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Abstract
Coronary Artery Disease (CAD) and Myocardial Infarction (MI) are the leading causes of

mortality in the United States. Certain genes have been shown through bioinformatics analysis
to be related to CAD and MI, but are not incorporated into USPSTF Guidelines. In this study, we
aimed to create a model of diagnosis and prognosis in adult patients with coronary artery
disease and myocardial infarction from 10 diverse datasets, and also aimed to identify biological
pathways, immune cells, and drugs related to CAD and MI to improve biological understanding
of these conditions. Using the R MetaIntegrator Package and multiple datasets including the
Gene Expression Omnibus, Library of Integrated Network-Based Cellular Signatures, and
Reactome, we analyzed data from 10 datasets and found a high predictive value in predicting
patients with either CAD or MI. We also used the gene signatures generated through our
original meta-analysis to identify significant biological pathways, which included oncogene
induced senescence (p < 0.05) and neutrophil degranulation (p = 0.000275), significant drugs
that could be potential treatments for CAD or MI, which included enzalutamide (r = -0.5464015,
p = 3.043318e-08, FDR = 3.800495e-05) and ibutilide (r = -0.5209267, p = 1.663780e-07, FDR
= 9.198588e-05), and significant immune cells using immune cell deconvolution, which included
natural killer cells. We conclude that through these results, we have created a more biologically
heterogeneous gene signature and meta-analysis to predict diagnosis and prognosis in patients
in patients with CAD and MI, and found new biological pathways, drugs, and immune cells that
can be used to improve understanding of the conditions and treat them.

Introduction
Annually, more than 3 million people in the United States alone are diagnosed with

Coronary Artery Disease (CAD), the leading cause of mortality in the United States1.  Acute
myocardial infarction (MI) is the leading cause of mortality in developed countries, reaching 1
million deaths annually in the United States2. Certain genes have been identified as predictors of
coronary artery disease in patients through gene expression analysis in recent studies3,4.
However, these genes have not been incorporated into screening measures via USPSTF
guidelines, and are not consistently used. Finding consistent and replicable genetic markers is
critical to advancing treatment and biological understanding of CAD that is more patient-specific
and comprehensive in order to eventually reduce mortality of CAD and MI.

As the leading cause of mortality, CAD possesses a large burden on patients and
families. CAD is caused by atherosclerosis, or arterial plaque buildup, and can eventually cause
cardiac ischemia and myocardial infarction by blocking off blood flow to a region of the heart
entirely5. CAD is caused by multiple factors, including hyperlipidemia, diabetes, family history,
tobacco use, and obesity, and is considered the leading cause of heart attacks. Current
diagnostic measures include electrocardiograph tests, exercise stress tests, echocardiograms,
and blood tests that measure levels of cholesterol and other indicators of atherosclerosis.
During MI, which is most commonly caused by CAD, symptoms of angina and shortness of
breath are typically assessed through EKG and cardiac enzyme levels, such as troponin and
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myoglobin, which are elevated in the presence of cardiac damage. From there, MI is treated
with anticoagulants and coronary intervention or surgery to relieve the blockage and symptoms6.

Many studies have been done on specific patient populations to examine gene
expression data in relation to CAD and MI. Indeed, genome wide association studies have
identified single nucleotide polymorphisms related to CAD7, and inflammatory and RNA
transport genes have been identified as significant to MI8. However, most of these studies lack
integrated analysis of different populations and a predictive model which is necessary to
improve biological understanding of CAD and MI and allow for faster diagnosis and prognosis
determination. As a result, machine learning models are often skewed in favor of the
populations they trained on, and are not accurate for all populations and demographics.
Meta-analysis allows for this integration of different populations through varied datasets, offering
more specific and comprehensive results regarding gene expression in relation to CAD and MI.
In this study, we will use meta-analysis and machine learning algorithms leveraging gene
expression data from 10 datasets from different technologies, sources, and ethnicities to create
a model of diagnosis and prognosis in adult patients with coronary artery disease and
myocardial infarction. We aim to predict diagnosis and prognosis in adults with coronary artery
disease and myocardial infarction using this machine learning model at a higher accuracy than
previous models. Furthermore, we aim to identify biological pathways, immune cells, and drugs
also related to CAD and MI to improve biological understanding of these conditions.

