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Abstract

Identifying conflicting variants in the clinical classification of pathogenicity is important, as
diagnoses directly affect the treatment plans for patients. Machine learning models can
effectively categorize and analyze multidimensional data, and the incorporation of feature
selection algorithms into these models allows us to identify relationships between clinical
features that can contribute to conflicting clinical classifications of pathogenicity. We use the
ClinVar dataset to address this need, which serves as a public archive for annotations of human
genetic variants. In ClinVar, variants are manually categorized into different classes: benign,
likely benign, uncertain significance, probably pathogenic, and pathogenic by researchers.
However, there are inconsistencies in the annotations across clinical laboratories that can create
confusion when assessing the impact of a variant on a patient's condition. This project proposes
the development of a machine learning model trained on the ClinVar dataset to address this
issue as well as feature selection to identify the properties of the variants that are most
predictive of conflicting pathogenicity labels. The model leverages variant annotations such as
genetic features, clinical data, and other critical information to identify patterns and relationships
that harmonize conflicting classifications. We trained a random forest model and studied the
importance of the input features using both tree-based and lasso feature selection. The five
most significant features based on the tree-based feature selection, which inherently handles
the nonlinear relationship between features, are (1) the score of the deleteriousness of variants,
(2) allele frequencies emitted by ExAC, (3) Phred Scaled Score, (4) LoFtool’s gene intolerance
score, and (5) allele frequencies emitted by GO-ESP. The utilization of machine learning for
identifying conflicting clinical classifications of genetic variants helps ensure precise and
consistent interpretation of variants. This, in turn, plays a crucial role in improving clinical
genomics, making diagnoses more accurate, and enabling personalized treatment options.

Introduction

The emergence of diseases and the evolution of virulent strains present significant challenges to
the field of medicine. Accurate clinical classification of genetic variants is crucial for diagnosis,
treatment, and various technical applications. However, the determination of pathogenicity in
genetic variants often leads to divergent conclusions among scientists, influenced by numerous
factors inherent to their respective distinct methodologies. Such inconsistencies in the
classification of genetic variants result in patient assessments that can be severely influenced.
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ClinVar is a freely accessible, public archive of reports on the relationships among human
variations and phenotypes, with supporting evidence (14). It contains processed submissions
reporting variants found in patient samples, assertions regarding their clinical significance,
information about the submitter, and other investing data. We utilize ClinVar as a means to
address our underlying scientific question because it facilitates the accessibility and
communication of the connections established between variations in human characteristics and
their impact on health, along with the historical context of the interpretations. Numerous features
in the dataset affect the understanding of the pathogenicity of genetic variants. Moreover,
researchers may reach disparate conclusions and subsequently submit conflicting reports
concerning the classification of variants. This results in the inability to effectively devise
treatment plans for patients while assessing the classifications of these variants. To address this
problem, we seek to understand the most predictive features for predicting the pathogenicity of
genetic variants to understand common variant features that lead to conflicting classifications.
We trained a series of machine learning models which inherently perform feature selection,
allowing us to prioritize the most significant features to identify a ranking of their weighted
importance in detecting the presence of conflicting clinical classifications in genetic variants.

Related Work

Clinvar has been a widely used public archive to assess relationships between human variants
and phenotypic characteristics. In recent years, numerous studies have contributed to
developing machine learning models evolving around various aspects and the field of genomic
variations (14).

Favalli et al. developed RENOVO, a machine learning-based tool that uses ClinVar data to
classify genetic variants as pathogenic or benign by assigning pathogenicity likelihood scores
(PLS) (4). The study showed that RENOVO effectively eliminates variants of uncertain
significance (VUS) by providing a likelihood score for each variant, achieving an impressive F1
score of 0.95.

Larrea-Sebal et al. developed a machine-learning model called Mlb-LDLr to predict the
pathogenicity of LDLr missense variants associated with familial hypercholesterolemia (7). By
utilizing over 3,000 annotated variants from ClinVar, the model achieved an impressive AUROC
value of 0.932 and predictive accuracy exceeding 90%.

