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Abstract

Lactate is an important metabolite in both cancer and non-cancer cells. A class of enzymes
known as lactate dehydrogenases, LDHs, allows cancer cells to transform excess pyruvate into
lactate in anaerobic respiration, and then reconvert lactate into pyruvate for ATP production.
Lactate has been shown to mediate immunosuppression and metabolic rewiring in tumors,
accelerating tumor progression. Thus, developing new effective therapeutics against the action
of LDH is critical to choking the Warburg effect in various types of cancer. We use the DepMap
portal to identify LDH isoforms LDHA and LDHB as potential targets for cancer therapy and
show that the LDHA target has a high predictive power for prognosis across many different
cancers. We then use in silico techniques, such as virtual screening, pharmacophore modeling,
protein structure analysis, and inhibitor selectivity analysis to design novel and effective small
molecules that can inhibit both LDHA and LDHB, potentially addressing lactate-mediated
immunosuppression and tumorigenesis. This study pushes forward an in-silico-centered
pre-clinical ligand-based drug discovery pipeline to create optimal results in short amounts of
time obviating the need for traditional expensive trial-and-error methods.

Introduction

All cells require energy to survive; for many cells, that energy comes in the form of ATP.
However, the amount of ATP present in an organism’s food is not near the amount of ATP that
the organism as a whole requires. Thus, the cells in the organism must use a number of
complex, multistep pathways to turn the proteins and sugars present in the food source, forms
of stored ATP, into usable ATP.

The most common form of stored ATP is glucose, a 6-carbon aldose sugar. Cells use cellular
respiration to convert glucose into ATP. Cellular respiration comes in two major forms: aerobic (if
oxygen is present) and anaerobic (if oxygen is absent). The aerobic pathway is most commonly
employed. Typical aerobic cellular respiration in cells uses a two-step process: first, glycolysis to
turn glucose into pyruvate, and then turning pyruvate into ATP [1].

However, cancer cells require significantly more fuel and oxygen to maintain a rapid rate of
proliferation. Thus, cancer cells employ anaerobic respiration: after converting glucose to
pyruvate, they convert excess pyruvate into lactate. This anomaly was observed first by
Warburg et al. in 1926 [2]; hence, researchers call this anomaly “the Warburg Effect.” Although
lactate itself can be transformed back into pyruvate for ATP production when necessary, the
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presence of lactate can suppress the immune response, increase tumor resistance to therapies,
enable cancer cells to communicate with nearby somatic cells, and enhance metastasis [3, 4].

Cancer cells achieve the transformation of pyruvate to lactate using a class of enzymes called
lactate dehydrogenases. The production of lactate leads to concomitant oxidation of NADH to
NAD+; NAD+ serves as an electron carrier that enhances the cell’s ability to produce ATP [5].
Thus, developing new and effective therapeutics against the action of lactate dehydrogenases is
critical to choking the Warburg effect in various cancers.

Lactate dehydrogenases (LDHs) encapsulate a family of 6 enzymes, conveniently labeled LDH1
- LDH6, each composed of one of two primary LDH subunits: LDHA, present in muscle cells,
and LDHB, present in the heart. The LDHA subunit is critical for the conversion of pyruvate into
lactate, and LDHB is critical for the retroconversion of lactate back into pyruvate [4]. LDHA has
been more commonly observed to be upregulated in cancer cells compared to regular cells [5].
However, inhibiting only the LDHA subunit has been shown to be ineffective against cancer
cells. Instead, more effective therapeutic effects are achieved when both LDHA and LDHB
isoforms are inhibited [6]. Even then, metabolic rewiring within cancer cells can occur, making
LDHs obsolete for the cancer’s survival [7]. Thus, an effective anticancer therapy would likely
involve a combination therapy of targeting LDH and other metabolic pathways, such as
mTORc1 signaling-controlled metabolism [7]. In this paper, we focus on improving the state of
LDH inhibition.