Materials and Methods
Gene expression data sets comparing CAD and MI patients to healthy patients with

complete gene signatures were accessed through the NCBI GEO Database9. The GEO
Accession numbers are GSE14151210, GSE9858311, GSE3482212, GSE4214813, GSE1228814,
GSE900744, GSE2911115, GSE12334216,17, GSE9732018, GSE6114419, GSE6264620, and
GSE3419821 (Table 1). In total, these 12 datasets contained 968 peripheral blood samples,
which were either control samples (N = 207) depending on the comparison or case samples (N
= 761) that either represented CAD or MI and in some datasets, samples were further
distinguished further based on timepoints.

All datasets were downloaded in R and processed by labeling samples as case/control
and filtering data based on time points (if relevant) using the MetaIntegrator package from
CRAN22,23. Next, we used statistical meta-analysis techniques24 to determine what genes are
statistically different between cases and controls across datasets, with the MetaIntegrator
package to create ROC plots, gene heatmaps, and violin plots to compare genes across
datasets and groups of similar datasets to larger, validation datasets (GSE12288 and
GSE34198).

24
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Specifically, the R package MetaIntegrator 25-28 was used to estimate gene effect size of
all genes within the comparison dataset CADvMI or CADvHealthy, as shown in Table 1, as
Hedge’s g effect size, where 𝑋1 and 𝑋2 are the average case and control gene expressions, S is
the pooled standard deviation for case and control samples, n is the number of cases or
controls, and J is the correction factor, which is 1 - 3/(4df - 1) where df = degrees of freedom. An
effect size was estimated for each gene within each individual dataset and then were pooled
into a comparison-specific (CADvMI or CADvHealthy) effect size by performing an inverse
weighting of the variance of each individual dataset’s effect size. After dataset-wide effect sizes
were determined, we corrected for multiple comparisons by adjusting all p-values using the
Benjamini-Hochberg false discovery rate (FDR) correction29. We also used the forewardSearch
algorithm in the R MetaIntegrator Package to further filter our genes to only those with the
highest discriminatory power30. For the CADvHealthy Dataset, an effect size threshold of 0.3
and an FDR threshold of 0.3 filtered down the original 19,730 genes from the meta-analysis and
18 genes in total were identified as differentially expressed (15 upregulated, 3 downregulated).
For the CADvMI Dataset, an effect size threshold of 0.8 and an FDR threshold of 0.1 filtered
down the 26,146 original genes from the meta-analysis and 44 genes in total were identified as
differentially expressed (35 upregulated, 9 downregulated).

We also performed an analysis to identify potential genes for drug-repurposing using the
Library of Integrated Network-Based Cellular Signatures (LINCS) database to identify significant
drugs that may have a significantly anti-correlated relationship with CAD or MI gene signatures.
We used Level 5 differential gene expression data from the LINCS database to compare to our
gene signatures from the CADvMI and CADvHealthy datasets and found genes that were
significantly anti-correlated to the gene signatures previously identified. P-values were
multiple-hypothesis adjusted using FDR31.

We also performed immune cell deconvolution to attempt to identify cell types that are
differentially expressed between our cases and controls. We used the same datasets from the
gene analysis, including the same grouping for the comparison of CAD v. Healthy samples and
CAD v. MI samples. First, we deconvolved the bulk gene-expression data on a dataset-level
using immunoStates - turning our bulk gene expression data into differential cell expression
data32. Following, we ran a meta-analysis on the deconvolved data to determine differentially
expressed cell types across all datasets in a comparison. Following the meta-analysis, we
filtered down the results to select differentially expressed cell types. For the
CADvHealthyImmuno dataset, an effect size threshold of 0.1 and an FDR threshold of 0.8
generated 2 downregulated immune cells, and for the CADvMIImmuno dataset, an effect size
threshold of 0.4 and an FDR threshold of 0.2 identified 1 significant immune cell.