Nicora et al. proposed using Penalized Logistic Regression and combining ACMG/AMP
guidelines and variant annotation features to provide a probabilistic score for variant
classification and prioritization (11). Their data-driven approach outperformed guidelines-based
approaches and in silico prediction tools, successfully resolving more variants of uncertain
significance (VUS), with the LR-A model achieving a mean accuracy score of 97.84%
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Mahecha et al. compare three machine learning methods (Random Forest, Support Vector
Machine, Multilayer Perceptron) for classifying VUS as Pathogenic or Non-pathogenic (9). The
RF-based model outperforms the others, leading to the development of VusPrize, an
open-source software tool for VUS prioritization.

Methods

Figure 1. Workflow for identifying important features related to predicting conflicting
pathogenicity annotations of clinical variants.

Dataset Selection and Preprocessing

We used ClinVar, a publicly accessible archive of reports, that aggregates genomic information
about clinical variants in the human genome (14). We preprocessed the dataset by transforming
all input data into numerical values to enable effective computation and processing by the
machine learning model.

Feature Representation and Imputation

We addressed missing data values (NaN) in the dataset by exploring various imputation
methods. The first method we used was a simple imputer which substituted missing values with
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the mean of the respective column. We also used aKNN imputer, which averaged neighboring
values uniformly. Finally, we used an iterative imputer which models features with missing
values as functions of other features and utilizing these estimates for imputation.We evaluated
several machine learning models with each imputation method. The Random Forest Classifier
paired with iterative imputation yielded the highest performance, likely due to the ability of these
methods to handle complex and nonlinear relationships between variables.

Data Balancing and Hyperparameter Optimization

Without data balancing, the model consistently predicted non-conflicting We therefore
implemented data balancing by replicating rows in the training dataset to equalize the number of
conflicting and non-conflicting labels. This adjustment prevented the model from favoring
predictions of conflicting as the optimal choice.To fine-tune the model's behavior and enhance
its predictive accuracy, we conducted hyperparameter optimization for the
RandomForestClassifier. This process controlled the model's performance and minimized
potential errors.

Feature Selection

We explored various feature selection methods within the machine learning model to identify the
top-ranking features. This methodology is inspired by recent work in computational psychiatry,
where the diagnostic feature space has been greatly reduced by applying feature selection to
clinical questionnaires (7-8, 13, 14, 16-23). Initially, we removed features with low variance
combined with tree-based feature selection, which resulted in a decrease in the F1 score.
However, by adjusting the hidden layers of the neural network, we were able to observe an
improvement in the score.

Additionally, we introduced Tree-based feature selection, utilizing the ExtraTrees Classifier, and
Logistic Regression Feature Importances to derive feature coefficients essential for determining
feature importance.

These thorough steps in dataset selection, preprocessing, model refinement, and feature
selection were vital in constructing a robust machine learning model capable of effectively
addressing conflicting clinical classifications in genetic variants within the ClinVar dataset.

Results

We display the top-ranking features using the extra cree classification method in Table 1 and the
top-ranking features using logistic regression in Table 2. Eliminating the low variance method led
to a noticeable F1 score improvement, rising from approximately 0.65 to 0.69. This observation
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indicated that removing features with low variance did not enhance the machine learning model,
particularly in combination with other methods. Further improvement was achieved through
L1-based feature selection, resulting in a modest increase in the F1 score, which ultimately
reached 0.7014735870108884.

Feature Values

Allele frequencies from GO-ESP (AF_ESP) 1.10685349e-01

Chromosome # (CHROM) 9.45870049e-02

Allele frequencies from ExAC (AF_EXAC) 1.49961013e-01

Allele frequencies from the 1000 Genomes
Project (AF_TGP)

1.03560720e-01

Allele origin (ORIGIN) 9.26198754e-03

Type of consequence (Consequence) 2.91407351e-02

Impact modifier for the consequence type
(IMPACT)

2.48498088e-02

Shortest distance from variant to transcript
(DISTANCE)

5.83193638e-04

+ (forward) or - (reverse) (STRAND) 6.98192830e-03

Success or failure of edit using BAM file
(BAM_EDIT)