Pathway analysis and literature review revealed a number of LDH regulation mechanisms. Feng
et al. [8] does a very thorough job of reviewing different ldha expression regulation mechanisms;
likewise, Urbańska and Orzechowski discuss LDHB regulatory mechanisms [9]. For the sake of
succinctness, we will focus on the two most notable mechanisms.

HIF1, hypoxia-inducible factor 1, is a transcription factor that is activated when the cell is in
anaerobic environments. HIF1 has been shown to upregulate various key proteins in cancer
progression and proliferation [10]. HIF1 binds to hypoxia-responsive elements, special
5’-RCGTG-3’ DNA sequences (R is any nucleotide), in the ldha gene promoter region [5, 8].
HIF1 has been shown to cooperate with the MYC pathway, another regulatory pathway
well-known to regulate many of the enzymes involved in glycolysis and respiration [11, 12].
c-MYC, cellular myelocytomatosis oncoprotein, is the specific protein that upregulates LDHA
expression by binding to an E-box DNA sequence in the ldha promoter region [13].

Targeting both lactate production and LDH regulation could serve as an effective cancer
treatment. Thus, it is critical to understand the regulatory pathways that upregulate LDHA, as
this would allow for more informed and effective combination therapies. Notably, c-MYC is
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inhibited by lactate, suggesting that starving cancer cells would involve a combination therapy
targeting LDHA, HIF1, and c-MYC [5].

LDHA itself plays an important role in downstream gene regulation as well. The presence of
lactate has been shown to contribute to TKI (tyrosine kinase inhibitor)-therapy resistance [14].
Acidified lactate can also be transported out of the cell and into the extracellular matrix (ECM)
by MCTs, or monocarboxylate transporters [15]. Once in the ECM, lactate induces M2
polarization, which increases VEGF secretion, in turn upregulating angiogenesis [16]. Lactate
has been shown to inhibit NFAT (nuclear factor of activated T cells) activity and lower
IFNgamma production, which prevents proper immune response [17, 18]. Lactate also inhibits
NKp64 and encourages the presence of MDSCs (myeloid-derived suppressor cells), decreasing
NK (natural killer cell) cytotoxicity and immune response effectiveness towards cancer cells [3].

Thus, the overall lactate pathway produces five lactate-specific targeted cancer therapeutic
strategies. Either one could target (1) the transport mechanism of lactate, (2) LDH production of
lactate, (3) the transport mechanism of pyruvate into the mitochondria, (4) PDH, an enzyme that
clears lactate, (5) glycolytic enzymes [19]. In this paper, we attempt to address the problem at its
root by targeting lactate dehydrogenase function within cancer cells.

Target Validation

Lactate is a critical metabolite in cancer tumor progression. As mentioned above, lactate can
mediate immunosuppression and angiogenesis.

In conjunction with a literature review, data analysis using the GEPIA (Gene Expression Profiling
Interactive Analysis) web server was conducted to validate LDHs as targets for cancer
therapeutics. As already pointed out, LDHA is overexpressed in cancer cells compared to paired
control patients. Figure 1a shows ldha gene expression for tumor and benign samples paired by
cancer type. DepMap analysis (Figure 1b) also shows how critical LDHA is for cancer cell
survival across different cell lines. Most cancers rely on LDHA for their survival. Deletion of the
LDHA gene from cancer cell lines had an average gene effect of -0.507 for all cancer types in
the DepMap database, where gene effect < 0.5 indicates that deleting a gene is harmful to most
of the cell lines. For reference, beta-actin, a protein integral to maintaining a cell’s structure, has
a gene effect of -0.676. Few proteins have a gene effect < -1. In addition, pan-cancer
Kaplan-Meier survival curves using LDHA as the gene of interest show how patients with high
LDHA either died more quickly or saw quicker tumor relapse. Thus, high LDHA is a potential
biomarker of poorer aggressive cancer prognosis.
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As shown in Figure 2, LDHB also tends to be overexpressed in some cancers, but not as
frequently as LDHA. In fact, LDHB is not as critical for cell survival (as shown by a net gene
effect of 0.0187, close to 0). In addition, pan-cancer Kaplan-Meier survival analysis shows that
cancer progresses similarly for patients with low and high LDHB. Therefore, LDHB is not as
reliable as LDHA as an indicator of cancer prognosis.