Lastly, we performed pathway analysis on the CADvMI dataset and the CADvHealthy
dataset using the Reactome database’s gene sets in order to determine significant biological
pathways that have a relationship with MI and CAD33-36. Fisher's exact test was used statistically
after using clusterProfiler to find similarities between genes and pathways. We used a larger
gene signature to determine which genes are differentially expressed using the CADvMI
dataset, with an FDR threshold of 0.1 and an effect size threshold of 0.8, and the CADvHealthy
dataset, with an FDR threshold of 0.3 and an effect size threshold of 0.3. Then, to explore the
effects of these genes, we performed pathway analysis on the CADvMI dataset, with a p-value
cutoff of 0.2 and a minimum g size of 10, and the CADvHealthy dataset, with a p-value cutoff of
0.2 and a minimum g size of 10 as well. We adjusted these p-values using the
Benjamini-Hochberg false discovery rate (FDR) correction30.
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Results

Figure 1: CADvMI dataset gene signature plots.
(A) Dataset-wise distribution of effect sizes for
all datasets in meta-analysis.(B) Heatmap of the
selected gene signature for all 4 CADvMI
datasets. (C) Summary ROC plot of gene
signature of discovery datasets. (D) Summary
ROC plot of validation dataset for CADvMI
(GSE34198). (E) Individual violin plots for each
CADvMI Dataset comparing gene signatures of
case and control groups for discovery datasets.

We combined multiple independent gene
datasets from the NCBI GEO database to allow
for clinical and technical heterogeneity in our
sample of patients, unlike existing literature on
gene signatures of patients with CAD or MI that
are typically isolated to one cohort. Using the
GEO database, we used 10 datasets, from 9
different countries, that were divided up into two
different datasets: CADvMI (GSE123342,
GSE62646, GSE141512, GSE61144)
comparing CAD patient gene signatures to MI

patient gene signatures with a validation dataset (GSE34198) to test our model and
CADvHealthy (GSE42148, GSE90074, GSE98583, GSE34822) comparing CAD patient gene
signatures to healthy patient gene signatures with another validation dataset (GSE12288) to test
our model. The effect size threshold used on the meta-analysis of the CADvMI dataset was 0.8,
the FDR threshold was 0.1, and the number of studies threshold was 4 (Figure 1). Importantly,
the CADvMI analysis predicted classes well, with an AUC for GSE123342 of 0.8, an AUC for
GSE62646 of 0.97, an AUC for GSE141512 of 1, and an AUC for GSE61144 of 0.97. The lower
AUC for GSE123342 can likely be attributed to the fact that this dataset contained samples at
multiple different timepoints post-MI, making CAD harder to differentiate. The model from the
CADvMI dataset was tested using a larger validation dataset with similar data comparing
patients. The CADvMI model, however, did not predict CAD or MI outcomes in patients from the
validation dataset GSE34198 as well as the discovery datasets above, with an AUC for
GSE34198 of 0.61. This is likely due to the fact that the control patients selected in GSE34198
did not have CAD and were healthy, as opposed to the patients in the discovery dataset that
had CAD or MI.

We also analyzed the CADvHealthy dataset and the CADvMI dataset using biological
pathway analysis from the Reactome database (Figure 3). Pathway analysis for the CADvMI
dataset was also performed and indicated a significant relationship (p = 0.000275) between
CAD and neutrophil degranulation (gene ratio =~ 0.29). Neutrophils were identified during the
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immune cell deconvolution results below as upregulated during MI, which is likely because white
blood cells increase following cardiac tissue damage during an MI for repair. The neutrophil
degranulation pathway causes the release of granules from neutrophils through exocytosis, and,
when excessive, can cause inflammatory disorders such as rheumatoid arthritis and asthma37.
Prior literature indicates a relationship between neutrophil degranulation and myocardial
infarction due to the damage in cardiac tissue during MI that prompts inflammatory responses
from white blood cells38, which explains the low p-value and indicated significance between our
gene signature and the neutrophil degranulation pathway.