1.56065897e-02

Loss of Function tolerance score (LoFtool) 1.16344545e-01

Phred-scaled CADD score (CADD_PHRED) 1.41649277e-01

Score of the deleteriousness of variants
(CADD_RAW)

1.56045037e-01

Alignment scores for substituted amino acids
depending on the particular acids substituted
(BLOSUM62)

4.06787745e-02

Type of feature (Feature_type) 6.40371010e-05
Table 1. Coefficient values for ExtraTrees Classifier classification
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Feature Values

Allele frequencies from GO-ESP (AF_ESP) -9.73811158e+00

Chromosome # (CHROM) -3.68360365e-03

Allele frequencies from ExAC (AF_EXAC) -4.36357376e+00

Allele frequencies from the 1000 Genomes
Project (AF_TGP)

-1.18700834e+01

Allele origin (ORIGIN) 3.08764451e-03

Type of consequence (Consequence) -3.29225979e-02

Impact modifier for the consequence type
(IMPACT)

-2.06195892e-01

Shortest distance from variant to transcript
(DISTANCE)

3.06206645e-04

+ (forward) or - (reverse) (STRAND) -8.28703221e-02

Success or failure of edit using BAM file
(BAM_EDIT)

-3.72074504e-03

Loss of Function tolerance score (LoFtool) -4.27005917e-02

Phred-scaled CADD score (CADD_PHRED) 1.82172095e-02

Score of the deleteriousness of variants
(CADD_RAW)

-1.14857934e-01

Alignment scores for substituted amino acids
depending on the particular acids substituted
(BLOSUM62)

-9.60016024e-03

Type of feature (Feature_type) -2.71285911e+00

Table 2. Coefficient values for LogisticRegression Classification
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Discussion

We delve into the feature importance analysis of our machine learning model, shedding light on
the key determinants of conflicting or non-conflicting classifications of genetic variants. We have
considered both ExtraTrees coefficients, which highlight feature importance in a broader
context, and Logistic Regression coefficients, which signify whether a feature contributes to
conflicting or non-conflicting predictions. Following is a ranking of the weighted importance of
the selected features in the model.

CADD_RAW - Deleteriousness Score
The most crucial feature in our dataset for distinguishing conflicting from non-conflicting
classifications is CADD_RAW. CADD_RAW represents the deleteriousness of a genetic variant,
indicating how dangerous and pathogenic it is. A higher CADD_RAW value signifies greater
pathogenicity. It is unsurprising that this feature is critical for classification. Logistic Regression
further affirms this by assigning a negative coefficient to CADD_RAW, indicating that higher
CADD_RAW values contribute to predicting non-conflicting classifications, aligning with the
expectation that highly deleterious variants are less likely to be conflicting.

AF_EXAC - Allele Frequency
The second most important feature is AF_EXAC, which provides allele frequencies from the
Exome Aggregation Consortium (ExAC) database (6). Allele frequency is crucial in
understanding genetic diversity, and it aids clinical geneticists and biologists in assessing the
impact of variants on diseases. Like CADD_RAW, AF_EXAC has a negative Logistic
Regression coefficient, signifying its contribution to predicting non-conflicting classifications.

CADD_PHRED - Phred Scaled Score
CADD_PHRED, which incorporates a Phred scaled score, is pivotal in evaluating data quality
and error rates in sequence analysis (2). A higher score indicates greater data quality and
accuracy. In this case, a positive Logistic Regression coefficient suggests that higher
CADD_PHRED scores contribute to predicting conflicting classifications. This feature also ranks
high in ExtraTrees coefficients.

LoFtool - Gene Intolerance Score
LoFtool, a gene intolerance score based on loss-of-function variants (1) assists in assessing
genic intolerance to functional variation. It ranks genes based on their intolerance to variation,
helping identify variants susceptible to diseases. The Logistic Regression coefficient is negative,
indicating its contribution to predicting non-conflicting classifications.

AF_ESP - Allele Frequencies from GO-ESP
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AF_ESP provides allele frequencies from the Grand Opportunity Exome Sequencing Project
(GO-ESP) database (10). While similar to AF_EXAC, it focuses on heart, lung, and blood
disorders. Although less comprehensive than ExAC, AF_ESP still contributes to classification,
as evident from its negative Logistic Regression coefficient.