Thus, it is rational to consider inhibiting LDHA selectively without attempting to target LDHB.
However, inhibiting LDHA alone would produce some or no effect, whereas inhibiting both LDHA
and LDHB simultaneously would lead to more potent anti-cancer effects. Even then, however,
inhibiting LDHA/B leaves room for metabolic rewiring, as cancer cells turn to modifying pyruvate
into bicarbonate instead of lactate [22]. Thus, an even more effective therapeutic strategy would
be the inhibition of LDHA/B along with mitochondrial pyruvate transporters. Nevertheless, any
combination therapy involving LDHA/B would require LDHA/B inhibitors that are potent,
effective, and safe as possible. Developing such LDHA/B inhibitors is the focus of this study.
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Methodology

Data Analysis and Target Validation

The Broad Institute DepMap [23-26] was used for CRISPR analysis on data from the DepMap
Public 23Q2+Score and CHRONOS databases. GEPIA [24] was used for survival analysis and
curve generation. GEPIA gene expression data was taken from and normalized against The
Cancer Genome Atlas (TCGA) and Gene-Tissue Expression (GTEx) databases. Significant
differences in gene expression between normal and tumor samples were determined by a
one-way ANOVA test and p-value < 0.01.

Protein model preparation (1I10, 1I10+NADH, 7DBK, 7DBK+NADH)

It is unknown whether LDH isoforms are physiologically present in the NADH/NAD+-bound or
ligand-free form. Thus, we test a molecule’s average effect on both such forms. To prepare
protein structures for molecular docking studies, starter structures were taken from RCSD PDB
IDs 1I10 (LDH1 in complex with NADH and oxamate) and 7DBK (LDH5 in complex with NADH).
1I10 was chosen due to its good resolution (2.3 A), and 7DBK was the only human LDH1 PDB
structure available. Note that the LDH1 isoform is a homomeric tetramer of LDHA subunits,
while the LDH5 isoform is a homomeric tetramer of LDHB subunits.

Two protein models were created for each of LDHA and LDHB: apo- and NADH-bound,
following a process outlined in [20]. The original structure with NADH was simply modified,
either preserving or removing the NADH ligand, depending on the structure of interest. The
structures were modified in BIOVIA Discovery Studio (free version; [33]). Note that throughout
this paper, we use the terms “protein” and “receptor” interchangeably.

Virtual Screening and Result Analysis of Ligand-Receptor Interactions

Virtual screening is a technique in which large libraries of molecules are tested high-throughput
using docking software or pharmacophore models. Virtual screening of small molecules against
the protein structures was done using molecular docking in the PyRx software [28]. PyRx uses
built-in OpenBabel for ligand preparation and AutoDock VINA for protein preparation & scoring
protein-ligand complexes. Pyrx uses Monte Carlo simulation to sift through numerous different
binding conformers and score each one. The default Pyrx parameters include an energy range
of 3.0, exhaustiveness of 8, and mode number 9, which were used throughout the project. The
scoring function takes into account entropy changes during binding; and favorable and
unfavorable van der Waals interactions, hydrogen bonding, ionic forces, and aromatic
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pi-pi/pi-alkyl interactions. Note that a more negative VINA score indicates a more favorable
interaction.
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Seamdock [29 & 30] was also used for molecular docking of R-GNE-140, with parameters of
energy range 3.0, exhaustiveness of 8, and mode number 9. After molecular docking, BIOVIA
Discovery Studio software [31] was employed to investigate ligand-receptor interactions
including pi-pi stacking, pi-alkyl interactions, conventional hydrogen bonding, and hydrophobic
London dispersion interactions.