Figure 2: CADvHealthy dataset gene
signature plots. (A) Dataset-wise distribution
of effect sizes for all datasets in
meta-analysis. (B) Heatmap of the selected
gene signature for all 4 CADvHealthy
datasets. (C) Summary ROC plot of gene
signature of discovery datasets. (D) Summary
ROC plot of validation dataset for
CADvHealthy(GSE12288). (E) Individual violin
plots for each CADvHealthy Dataset
comparing gene signatures of case and
control groups.

The CADvHealthy dataset mentioned above
was less effective in differentiating CAD
patients from healthy controls than the
CADvMI dataset was, both with the discovery
and validation datasets. The effect size
threshold set for the CADvHealthy dataset
was 0.3, the FDR threshold was also 0.3, and
genes were limited to only those that
appeared in all datasets. The CADvHealthy
dataset produced an AUC for GSE42148 of

0.74, an AUC for GSE90074 of 0.68, an AUC for GSE98583 of 0.83, and an AUC for GSE34822
of 0.75 (Figure 2). Although these AUCs are higher than 0.5, indicating some differentiation of
the model, they are not significantly high, likely due to the difficulty in distinguishing CAD from
healthy patient populations in terms of gene signatures. Indeed, some datasets, such as
GSE90074, used patients with a CAD severity index greater than 50%, calculated as the
percentage of stenosis determined through coronary angiography4, while other datasets, such
as GSE98583, only looked at gene expression in patients with stable CAD, resulting in poor
predictability of the model. The CADvHealthy model was tested on the validation dataset
GSE12288 and an AUC of 0.53 was produced, likely attributable to the fact that patients in the
GSE12288 were divided based on the coronary artery disease index, as opposed to
angiographically confirmed diagnosis, resulting in data that is not comparable.
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Pathway analysis for the CADvHealthy dataset indicated a significant relationship (p <
0.05) between CAD and oncogene induced senescence (gene ratio < 0.17). Interestingly,
oncogene induced senescence is involved in the process of tumor suppression and has been
shown to reduce benign tumor growth and protect against malignancy39. Limited literature exists
on the relationship between oncogene induced senescence and coronary artery disease, but
cellular senescence has been shown to accelerate atherosclerosis, which causes CAD, and
worsen outcomes after myocardial infarction by limiting tissue repair40. Future studies
investigating oncogene induced senescence and CAD may provide more information about a
reversed relationship due to the effects of this biological pathway on tumor suppression and
control.

Figure 3: Dotplot enrichment maps for both
the CADvHealthy and CADvMI gene
signatures we performed meta-analysis on
earlier.

Immune Cell Deconvolution Results
A different way we analyzed the gene

signatures of CAD, MI, and healthy patients
was to create a predictive model through
immune cell deconvolution using
immunoStates32. Using ImmunoStates, we
deconvolved the bulk level gene expression
using previously determined cell-type specific
genes, to calculate an estimate of the levels
of different cell types in the samples. Using
the levels of these cell types, we performed a
meta-analysis to find consistently
upregulated or downregulated cell types
across our datasets. We did a CAD v.
Healthy meta-analysis, using an effect size
threshold of 0.1, a FDR threshold of 0.8 and
a number of studies threshold of 2 to filter the
immune cells. The CADvHealthy immune cell
signature produced an AUC for GSE42148 of

