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ABSTRACT

Worldwide, Alzheimer’s disease (AD) affects one in nine individuals over the age of 65.
AD is a progressive disease that kills neurons in parts of the brain related to mental function,
causing memory loss and the irreversible decline of communication or problem solving abilities.
Early diagnosis is important for those with AD, as it allows them to make informed decisions
regarding treatment options and finances prior to significant mental decay. Although there
doesn’t exist a cure, different forms of treatment have been shown to slow disease progression,
most effective at early stages (Bush 2). The cause of the disease is not yet known, but early
symptoms, such as protein buildup and shrinkage in the brain, occur as much as fifteen years
before signs of cognitive decline (Scheltens 5). By combining machine learning technology with
brain imaging, it should be possible to quickly and effectively detect AD early in its development.
The goal of this work is to train multiple convolutional neural networks (CNNs) off of MRI brain
scans to detect the severity of AD, and then see if they can outcompete alternative
technologies.

l. INTRODUCTION

The use of machine learning has become especially popular in recent years, as a result
of advancements made in deep learning. Deep learning specifically references machine learning
models with large amounts of “hidden layers”, allowing them to learn from and identify complex
patterns in data. CNNs are a specific type of deep learning model, and specialize in processing
grid-like data. As such, they are the optimal choice when doing image recognition. Taking
images as inputs, CNNs are able to break them down into arrays of pixel values. Then, by
passing this array through multiple convolution and pooling layers, these models are able to
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Figure 1: Simplified diagram of a CNN model

extract specific features that it can then use to make decisions, as shown in Figure 1. This ability
to identify features within an image is what makes CNNs such an appealing option for disease
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diagnoses. So far, they have demonstrated a prominent capability in detecting AD, but there is
still ongoing research to determine which specific model architectures are most efficient and
consistent (Farooq 1).

Throughout this paper, multiple CNN models will be trained and have their performances
compared to another common type of classifier, decision trees. Both will be trained using the
same data, a set of 36,000 MRI brain scans (Uraninjo). These images have been augmented
from a set of 6,000 originals, for the sake of providing sufficient amounts of training data. The

Figure 2: Angmented {left) and original {right)

original and augmented sets will be kept separate from each other; the augmented images will
be used for training, and the originals will be used as a test set. It is worth noting that none of
the 6,000 originals are found in the set of 36,000 augmented images, ensuring an accurate
assessment of the model’s abilities. The results of the test will be displayed in the form of a
confusion matrix, as it provides a better insight into model performance than raw accuracy does.

II. DECISION TREES
Decision trees are another type of classifier, and are often valued for their simplicity. They
take an input, known as a “root”, which is connected to other nodes through “branches”, as
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Figure 3: Simplest possible decision tree

shown in Figure 3. At each node, a binary decision is made that leads to a node further down
the tree. The nodes at the bottom of the decision tree are the outputs, called “leaves”. As the
decision tree trains, it can grow additional nodes, branches, and leaves, improving its
performance and becoming more complex. Compared to CNNs, this training happens relatively
quickly and requires very little computing power. However, this comes with its own limitations.
Due to their simplicity, these models are not capable of pooling image data; any complex
images need to be downscaled such that they do not overwhelm the tree. This is typically done
by lowering the resolution of input images, but doing so inevitably decreases data complexity
which results in lower performance. The decision trees in this paper will be using images
downscaled from 224 pixels x 224 pixels to 50 x 50. To counter some of this complexity loss,
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Figure 4: 10-layer tree (left) next to a S-layer tree (right)

additional layers can be added onto the tree. As shown in Figure 4 and Figure 9, the ten layer
tree is able to make exponentially more decisions than its five layer counterpart, resulting in an
improved test performance of 61.48% from 42.78%. Even so, there is a limit to how many layers
can be added, as decision trees have a tendency to overfit the training data. Beyond a point, the
tree is able to create a leaf for every single instance within the training set. A common way to
combat this is through the Random Forest algorithm, which combines a large number of
individual decision trees in such a way that eliminates unnecessary leaves, but this added level
of complexity greatly increases the time it takes for the model to train and produce predictions.

Given the performance of the two trees in Figure 4, it is unlikely that such simple models
would be dependable in a medical setting. However, one of the most useful features of a
decision tree is that it is decipherable; after training, it is possible to see the decisions made at
each of the nodes, which may be useful in the identification of AD features.

lll. CNNS

CNNSs, similar to other machine learning models, consist of many nodes organized into
layers. Each node receives a series of weighted inputs from the previous layer, applies a
non-linear transformation onto them, and passes the transformed data onto the next layer, as
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Frgure 52 Simple machine leaming diagram

shown in Figure 5. The method to train the model is to change the weights between layers.
When the model is fed training data and an output is produced, the actual output is compared to
the expected output through the use of a loss function. The higher the loss value, the more



Q Research Archive of
Rising Scholars (preprint)

Where bright minds share their learnings

incorrect the model’s output is. After the loss is calculated, calculus is used in a process known

as gradient descent to determine new weights that will decrease the loss function. Once the loss

value approaches a minimum, the model’s accuracy should have improved.

In CNNs, the weights between layers are matrices called kernels. In both the convolution

and pooling layers mentioned earlier (both are usually counted as 1 hidden layer), kernels are
imperative for how the model functions. In a convolutional layer, kernels act as filters that
identify patterns like edges or textures within the input data. Subsequently, a pooling layer is
applied, which reduces the size of the data by blurring or removing irrelevant features. Due to a
combination of these two layers, CNNs are able to process large amounts of image data in a
way that decision trees cannot.

