
Computer Vision Based AI for Control of High Velocity Autonomous Vehicle With
Lane Detection Using Polynomial Regression

Jeffrey Aaron Jeyasingh,1 Tony Smoragiewicz2

1Arcadia High School, Arcadia, California, USA
2Northeastern University, USA

Abstract

Line following algorithms often fail to account for the po-
sition of the vehicle within the lane, only depending on the
curvature of the lane to determine steering output. For ex-
ample, with previous algorithms, the vehicle could be to the
right of the lane and the steering angle from the algorithm’s
output would not correctly return the car to the center of the
lane. Additionally, error can result from incorrect calibration:
if the vehicle is truly pointing at a steering angle of 61 degrees
when the correct angle should be 60 degrees, the vehicle will
drift 1 degree throughout the turn. The error is accumulated
and ultimately will cause the vehicle to leave the lane. By
fitting a polynomial curve to the input image data, the exact
location of the line can be determined relative to the vehicle.
Furthermore, the center of the lane can be pinpointed, offset
calculated, and trajectory modified to smoothly return to the
center of the lane.

1 Problem Formulation
The goal of this project was to develop an algorithm that
could process data from a video input, detect a line, and then
compute a steering angle such that the car follows the line.
Line-following robots are often used in industrial applica-
tions as these can predictably follow a path from point A
to point B with low computation. Because the goal was to
control the car at high velocities, decisions had to be made
quickly with low latency in order to ensure a successful al-
gorithm. A chain of if-else statements would not be opti-
mal because it would result in the robot unable to handle
certain cases (Bojarski et al. 2016). Another constraint that
was faced was the limited processing power on single board
computers such as the Raspberry Pi. In order for the robot to
consume power efficiently, a single board computer such as
the Raspberry Pi had to be used.

Initially, the problem was approached by using a machine
learning approach, similar to the approach used in this pa-
per: (Bechtel et al. 2018). With this approach, the control
of the car is done end-to-end by a Deep Learning Convolu-
tional Neural Network (CNN) model. However, the car did
not do a good job of staying on the track. This is because
even though the CNN could accurately predict the angle, it

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

could not determine its position relative to the track itself,
causing the robot to be offset from the track.

In order to fix this issue, a computer vision approach was
used. With computer vision techniques, the position of the
track can be pinpointed and the robot can modify its trajec-
tory to return to the track.

Code from this website (Tian 2019) 1 was used to guide
the creation of the deep learning approach.

Figure 1: Image of Car Used

2 Hardware/Software Used For Robot
In order to capture the floor, an IPhone 14 Pro is used and
connected wirelessly to a Macbook M2 Air through Apple’s
Continuity Camera. The Macbook processes the camera data
and runs the computer vision algorithm and then sends a
steering and motor speed command to the Raspbery Pi 4b
on the robot through ZMQ networking. Then, through a se-
rial connection, the Raspberry Pi 4b forwards the controls it
recieves from the Macbook to an Arduino on the robot. Fi-
nally, the Arduino control the motors and the steering based
on the serial data it recieves.

1https://towardsdatascience.com/deeppicar-part-5-lane-
following-via-deep-learning-d93acdce6110

Stamp



3 Algorithms Investigated
Image Processing
The first goal was to detect the position of the track which
was a line. Because the camera input was tilted at an angle
to capture more of the track than the robot, the image was
slightly distorted. The raw input from the camera is shown
in Figure 2.

Warp Perspective In order to correct the error and create
a 1:1 correlation with physical units and pixels on the cam-
era data, the ‘warpPerspective‘ command from OpenCV was
used as shown in Figure 2a. The distorted image was set up
such that each pixel represents a millimeter.

Gaussian Blur Before extracting the data from the image,
it was blurred using a Gaussian blur to eliminate sources of
noise as seen in Figure 2b.

HSV Color Space Clipping To extract the data, the im-
age was first converted to the Hue, Saturation, Value (HSV)
color scheme as shown in Figure 2c. In this color scheme,
Hue represents a certain color while Saturation and Value
allow the shade and brightness of the color to be adjusted.

Threshold Masking The HSV color scheme includes the
color as only one component as opposed to the RGB color
scheme which has three components containing color data.
This makes it easier to segment and isolate colors by mask-
ing based off a high and low value. This result masking a
range of HSV values is shown in Figure 2d.