0.58, an AUC for GSE90074 of 0.5, an AUC for GSE98583 of 0.43, and an AUC for GSE34822
of 0.41. These AUC values produce an average AUC of 0.48, indicating that the model predicts
at random (AUC = 0.5). This model was also tested on the same validation dataset as the gene
set analysis, GSE12288, producing an AUC of 0.5. The CADvHealthy dataset, when tested with
the immune cell deconvolution approach, had no strong effect, indicating that the gene signature
is not correlated to upregulated or downregulated immune cells and that immune cell levels are
not predictive of CAD patients when compared to healthy patients.
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Figure 4: Performance plots for the
CADvHealthy Immune Cell Deconvolution
experiment. (A) Effect-size distribution for
the meta-analysis of immune cell signature
plot of 4 CADvHealthy Immune Cell
datasets from GEO. (B) Heatmap of the cell
type signature for all 4 CADvHealthy
Immune datasets. (C) Summary ROC plot
of immune cell signature. (D) Validation
ROC plot of validation dataset for
CADvHealthy Immune (GSE12288). (E)
Individual violin plots for each CADvHealthy
Dataset comparing immune cell
deconvolution signatures of case and
control groups.

The immune cells produced using this
immune cell analysis for the CADvHealthy
gene signature were memory B cells and B
cells, both of which were downregulated.
Little research has been done to examine
the relationship between B cells and
atherosclerosis and CAD, but B cells have
been shown to result in heart failure and
impaired function by increasing the
progression of the disease41.

We also performed immune cell deconvolution on the CADvMI dataset from the gene
analysis above, filtering immune cell types with an effect size threshold of 0.4, an FDR threshold
of 0.2, and a number of studies threshold of 2. The CADvMI immune cell signature produced an
AUC for GSE123342 of 0.49, an AUC for GSE62646 of 0.93, an AUC for GSE141512 of 0.86,
and an AUC for GSE61144 of 0.89. These AUC values indicate that the CADvMI model is more
predictive than the CADvHealthy model for significant immune cells, and are significantly more
predictive than the model at random. The validation dataset GSE34198 produced an AUC of
0.56, indicating that this model fails to generalize to our left-out validation set, however, likely
attributable to the different timepoints after MI that samples were collected in patients. The
immune cells produced for the CADvMI gene signature were natural killer cells, which were
downregulated.  Although limited research exists on the role of natural killer cells in CAD or MI,
natural killer cells have been shown to have a protective effect against atherosclerosis42, or the
plaque buildup that causes CAD, which may explain why natural killer cells appear to be
downregulated in CAD and MI patient samples in these datasets.
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Figure 5: Gene signature plots for
the CADvMI Immune Cell Deconvolution
experiment. (A) Meta-analysis of
immune cell signature plot of 4 CADvMI
Immune Cell datasets. (B) Heatmap of
the gene signature for all 4 CADvMI
Immune datasets. (C) Summary ROC
plot of immune cell signature for
discovery datasets. (D) Summary ROC
plot of validation dataset for CADvMI
Immune(GSE34198). (E) Individual
violin plots for each CADvMI Dataset
comparing immune cell gene signatures
of case and control groups.

Figure 6: Forest plot for natural killer
cells identified in immune cell
deconvolution for the CADvMI gene
signature.

Drug Results
We also examined the relationship
between drug transcriptome profiles
using the LINCS database and both CAD
and MI to find possible drug treatments
for CAD and MI that could aid in
prevention or treatment of the disease,
by reversing the gene signatures found
above. The most common medications
given for coronary artery disease
currently include anticoagulants such as
aspirin or clopidogrel, heparins, and
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beta-blockers43. Out of the 12,486 molecules statistically compared to both the CADvHealthy
and CADvMI signatures, we limited significant results to FDA approved drugs only as these
medications are already approved for other uses and are considered safe for humans44.

