lead to amino acid substitution in EPHA2 [32].

EphA2 knock-out mice have an enlarged lumen, a decreased thickness of the stria vascularis,

and a thyroid goiter, which are all present in PS patients [32]. EFNB2 (inner ear epithelial cell

gene) encodes ephrin-B2 (responsible for the growth and morphogenesis of the endolymphatic

sac and duct of the inner ear). EFNB2-deficient mice have vestibular-behavioral dysfunction and

abnormal endolymph homeostasis, similar to Pendred symptoms [37].

Typically, EphA2 receptors are exclusively activated by ephrin-A; however, if EphA2 is

superimposed to EphA4 in a complex with ephrin-B2, EphA2 gains the ability to bind to

ephrin-B2 [37].

EPHA2 Mutations in Pendred Syndrome Patients

Missense mutations of the EphA2 gene responsible for Pendred syndrome patients include

SLC26A4: c.1300G>A (p.434A>T), EPHA2: c.1063G>A (p.G355R) and SLC26A4: c.1229C>A

(p.410T>M), EPHA2: c.1532C>T (p.T511M).

2.2 FOXL1

1.4% of PS patients are suspected to have a mutated FOXI1 gene. Some heterozygous variants

of FOXI1 are c.77C>T (p.Thr226Ile), c.812G>A(p.Arg271His), c.812G>A(p.Arg271His), which

are all rare variants [38]. PS patients have one heterozygous mutation in each of FOXIL and

SLC26A4, observed in the SLC26a4+/- and FOXL1+/- double heterozygous mouse model of

[38].

The FoxL1 gene is responsible for regulating the transcription of SLC26A4 on the

endolymphatic sac and duct. In a Foxl1-null mouse with EVA and deafness, pendrin was only
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expressed in the cochlea and vestibular labyrinth. This suggests that pendrin expression in the

endolymphatic sac is needed for normal hearing [39].

Figure 6: Effects of Mutations on the FOXL1 Gene & Frequency of Pendred Patients With

FOXL1 Mutation (References: [38], [40]–[46])

11

https://www.zotero.org/google-docs/?pAh3Lg
https://www.zotero.org/google-docs/?jsgoFo


2.3 KCNJ10

Figure 7: Depicts KCNJ10 and Pendrin expression in the cochlea. KCNJ10 is expressed in

intermediate cells inside the stria vascularis. Pendrin is expressed in spindle cells, spiral

prominence epithelial cells, root cells, and outer sulcus epithelial cells. (Reference: [10])

3.6% of Pendred Syndrome is caused by a single mutated KCNJ10 gene (1). The frequency of

KCNJ10 mutations is inflated by the inclusion of Chinese and Italian probands, since KCNJ10

variant c.812G>A (p.Arg271His) may be a polymorphism in the Chinese population [38].

Mutations in the KCNJ10 gene can also be associated with SLC26A4 mutations. A possible

scenario is double heterozygosity, where the Pendred patient carries single mutations in both

SLC26A4 and KCNj10. The harmful interaction of mutated SLC26A4 and KCNJ10 results in

inner-ear dysfunction. Pathogenic SLC26A4 mutations result in hypofunction or

haploinsufficiency, which results in a reduced expression of KCNJ10, causing a reduced supply

of K+ to marginal cells in the stria vascularis [25]. The reduced supply of K+ ions results in

fluctuating and progressive hearing loss [20], [48], [49]. This suggests that if strial expression

could be maintained through controlling endolymph pH levels or limiting oxidative stress through

medical therapy, further hearing loss could be prevented [10].
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Possible mutation combinations include a p.R348C / + in KCNJ10 and c.919-2a→G/+ in

SLC26A4, which results in an enlarged vestibular aqueduct. Another case is p.P194H / + in

KCNJ10 and p.F335L / + in SLC26A4, which results in an enlarged vestibular aqueduct and

Mondini dysplasia [38].

Figure 8: Effect of Mutations on the KCNJ10 Gene & Frequency of Pendred Patients With

KCNJ10 Mutation (References: [38], [40], [42], [43], [45], [46]).

3. Treatment
3.1 Cochlear Implantation

A cochlear implant helps generate sound perception in the brain, and a cochlear implant system

has an external and internal part. The external part contains a microphone, a speech processor,

a battery, and a transmitter, which detects sound from the environment and delivers it to the

internal part. The internal device (implanted between the muscle and bone under the ear)
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receives transmitted signals sent from the external part and stimulates the cochlea through

electrical impulses [50].

Cochlear implantation is frequently referred to as the “treatment of choice” for patients with

severe-to-profound sensorineural hearing loss [51]–[53]. Patients must have no anatomical

contraindications to be considered for implantation [50]. Absolute indications of cochlear

implantation are observed in patients with acute hearing loss after meningitis, deafness, severe

visual impairment, and sudden bilateral hearing loss [50].