Figure 2: Raw Camera Data

(a) Image Warping (b) Gaussian Blur

(c) HSV Color Space (d) Threshold Masking

Figure 3: Image processing steps

Lane Detection
Curve Fitting with Polynomial Regression After ex-
tracting the pixels that represent the lane as shown in Figure

Figure 4: Polynomial Curve Fitting Example

2d, it needs to be converted to a form that is easy to manip-
ulate and measure. A polynomial equation solves this prob-
lem effectively. By fitting the data to a polynomial equation,
it is possible to utilize the power of an equation. The cur-
vature, slope, and length of a curve can be calculated with
basic calculations giving us access to more metrics to make
a better angle prediction.

In order to fit the data to a curve, each pixel is treated as
a data point. Then polynomial regression is run in order to
determine a polynomial of a certain order that fits the data
the best. Examples of different polynomial fits are shown in
Figure 5.

To reduce processing time, the image can be downscaled
in size to retain information and reduce the number of data
points. The RANSAC algorithm could also be tried in or-
der to reduce the effect of outliers in the data. However, this
method was not tested in this paper due to the fact that the
effect of outliers did not significantly impact performance of
the algorithm.

Where Curve Fitting doesn’t Quite Fit Due to the nature
of a curve fitting algorithm to minimize the error or distance
between the input data and the outputted function, it can pro-
duce results that are mathematically optimal but not visually
optimal. Some examples of this happening are shown in Fig-
ure 6. These are edge cases that this algorithm can’t handle,
but these occur only momentarily and can be alleviated with
some type of filter on the output of the algorithm.

Path Creation
In order to find the appropriate steering angle for the robot, a
path needs to be computed that will allow the robot to return
to its right location. In our example, the x axis runs from top
to bottom while the y axis runs from left to right.

Find target point
In order to find the target point, we choose a point that is
a fixed distance along the line obtained by curve fitting as
shown in Figure 5. This point will be referred to as (xf , yf ).
The starting point is the robot’s current position, (x0, y0)

Calculate a trajectory line
A 3rd order polynomial was used for the line of best fit. Its
form is yfit = ax3 + bx2 + cx+ d



(a) 1st order

(b) 2nd order

(c) 3rd order

(d) 4th order

Figure 5: Different orders of polynomial fits

A =


x3
0 x2

0 x0 1
3x2

0 2x0 1 0
x3
f x2

f xf 1
3x2

f 2xf 1 0



(a) Insufficient data for fit (b) Corresponding Mask

(c) Incorrect prediction (d) Corresponding Mask

Figure 6: Instances where the algorithm doesn’t work

B =

 y0
0
yf

3ax2
f + 2bxf + c


C = A−1b

Matrix c holds all the coefficients for the final trajectory
equation, which is in the form ytraj = tx2 + ux+ v

C =

[
t
u
v

]

To find the steering angle, find the slope of ytraj at an x
value that is halfway between x0 and xf .

4 Experiments
Some characteristics used to judge the effectiveness of each
algorithm are below:

• Max Rotational Acceleration - used to judge how smooth
the car’s rotation is

• Max Linear Acceleration - used to judge how smooth the
movement and braking of the car is

• Lap time - how fast the car can complete a single lap

Lap time is only included in Experiment 5 because it
was the only experiment that could traverse the path at high
speeds. All values have been averaged over 4 trials (4 laps).

Experiment 1 to 2 - Deep learning
A deep learning approach was used for
the first two experiments. The deep learn-
ing model used was based of this paper:
https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-
to-end-dl-using-px.pdf This model takes in the image data
from the camera and outputs a steering angle for the robot
to drive in.



Experiment 1 Experiment 1 used the deep learning model
described above. Although the robot could follow the track,
it did not perform well at sharp bends where the camera
could no longer see the track.
• Portion of track completed: Full
• Max Rotational Acceleration: 1.12rad/s2

• Max Linear Acceleration: 3.60m/s2

Experiment 2 Experiment 2 builds upon Experiment 1 by
adding a median filter to the output steering angle. This helps
the model be less affected by noise or random erroneous out-
puts. From the data
• Portion of track completed: Full
• Max Rotational Acceleration: 0.78rad/s2

• Max Linear Acceleration: 3.93m/s2

Experiment 3 to 4 - Computer Vision (Hough Line
Transform)
These experiments tried a new approach by using computer
vision to control the process. By masking the the blue color
and extracting the pixels of the lane as shown in 2d, a
Hough Line Transform was applied in order to extract all
the straight line segments. Then the slopes of the lines were
averaged to find the angle of the lane, which corresponds to
the angle that the car should steer in.