Out of the drugs compared in the LINCS database, we aimed to find drugs that would
reverse the CADvHealthy gene signature by being anti-correlated with the gene signature. The
two strongest correlations between CAD and the drug’s usage were nifedipine (r = -0.5107063,
p = 1.558371e-10, FDR = 1.946094e-06) and myriocin (r = -0.3375490, p = 5.149852e-05, FDR
= 7.174960e-03). Nifedipine’s strong correlation to the gene signature comparing CAD to
healthy peripheral blood samples is understandable because nifedipine is a calcium channel
blocker and anti-hypertensive drug that dilates the coronary artery, preventing severe CAD and
MI outcomes in patients despite not being recommended for CAD by the FDA currently45.
Myriocin, on the other hand, is a fungal-derived FDA approved drug for inflammatory conditions
such as multiple sclerosis, but is not currently recommended for coronary artery disease or
cardiac conditions46. There is existing literature, however, that in rats myriocin has been shown
to have a protective effect against atherosclerosis, which primarily causes CAD, by reducing
glycosphingolipids47. Another drug identified as significant by the LINCS database was an
unspecified spleen tyrosine kinase (SYK) inhibitor (r = -0.3534175, p = 2.118706e-05, FDR =
5.187923e-03). The only FDA approved SYK inhibitor is fostamatinib for chronic immune
thrombocytopenia, but this drug has shown adverse cardiovascular side effects such as
hypertension, CAD, and MI in some patients48,49. Future studies are needed to examine the
relationship between SYK inhibitors and cardiovascular disease, including other SYK inhibitors
besides fostamatinib to determine if these side effects are isolated to this drug only.

We also aimed to find drugs in the LINCS database that would reverse the CADvMI gene
signature by being anti-correlated with the gene signature. The two strongest correlations
between the CADvMI gene signature and the drug’s usage were enzalutamide (r = -0.5464015,
p = 3.043318e-08, FDR = 3.800495e-05) and ibutilide (r = -0.5209267, p = 1.663780e-07, FDR
= 9.198588e-05). Enzalutamide is an androgen-receptor inhibitor used in patients with
metastatic prostate cancer to improve prognosis, but has been shown to cause an increase in
cardiovascular morbidity in some patients. However, enzalutamide has shown to be a safer
alternative over other standard hormone therapy treatments for metastatic prostate cancer,
which may explain the high inverse correlation50,51. Ibutilide has a closer connection with
cardiovascular disease as its primary indication is to reverse atrial fibrillation to normal sinus
rhythm and prevent future atrial fibrillation52. Ibutilide is only indicated in patients with atrial
fibrillation and thus little literature exists on its ability to prevent or improve the prognosis of CAD
or MI, but prior literature has shown that ibutilide is more effective on patients with previous CAD
or cardiovascular disease who present with atrial fibrillation in comparison to other patients53.

Discussion
Specific literature exists examining gene expression profiles in relation to CAD and MI,

but significant genes identified in prior literature have not been incorporated into USPSTF
screening guidelines and these significant genes have not been tested across international
datasets. In this study, we aimed to perform meta-analysis to predict prognosis and diagnosis of
CAD and MI in patients using 10 datasets from 9 different countries that we performed
meta-analysis and machine learning algorithms on to improve biological understanding through
increasing heterogeneity of our gene signature and predict CAD and MI at a higher accuracy.
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We divided our meta-analysis into CAD v. Healthy patient datasets and CAD v. MI patient
datasets and used forward search algorithms to identify significant genes. The CAD v. MI gene
signature was highly predictive on our discovery datasets, with all AUCs greater than 0.8, and a
validation AUC of 0.61, likely lower due to the healthier patients in the validation dataset in
comparison to the discovery dataset, where patients either had CAD or MI. The CAD v. Healthy
gene signature was less predictive than the CAD v. MI gene signature on our discovery
datasets, with all AUCs greater than 0.69 and a validation AUC of 0.53, likely due to the different
classification of CAD severity between datasets.