Molecular docking requires the definition of a “search space” in the shape of a rectangular box.
For docking in Pyrx, the LDHA search boxes were centered near (5.5, -13.2, 152.5) and had
dimensions (42.8, 55.9, 28.13), encapsulating the active site; similarly, LDHB boxes were
centered near (-14.0, -9.3, 55.4) and had dimensions (44.1, 63.5, 39.8). In Seamdock, both
LDHA and LDHB boxes had center (0, -17, 3) and dimensions (38, 39, 39). These parameters
were kept relatively consistent by the author to minimize variation caused by experimental
docking conditions.

De Novo Molecule Generation

The CReM web app [32, 33] was used to generate derivatives of GSK2837808A and
R-GNE-140. The generation mode was analog (hence groups were replaced rather than
scaffolded on). Molecules with synthetic accessibility <= 2.5 were considered. A context radius
of 5 was used along with a fragment size of 10, and at most 150 total replacements (50
replacements, run 3 times) were considered for each of GSK2837808A and R-GNE-140 (though
only 210 in total came out to be unique molecules).

Pharmacophore Modelling

A pharmacophore is a model that takes into account the important interactions between ligands
and receptors and is used to computationally screen molecules at a rapid pace. Because it is
not as accurate as molecular docking, it is merely used as an initial screen. Further lead
optimization is carried out using molecular docking. Ligand-based pharmacophore modeling
was conducted using Pharmit [34], a web server. The pharmacophores generated were based
on complexes between GSK2837808A as the ligand and one of LDHA, LDHA+NADH, LDHB, or
LDHB+NADH as the receptor, as well as R-GNE-140 as the ligand and one of LDHA or LDHB
as the receptor. The important ligand-receptor interactions were selected based on interaction
analysis in BIOVIA Discovery Studio. The library of de novo molecules has been uploaded to
Pharmit and is called “round 2.1.”
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The fit of a ligand within a pharmacophore was calculated using the SMINA scoring function
[35], which is similar to the AutoDock VINA scoring function but optimized for virtual screening.
Note that SMINA may not give the same score as VINA and was only used as a preliminary
score. Molecules selected based on their SMINA score were later tested to retrieve their VINA
score.

ADMET and Off-Target Effects Analysis

To computationally assess ADMET properties, we employed SwissADME [36] for ADME
prediction and Protox-II web server for toxicity assessment [37-39].

SwissADME uses support vector machines to test molecules against a given database of
already known active molecules and predict whether a novel drug would serve as an inhibitor or
substrate to a specific enzyme (notable ones including Pgp and CYP isoforms). It also uses
tools such as multiple linear regressions to predict Kp (skin permeability) and Generalized Born
and solvent-accessible surface area (GB/SA) to predict lipophilicity. All in all, SwissADME offers
an easy–to–interpret overview of the pharmacokinetic and physiological properties of a drug.
Two important methods in SwissADME include iLOGP (to calculate lipophilicity) and Ali LogS (to
calculate the logarithm of solubility). The iLOGP algorithm was developed by the creators of
SwissADME, and Ali LogS was created by Ali et al. [42].

Protox-II similarly uses machine learning models, such as random forest and support vector
machines, and pharmacophores to predict a molecule's effect on different body systems.
Protox-II’s models have been trained on extensive datasets, such as the NIH LiverTox and the
Carcinogenic Potency Database.

SwissTargetPrediction [43 & 44] was used to predict the targets of a given molecule, including
potential off-target effects. The web server computes similarities between electroscope models
of the query molecule and molecules within the server’s database to compute which targets are
most likely to interact most favorably with the query drug. Note that GSK2837808A was already
a part of the SwissTargetPrediction database, so the algorithm predicts that GSK2837808A
would target LDHA and LDHB with probability 100%. Thus, comparing this to the probabilities of
de novo molecules targeting LDHA and LDHB would not be a fair comparison.