Experiment 3 Experiment 3 used the computer vision al-
gorithm described above. The results from this experiment
were similar to those of Experiment 1-2: Although the robot
could follow the track, it did not perform well at sharp bends.
• Portion of track completed: Full
• Max Rotational Acceleration: 1.35rad/s2

• Max Linear Acceleration: 2.50m/s2

Experiment 4 Experiment 4 builds upon Experiment 3 by
adding a median filter to the output steering angle.

• Portion of track completed: Full
• Max Rotational Acceleration: 0.67rad/s2

• Max Linear Acceleration: 3.26m/s2

Findings of Experiment 1 - 4 After performing experi-
ments 1-4, it was noticed that the car was incapable to re-
turning to the center of the lane when it was displaced. This
is because the car can only determine the angle of the lane
relative to its orientation. It has no knowledge of whether it
is to the left, right, or centered on the lane.

Experiment 5 to 6 - Linear Regression with
Computer Vision
Experiment 5 includes the new algorithm described in the
Algorithms Investigated section

Experiment 5
• Portion of track completed: Full
• Max Rotational Acceleration: 0.64rad/s2

• Max Linear Acceleration: 2.87m/s2

• Lap time: 7.21s

Experiment 6 The goal of experiment 6 was to increase
the speed of the lap time. This was done by increasing the
robot’s velocity on straight steering output, while decreas-
ing speed on sharp turns to prevent the car from exiting the
designated path.

Lap time: 5.88s

Algorithm 1: Speed control algorithm
Input: Steering Angle (-1 to 1 range) Output: Velocity of
car

1: Let maxSpeed = 200.
2: Let minSpeed = 200.
3: Let diff = maxSpeed−minSpeed
4: return maxSpeed− diff ∗ abs(steeringAngle) =0

Other Experiments
After performing the previous experiments, an efficient al-
gorithm was found to control the car reliably. Now, the al-
gorithms are tested for speed. By measuring the lap time of
the car under the control of different drivers, it is possible
to analyze how the algorithm performs against other human
drivers. Figure 7 shows the results of the mentioned data col-
lection.

Figure 7: Lap time (Human vs Car)

5 Results
From the data, it is clear that the algorithm used in
the Experiment 5 and 6, described in Algorithms
Investigated section, are the most effective at turning
smoothly. The max rotational acceleration was, on average,
lower than in the other experiments.

Because we can mathematically represent the line as a
polynomial equation, we are able to compute the appropri-
ate line that the robot should take in order to return to the
track. The thought process is inherently different: instead of
trying to move in the direction of the track, we check how



offset we are from the track and then produce a steering an-
gle that fixes it. In this manner, the car will always return to
the track, no matter its orientation.

From Figure 7 it is seen that humans are often slower than
the robot at first but improve over time and occasionally beat
the car’s time. However the algorithm performs better be-
cause it has a faster reaction time and can instantly react
when the car veers off the track.

6 Conclusion
The lane following algorithm developed in this paper effec-
tively locates the lane and positions the robot to be within
the lane. By continually centering the robot, the robot will
always remain within its lane. In order to increase the speed
of the robot, an algorithm was developed to adjust the speed
of the robot based on the degree of turning being executed
by the robot.

To add to this experiment, in the future, multiple lanes
could be added and the algorithm could be extended to allow
the robot to identify lanes. Additionally, the algorithm could
use better outlier detection in order to avoid misidentifying
other blue objects on the track as lane lines.

Some modification that could be made to the experiment
are changing the color of the lane and changing its shape (ex.
dashed, dotted, double line).

Potential Improvements
In order to improve the performance of the robot, the cam-
era needs to be better at capturing fast moving objects. Al-
though the IPhone 14 Pro camera outperforms other web-
cams that were tested, its images still contain large amount
of motion blur when the robot is moving at its maximum
velocity (around 1m/s). On another note, instead of replac-
ing the camera, better image processing techniques could be
used to account for the blur and noise from high speed mo-
tion.

References
Bechtel, M. G.; McEllhiney, E.; Kim, M.; and Yun, H. 2018.
DeepPicar: A Low-cost Deep Neural Network-based Au-
tonomous Car. arXiv:1712.08644.
Bojarski, M.; Testa, D. D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; Zhang, X.; Zhao, J.; and Zieba, K. 2016. End to
End Learning for Self-Driving Cars. arXiv:1604.07316.
Tian, D. 2019. DeepPiCar-part 5: Autonomous Lane Navi-
gation via Deep Learning.