We then performed biological pathway analysis on both gene signatures and identified
oncogene induced senescence as a statistically significant pathway in relation to CAD v. Healthy
patients (p < 0.05, gene ratio < 0.17). Although cellular senescence has been shown in literature
to accelerate atherosclerosis, which causes CAD, future literature looking at the relationship
between CAD and the tumor-suppressing pathway of oncogene-induced senescence is key.
Biological pathway analysis on the CAD v. MI gene signature identified neutrophil degranulation
as significant (p = 0.000275, gene ratio = ~0.29), likely due to the role neutrophils play in tissue
repair following cardiac damage from an MI.

We also performed an immune cell deconvolution algorithm on both the CADvHealthy
and CADvMI gene signatures to identify significant immune cells and their role in CAD or MI.
We used the immunoStates algorithm to create immune objects based on our original gene
signatures, and identified the downregulation of B cells in the CADvHealthy gene signature,
which have been shown in prior literature to accelerate cardiovascular damage, the upregulation
of granulocytes and neutrophils in the CADvMI gene signature, which aid in cardiac damage
following MI, and the downregulation of natural killer cells in the CADvMI gene signature, which
have been shown in prior literature to have a protective effect against atherosclerosis and thus
cause a reduction in CAD and MI.

Lastly, we used the LINCS database to identify drugs that have a significant inverse
correlation with CAD and MI that could be repurposed for treatment of prevention in high risk
patients. In the CADvHealthy gene signature, nifedipine (r = -0.5107063, p = 1.558371e-10,
FDR = 1.946094e-06) and myriocin (r = -0.3375490, p = 5.149852e-05, FDR = 7.174960e-03)
were identified as significant. Nifedipine is an anti-hypertensive drug currently not recommended
for CAD but likely had an inverse correlation due to its protective effect against atherosclerosis,
while Myriocin is an anti-inflammatory drug that has actually shown a reduction in
atherosclerosis in rats through a reduction in glycosphingolipids. In the CADvMI gene signature,
enzalutamide (r = -0.5464015, p = 3.043318e-08, FDR = 3.800495e-05) and Ibutilide (r =
-0.5209267, p = 1.663780e-07, FDR = 9.198588e-05). Enzalutamide is a medication indicated
for metastatic prostate cancer that has been shown to have adverse cardiovascular morbidity,
while Ibutilide is a medication indicated for atrial fibrillation that prior literature has revealed is
stronger on patients with a prior history of CAD or MI.

Creating this machine learning model predictive of CAD and MI in patients allowed for
increased biological heterogeneity in our gene signature compared to other models, and also
allowed for the identification or more accurate drugs that can be repurposed for treatment or
prevention and immune cells that have a significant relationship with CAD and MI.

However, this study has some limitations. First, we used 10 datasets but using more
datasets from different countries, including low income and rural hospitals, would allow for a
more heterogeneous gene signature and a more representative model. Additionally, creating a
standard for collection, based on specific timepoints following MI and standards for what control
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patients are (healthy or stable CAD) would allow for a stronger model that would be more
predictive on validation datasets. Second, most data regarding MI was taken after patients
present to the hospital with symptoms. In an ideal world, we would have chronological data on
gene signatures from CAD diagnosis to MI to determine where gene expression changes and
what genes are uniquely involved in accelerating MI. Third, our samples from the 10 datasets
came from peripheral blood samples and in the 5 CAD v. MI datasets, the MI patients had
already been in the hospital for some time and likely received intervention. Thus, we cannot
entirely attribute the gene signature in these patients to MI, as drugs they received may have
also altered gene expression and immune cell expression. However, since we had a consistent
gene signature and a highly predictive model across datasets in countries with different
standards of practice and patient characteristics, it is likely that the genes filtered were a result
of changes in expression from MI, not drugs given. Fourth, limited data exists on the relationship
between drugs such as ibutilide and myriocin, as well as biological pathways such as oncogene
induced senescence, and CAD, and future studies are necessary to examine these relationships
specifically in patients with existing CAD rather than just measuring cardiovascular morbidity
alongside the condition the drug is indicated for.
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