Results and Discussion

Selection of Round 1 Potency Inhibitors + Virtual Screening
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Lactate dehydrogenase has been studied in the past as a possible approach to cancer
treatment. However, the lactate dehydrogenase A (LDHA) subunit has been explored in much
more detail than the lactate dehydrogenase B (LDHB) subunit, perhaps because LDHA is
primarily found in non-heart muscle, whereas LDHB is found in heart muscle. Thus, while some
FDA-approved lactate dehydrogenase inhibitors exist, none of them have been approved for
cancer treatment, and all LDH inhibitors currently being developed in response to cancer are
preclinical. A thorough review of the literature has offered 5 promising inhibitors of LDH that
could inhibit both LDHA and LDHB in cancer cells with substantial selectivity against other
dehydrogenase enzymes.

Table 1: Structures, IC50s, and binding site of 5 promising preclinical inhibitors. N.D. signifies
that the IC50 was not provided in the literature. For GSK2837808A and R-GNE-140, the first
value is derived from NAD(P)-Glo consumption measurements, whereas the second value is
derived from NADH consumption measurements [39]. During the experiment, Galloflavin was

also used for Round 1 docking, but due to its unique binding site outside of the substrate pocket,
it was not considered for this project. Images are original and created using RCSD PDB

structure editor.

Compound Structure LDHA
IC50 (nm)

LDHB
IC50
(nm)

Binding Mode
to LDH

GSK2837808A 2.6/29.3 43/141.0 Competitive

NCI006 60 30 Competitive

NCI737 N.D. N.D. Competitive
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CHEMBL4081890 N.D. N.D. Competitive

R-GNE-140 3/6.1 5/54.3 Allosteric [41]

Oxamate, a common substitute for pyruvate, was used as a control to test the effectiveness of
the molecular docking software. I used Pyrx to dock oxamate to LDHA+NADH and compared
the results to a known crystal structure of LDHA+NADH+Oxamate (PDB:1I10).

The computational results strongly mimicked the experimental results. As shown in Figure 3, the
true crystal structure of oxamate in complex with LDHA and NADH showed a very similar
configuration as the molecular docking output. Thus, Pyrx docking software did a very good job
of optimizing and scoring the proper conformation and orientation of inhibitors within the LDH
sites. However, some notable differences were observed: firstly, docking cannot consider
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important water interactions due to the constraints of software, whereas the crystal structure
included NADH-water-oxamate interactions. In addition, docking did not show the crystal
structure’s ARG 168 NH1 - OXM O3 or Gln99 – OXM N1 interactions. Docking shows
extraneous unfavorable NADH C4N – OXM O3 interaction, useful Gln99 – OXM O1 interaction,
useful Arg105 NH2 – OXM O1. Docking shows an unfavorable Thr247 O1 – OXM O3
interaction, whereas crystal structure shows a useful Thr247 - OXM O3 hydrogen bond. Overall,
however, Pyrx molecular docking was a viable approach for studying LDH inhibition.

As detailed in the methods section, 4 different protein structures were prepared: apo-LDHA,
LDHA bound to NADH, apo-LDHB, and LDHB bound to NADH. The 5 inhibitors in Table 1 were
docked to each protein structure. Interestingly, all five compounds seemed to bind more strongly
to LDHB. The author is unsure why this is the case because the active sites of both LDH
isoforms possess identical relevant amino acids. Another interesting note is that R-GNE-140
prefers to bind in the active site of LDHB, whereas in LDHA, it binds to the allosteric site
proposed by the literature [37], as shown in Figure 4. Note that the active site of both isoforms is
characterized by a loop that serves as the ceiling of the pocket. We speculate that both of these
could be due to a conformational difference between LDHA and LDHB, or perhaps that because
the 7DBK PDB structure is oxamate-free, it provides more space for larger molecules to fit,
allowing for stronger binding affinities. Upon comparing LDHX to LDHX+NADH binding affinities,
such a trend is less clearly evident.