AF_TGP - Allele Frequencies from 1000 Genomes Project
AF_TGP, which offers allele frequency data from the 1000 Genomes Project, is comparable to
AF_EXAC and AF_ESP in providing insight into genetic variation. Its negative Logistic
Regression coefficient indicates its role in predicting non-conflicting classifications.

CHROM - Chromosome Location
CHROM, denoting the chromosome location of a variant, assists in narrowing down potential
disorders associated with chromosomal alterations. A negative Logistic Regression coefficient
reinforces its contribution to predicting non-conflicting classifications. ExtraTrees ranks it high
due to its ability to learn complex decision boundaries.

BLOSUM62 - Scoring Matrix
BLOSUM62, a scoring matrix used in protein sequence alignment (5), measures the probability
of amino acid substitutions. Variants with higher probabilities of substitution are more likely to
result in disease. As expected, it contributes to predicting non-conflicting classifications with a
negative Logistic Regression coefficient.

Consequence - Variant Impact
Consequence provides information about the impact of variants on transcripts (3). It ranks lower
in importance but still contributes to predictions, as indicated by its negative Logistic Regression
coefficient.

IMPACT - Impact Modifier
IMPACT, an impact modifier feature, characterizes variants as HIGH, MODERATE, LOW, or
MODIFIER based on their effects on proteins. While ranking lower in importance, it contributes
to predicting non-conflicting classifications with a negative Logistic Regression coefficient.

BAM_EDIT - BAM File Editing
BAM_EDIT, indicating the success or failure of editing using BAM files (15), offers binary
information that does not significantly impact classification. Nevertheless, it contributes to
predicting non-conflicting classifications due to its negative Logistic Regression coefficient.

ORIGIN - Allele Origin
ORIGIN provides the allele's origin but holds limited influence on classification, as evident from
its positive Logistic Regression coefficient, contributing to predicting conflicting classifications.
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STRAND - Genetic Variant Strand
Similar to ORIGIN, STRAND provides information on genetic variant strands but ranks low in
importance and contributes to predicting non-conflicting classifications due to its negative
Logistic Regression coefficient.

DISTANCE - Variant to Transcript Distance
DISTANCE, offering the shortest distance from a variant to a transcript, has limited relevance to
classification, as suggested by its positive Logistic Regression coefficient.

Feature_type - Feature Type
Lastly, Feature_type, detailing the genetic variant's feature type, ranks lowest in importance. Its
contribution to classification is minimal, with a negative Logistic Regression coefficient.

In summary, the analysis of feature importance reveals that several key features significantly
influence the classification of genetic variants as conflicting or non-conflicting. These features
encompass various aspects of genetic data, including deleteriousness scores, allele
frequencies, impact modifiers, and gene intolerance scores. The findings provide valuable
insights for understanding the factors affecting clinical classifications in genetic variant datasets.

Limitations and Future Work

There were several limitations with our research effort that could have affected how accurate our
results were. The main drawback was that we had to base our research only on one dataset.
Due to this limitation, we were unable to analyze a wider range of features and may have
missed important factors that could have affected our conclusions. In addition, it's possible that
outside sources may have supplied pathogenicity labels that weren't present in the dataset,
which could introduce biases into our research and result in areas where we don't fully
understand. This limitation highlights how difficult it is to resolve missing data completely in our
research.

To address the limitations identified in our research project and further enhance the accuracy
and comprehensiveness of our findings, various future work improvements can be explored.
First, by expanding the scope of data sources, we can increase the diversity of features that are
available for researchers to analyze while reducing dataset-specific biases. Then, we can apply
edge-cutting machine learning techniques that have shown to perform well in handling genomic
data to future improve the accuracy of genetic variant classification. To verify the performance
and results produced by the machine learning model, we can employ cross-validation
techniques that conduct analyses to identify potential sources of biases. We aim to overcome
the limitations found in this study and continue the advancement of genomic variant
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classification by addressing these future research applications, which will ultimately lead to more
accurate and dependable assessments of variant pathogenicity for better clinical
decision-making.
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