Cochlear implantation in Pendred Syndrome patients with severe to profound hearing loss

results in positive outcomes, with proven benefits in speech perception and speech intelligibility

[54]–[56].

Demir et al. concluded that vestibular aqueduct diameter and inner-ear malformations have no

impact on audiological outcomes after cochlear implantation [55]. Studies demonstrated that

children with SLC26A4 mutations have better outcomes than those with genetically

undiagnosed hearing loss, since genetic consequences in Pendred syndrome are in the inner

ear, rather than the auditory nerve and central auditory pathways [54], [57]–[59].

Studies support that cochlear implantation should occur before the age of 3.5 years [54],

especially in children with fluctuating hearing loss so that speech and language development

should not be impaired [60], [61]

One complication of cochlear implantation is the cerebrospinal fluid “gusher”, or the egress of

clear fluid upon cochleostomy. However, there are no effects of meningitis or auditory outcomes

[62].

3.2 Enlarged Vestibular Aqueduct Treatment

No treatment exists to reduce hearing loss associated with an enlarged vestibular aqueduct. To

prevent hearing loss from becoming more severe, patients should avoid head injury by wearing
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head protection and avoiding situations that lead to extreme, rapid changes in air pressure such

as scuba diving or hyperbaric oxygen treatment [63].

Patients who are experiencing vertigo can be treated with anticholinergics or benzodiazepines.

These medications are able to modify the intensity of symptoms by suppressing the vestibular

aqueduct [64].

3.3 Hypothyroidism Treatment

Hypothyroidism refers to thyroid hormone deficiency. Overt hypothyroidism is diagnosed once

the thyroid-stimulating hormone (TSH) concentrations are above the reference range (0–4-4–0

mIU/L) and free thyroxine concentrations are below the reference range. Mild and subclinical

hypothyroidism is defined once the TSH concentrations are above the reference range and free

thyroxine concentrations are within the normal range [65].

Symptoms of hypothyroidism include an increase in body-max index, low metabolic rate, fatigue,

shortness of breath, muscle weakness, dry skin, hair loss, deterioration of kidney function, and

neuropathy. Hypothyroidism has also been reported to cause cochlear dysfunction and

decreased hearing [66].

Currently, the preferred treatment for hypothyroidism is levothyroxine monotherapy in solid

formulation taken on an empty stomach. The optimal daily dose is 1.5-1.8 μg per kg of body

weight [53], [67], [68]. Patients with low body weight or older patients will not be able to

withstand dose changes, since it can have substantial effects on serum TSH concentrations

[66].

The target of treatment is to normalize TSH concentrations and help with physical and mental

complaints [69]. However, 35-60% of patients do not reach the target range of TSH after

treatment due to overtreatment or undertreatment [69], [70]. 6% of patients experience

15

https://www.zotero.org/google-docs/?AYifj0
https://www.zotero.org/google-docs/?Hg1m3r
https://www.zotero.org/google-docs/?NmKHR0
https://www.zotero.org/google-docs/?iWeL0Y
https://www.zotero.org/google-docs/?qT4aw4
https://www.zotero.org/google-docs/?dg8dSu
https://www.zotero.org/google-docs/?407q0v
https://www.zotero.org/google-docs/?HTi1F7


undertreatment (TSH concentrations below 0-1 mIU/L) and 10% experience overtreatment (10-0

mIU/L) [71].

An explanation for persistent complaints after levothyroxine monotherapy could be the treatment

itself. This therapy ensures adequate concentrations of circulating thyroxine that are converted

to triiodothyronine by deiodination of deiodinase 1 and deiodinase 2. Meanwhile, in euthyroid

patients, 20% of circulating triiodothyronine is converted from direct thyroidal secretion [71]–[73].

Another treatment method is using combined levothyroxine-liothyronine therapy. This therapy

helps patients with a preference for combination therapy or an improved metabolic profile,

however other than that, there are generally no other improved outcomes [74]–[76].

4. Conclusion
It will be important for the otolaryngology field to continue searching for direct strategies to

ameliorate Pendred Syndrome abnormalities, due to its rareness. Due to the mutation of the

SLC26A4 gene, the lack of pendrin results in unbalanced ion levels. Inner ear malformations

affect hearing, and iodide organification defects cause an enlarged thyroid gland. While these

symptoms are typically present in most Pendred patients, there is a high clinical variability in the

severity of the symptoms, which exacerbates inability to find sufficient treatment.

There is no specific treatment for Pendred Syndrome. Depending on the extent of hearing loss,

Pendred Syndrome patients may work to reduce the severity of hearing loss through cochlear

implantation or hearing aids. Due to malformations present in the inner ear, patients should

avoid head injuries to prevent any worsening of impairment or vertigo.
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