To evaluate whether these features can aid in AD detection, a simple CNN architecture
consisting of seven layers (5 convolution/pooling layers & 2 dense layers) and 444,996
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parameters will be trained (aashidutt3). As seen in Figure 6, the validation loss does not
decrease after running through the training set five times, known as an epoch, marked by the

red line. As the model continues to train, the validation loss actually starts to increase. This is an

indication that the model is overfitting, and has started to find patterns in the training set that
should not exist. This is because the finite training set is not perfectly representative of all the

MRI images. In instances like this, it is best to stop training and restore the weights of the model

to their state at epoch number five, so our final model does not overfit. For future models, early

stopping will automate this process. Looking at Figure 9, this model’s accuracy was significantly

higher than either of the decision trees. In the test set, it had an accuracy of 96.53% whereas
the ten-layer decision tree only got 61.48%. This is rather strong evidence that CNNs are
stronger for this specific task, so future models in this report will only focus on improving the
CNN’s performance.

There are two primary ways to manipulate a neural network’s complexity, which is by
changing the number of layers or parameters in the model architecture. To try and improve the
previous model, the architecture has been revised from seven layers with 444,996 parameters
to six layers (4 convolution/pooling layers & 2 dense layers) with 2,385,444 parameters. This
sudden increase in parameters is largely due to the final layer having an increased number of
neurons and larger convolutional filter sizes. Increased parameters usually indicates a more
complex model, so an increase in model performance is expected. This model was trained in
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the same way as the first one, but this time the performance was significantly better. Just by
increasing the amount of parameters, this second model was able to obtain a testing accuracy
of 99.22%, as shown in Figure 9.

Through these simulations, it seems clear that the CNNs are performing significantly
better than the decision trees. However, there are still ways to potentially improve this CNN
model.

IV. TRANSFER LEARNING

Another common method in designing CNN architecture is through transfer learning.
Transfer learning involves taking a previously-trained model, adding additional layers, then
retraining it for a related task. This process is extremely useful when designing CNN models, as
it helps with one of their greatest weaknesses - data collection. Training deep learning models
requires large amounts of labeled data, which is often difficult to obtain. By importing a
previously-trained model with pre-set parameters, the CNN already knows how to identify
certain patterns. The hope is that these pre-set parameters place the model relatively close to a
local minimum within the loss function, reducing the amount of gradient descent needed to be
performed. This not only decreases the amount of training data needed, but also speeds up the
training process and often results in a better model performance. (Shin 3)

To evaluate whether transfer learning can help in detecting AD, two separate transfer
learning models will be evaluated. Both will use the Inception model, with two additional dense
layers added. The Inception model is a 48 layer deep CNN, and has been trained to classify
over 1,000,000 images ranging from household objects to animals (Du 2). One of the transfer
learning models will freeze the weights of the Inception model, and the other will not. Freezing
the weights prevents the pre-trained model from changing, and is typically used to fine-tune the
model on a new task, but this is not always preferred. A downside to using unfrozen weights,
however, is that it drastically increases training time.
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Frgure 7: Transter learning {frozen) training progress

Figure 7 demonstrates the training progress of the frozen weights model. Quite
unexpectedly, both the training and validation loss decrease at a slower rate than the previous
CNN models, and the training finishes at a later epoch. Looking at the model’s confusion matrix
in Figure 9, the testing accuracy of 74.89% is also much lower than one might expect, especially
with the model’'s 22,853,924 parameters. A possible explanation for this is that the brain MRIs
used by this model are drastically different from the images the Inception model was trained on.
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As such, many of the features isolated by the Inception kernels are not applicable to the task of
AD identification, and any improvements that can be gained by training are limited due to the
Inception kernels being frozen.
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Frgure B: Transter learming (unfrozen) training progress

Looking instead at the training progress for the unfrozen weights model, seen in Figure 8,
it more closely resembles what one would expect of transfer learning. The model loss converges
rather quickly, and the validation loss stops decreasing after epoch number four. However, when
looking at its confusion matrix in Figure 9, this model still only has an accuracy of 98.72%,
performing worse than the 99.22% model from earlier, despite having almost ten times as many
parameters. This is not unreasonable, as this is simply an indicator that the task of classifying
AD within this dataset has already been solved. With this many parameters, there does not exist
enough complexity within the input images for all of them to be necessary. As such, it is very
likely that many of the parameters within the larger model contribute almost nothing to the
output. The use of L2 or L1 regularizations may provide significant increases to model
performance, as these methods penalize large weights and would force many of the useless
weights down to almost 0.

V. DISCUSSION

In this paper, it appears that the CNNs vastly outperformed the decision trees regarding
their capabilities to categorize brain MRIs into different severities of AD. Given this, it is worth
further looking into whether CNNs can reasonably benefit AD diagnosis, as there are large
potential benefits in doing so. Widespread use of CNN AD detection would make diagnoses
fast, accurate, and consistent. However, additional research would be required to verify the
results in this paper, preferably utilizing different datasets and different methodologies. There is
also no guarantee that the results presented here can be replicated in a clinical trial.
Recommendations for future study would be the combined use of decision trees with CNNs,
perhaps training the tree using CNN-extracted features, as well as utilizations of Random Forest
and gradient boosting to increase decision tree performance.

VI. CONCLUSION

In this paper, CNN models were evaluated against decision tree models to test their
capabilities in categorizing brain MRI images according to AD severity. Through multiple
simulations, CNNs were consistently better at doing so than decision trees, due to their ability to
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handle large amounts of image data. Moving forward, clinical trials should be done of CNN AD
diagnosis, in hopes that it can be widely used in the medical field.

VIl. RESULTS
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