Upon examining the structures of the inhibitors in further detail, one notices that while
GSK2837808A, NCI-006, NCI-737, and CHEMBL4081890 (out of which GSK2837808A bound
most strongly on average to LDH) all possess relatively similar structures, R-GNE-140 does not
possess a structure similar to the other four, and it potentially binds to an allosteric site on the
receptor. GSK and RGNE are two promising preclinical cancer LDH inhibitors that target both
LDHA and LDHB. In this paper, we identify versatile contenders that could be further optimized

10



to produce more selective, potent, and safe drugs than those that already exist for LDH by using
GSK for active site targeting and RGNE for simultaneous allosteric and active site targeting.

Overall experimental procedure.

Ligand-Based Pharmacophore Design and Round 2 Docking

The protein-ligand complexes of GSK with each of LDHA, LDHA+NADH, LDHB, and
LDHB+NADH, as well as the RGNE complexes with LDHA and LDHB (6 complexes in total),
were each used for ligand-based pharmacophore design. Simultaneously, about 210 unique de
novo molecules were algorithmically generated from GSK and RGNE. These next-generation
molecules were screened against all 6 pharmacophores. The molecules of interest were those
that passed each pharmacophore. Here, a “pass” is defined as an RMSD (root mean square
deviation) <= 2 from the original GSK/RGNE pose in the receptor (to avoid ligands that were not
within the same binding pocket) and an SMINA score that was at most 0 kcal/mol (to choose
only those ligands that interacted favorably with the receptor).
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For the GSK LDHA, LDHB, and LDHB+NADH complexes, none of the novel GSK derivatives
passed the pharmacophore. However, Table 2 shows the seven molecules that passed the GSK
LDHA+NADH pharmacophore that were used for further testing. In addition, ten novel
derivatives passed the RGNE-LDHA pharmacophore, and two RGNE derivatives passed the
RGNE-LDHB pharmacophore.

Table 2: The 7 de novo molecules that passed the GSK-LDHA+NADH pharmacophore. Images
are original and created using the RCSD PDB structure editor.

Compound Structure SMINA Score (kcal/mol)

40 -10.1028

36 -4.86455
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7 -4.68898

41 -4.60181

6 -4.55381

45 -4.25641

39 -3.26814

Table 3: The first ten passed the RGNE-LDHA model, and the last two passed the RGNE-LDHB
model. Images are original and created using the RCSD PDB structure editor.

Compound Structure SMINA Score (kcal/mol)
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191 -7.56271

148 -6.83033

153 -6.6615

118 -6.54546

147 -6.27549

78 -6.25875

125 -6.15634
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70 -5.82108

166 -5.27445

134 -4.31939

79 -9.08583

81 -7.87641

These 7 GSK derivatives and 12 RGNE derivatives underwent molecular docking to the protein
structures. VINA scores for the best derivatives are shown in Tables 4 and 5.

Table 4: VINA scores for selected de novo GSK derivatives in kcal/mol. GSK is included for
comparison. Of note: during molecular docking, the software automatically added a polar

hydrogen atom to the nitro group of compound 41. However, this would not have affected the
docking pose nor the docking score, as the algorithm considers only heavy atoms in the ligand.

Compound LDHA LDHA+NADH LDHB LDHB+NADH Average
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6 -8.8 -8.4 -10.7 -10.0 -9.5

36 -8.9 -8.9 -10.8 -10.2 -9.7

45 -9.3 -9.1 -11.5 -10.6 -10.1

GSK -8.6 -7.4 -10.1 -10.5 -9.2

Table 5: VINA scores for selected de novo RGNE derivatives in kcal/mol. RGNE included for
comparison.

Compound LDHA LDHB Average

118 -9.4 -9.7 -9.6

125 -7.2 -10.3 -8.8

166 -7.6 -10.0 -8.8

191 -8.9 -9.2 -9.1

RGNE -7.7 -9.3 -8.5

The top three GSK derivatives (compounds 6, 36, 45) four RGNE derivatives (compounds 191,
118, 125, 166) outperformed the original inhibitors and were selected for further analysis.

ADMET + Specificity Characterization

After selecting the de novo compounds that outperformed the original in potency, we
investigated their ADMET properties. Tables 6 and 7 show the ADME and Toxicity results for
Compounds 6, 36, 45, and GSK. SwissTargetPrediction results were used to compare the
specificity of the small molecules, results shown in Table 8. Important considerations include the
top few likely targets and their function.

Table 6: ADME summary for GSK and its most potent derivatives. GIA = gastrointestinal
absorption. SA = synthetic accessibility. Desired properties include low iLOGP, high LogS, high
GIA, fewer Lipinski violations, and low SA. None of the drugs are blood-brain barrier (BBB)

permeants.

Compoun
d

MW Lipophilic
ity
(iLOGP)

LogS
solubility
(Ali)

GIA Lipinski
violations

SA P-gp
substrate
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6 648.64 3.71 -8.36 Low 2 4.41 No

36 601.56 4.32 -8.14 Low 2 4.18 No

45 631.60 4.06 -9.33 Low 1 4.26 No

GSK 649.62 3.90 -8.92 Low 2 4.41 No

Table 7: A higher tox class is safer. Active indicates potential toxicity. The toxicity properties of
the GSK derivatives and GSK itself are quite similar.

Compou
nd

Tox
Clas
s

Hepatotoxici
ty

Carcino-
genicity

Immuno-
toxicity

Muta-
genicity

Cytotoxi
city

Predicte
d LD50
(mg/kg)

6 5 Active (0.51) Inactive
(0.62)

Active
(0.99)

Inactive
(0.70)

Inactive
(0.78)

3160

36 4 Active (0.58) Inactive
(0.69)

Active
(0.99)

Inactive
(0.64)

Inactive
(0.68)

1000

45 5 Active (0.63) Inactive
(0.56)

Active
(0.99)

Inactive
(0.69)

Inactive
(0.73)

3160

GSK 5 Active (0.57) Inactive
(0.62)

Active
(0.99)

Inactive
(0.72)

Inactive
(0.77)

3160

Table 8: TargetPrediction results for GSK and its derivatives. FXa = coagulation factor X.
PPAR-gamma = Peroxisome proliferator-activated receptor gamma. FLAP = 5-lipoxygenase

activating protein. Aurora-B is a serine/threonine-protein kinase.

Compound Most probable target 2nd 3rd

6 LDHA LDHB Thrombin/FXa

36 LDHA LDHB FK506-binding
protein 1A

45 LDHA LDHB PPAR-gamma

GSK LDHA LDHB Aurora-B
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ADME analysis of GSK derivatives showed that compounds 6 and 36 are more soluble than
GSK, making them safer to administer by mouth (though all four show low GI absorption).
Compound 45 also possesses fewer Lipinski violations and is more drug-like than GSK. In
addition, compounds 36 and 45 are synthetically easier to produce than GSK. Toxicity analysis
shows that all four share similar toxicity hazards, but compound 36 is less safe than the others.
Target prediction results show that all four have great selectivity for LDHA/LDHB. However, in
terms of target selectivity, one would prefer compounds 45 and GSK over compound 6, because
compound 6 targets coagulation factors. Compound 36 cannot be administered along with
immunosuppressants, as it inhibits the immunosuppressant-binding protein FKBP 1A.

Overall consideration would warrant compound 45 as the most viable alternative to GSK: it is at
least as safe, more drug-like, easier to synthesize, and outperforms GSK in binding affinity to
the different LDH isoforms.

Similar data was collected for the RGNE derivatives.

Table 9: ADME summary for RGNE and its most potent derivatives. None of the drugs are BBB
permeants.

Compoun
d

MW Lipophilic
ity
(iLOGP)

LogS
solubility
(Ali)

GIA Lipinski
violations

SA P-gp
substrate

118 633.18 4.88 -8.92 Low 1 5.00 No

125 599.12 3.42 -6.64 Low 1 4.82 Yes

166 739.14 3.95 -10.33 Low 1 5.06 No

191 630.22 5.03 -8.82 Low 1 5.18 No

RGNE 499.04 3.86 -6.98 High 0 4.37 Yes

Table 10: Toxicity properties of the GSK derivatives and GSK itself are quite similar.

Compou
nd

Tox
Clas
s

Hepatotoxici
ty

Carcino-
genicity

Immuno-
toxicity

Muta-
genicity

Cytotoxi
city

Predicte
d LD50
(mg/kg)

118 4 Inactive
(0.55)

Inactive
(0.58)

Inactive
(0.73)

Inactive
(0.68)

Inactive
(0.64)

1000
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125 4 Inactive
(0.57)

Inactive
(0.59)

Inactive
(0.62)

Inactive
(0.65)

Inactive
(0.64)

805

166 4 Active (0.52) Inactive
(0.68)

Inactive
(0.70)

Inactive
(0.77)

Inactive
(0.60)

1320

191 4 Inactive
(0.60)

Inactive
(0.58)

Active
(0.96)

Inactive
(0.69)

Inactive
(0.63)

1000

RGNE 4 Inactive
(0.57)

Inactive
(0.58)

Inactive
(0.87)

Inactive
(0.71)

Inactive
(0.65)

805

Table 11: TargetPrediction results for RGNE and its derivatives. Abbreviations - MELK =
maternal embryonic leucine zipper. FXI = coagulation factor XI. ABL is a

serine/threonine-protein kinase.

Compound Most probable target 2nd 3rd

118 LDHA Glucagon receptor MELK

125 Plasma kallikrein FXI Glyoxalase I

166 Cannabinoid receptor
1

Cannabinoid receptor
2

ABL

191 FXI MELK LDHA

RGNE Glyoxalase I MMP-9 MMP-2

ADME analysis of RGNE derivatives showed that compound 125 had the most similar or better
results than RGNE. However, while 125 is more soluble, less lipophilic, and similarly
synthetically accessible as RGNE, 118 had higher predicted LD50 than 125 and RGNE, making
it the safer option. In addition, both 125 and RGNE show very poor selectivity for LDH isoforms
compared to 118. Target prediction studies show that 125 could have off-target effects against
plasma kallikrein, which is responsible for inducing inflammation. RGNE could inadvertently
inhibit glyoxalase I, responsible for detoxifying glyoxal from cells.

For these reasons, we present compound 118 as the preferred alternative to RGNE.
Interestingly, 118 seems to favor LDHA’s active site and LDHB’s allosteric binding pocket (see
Figure 5).
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Conclusion

Lactate is a critical metabolite in cancer progression, and lactate dehydrogenases (LDHs) are a
class of enzymes that interconvert lactate and pyruvate. LDHA, a subunit of LDH, has been
observed as overexpressed across various types of cancer. Thus, inhibiting both LDHA and
LDHB, the primary LDH subunits would allow for versatile cancer therapy against various
conditions.

This study validated the use of molecular docking for LDH therapy design using oxamate as a
control. The author used preclinical LDHA/B inhibitors (GSK2837808A and R-GNE-140) to
create de novo derivatives that were well-rounded (binding well to both LDHA and LDHB, in
many cases, even more so than GSK and RGNE). Finally, the ADMET and specificity properties
of the new molecules were investigated to give compounds 45 and 118 as better alternatives to
GSK and RGNE, where “better” is a combination of strong binding affinity and safety. Because
RGNE binds to LDHA’s allosteric site and LDHB’s active site, 118 is versatile and could bind to
either pocket. This study highlights the power of an in silico approach to drug discovery that
saves time and money. All of the software used was free and open-source, as was the data
collected by the researcher.

Galloflavin is another preclinical potent inhibitor of both LDHA and LDHB, though it binds to LDH
just outside the binding pocket. Future research could include designing inhibitors modeled after
Galloflavin, and molecular dynamics could be used to investigate how galloflavin binding affects
the shape of the active site. In addition, compounds 45 and 118 could be even more thoroughly
optimized for safety and then tested in vitro and in vivo.
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