
S&P 500 Daily Index Time Series Forecasting Given Global News Headlines Using LSTM,
BERT, and GloVe Embeddings

Arav Santhanam

Abstract

The ability to project capital markets performance to meet rapidly increasing accuracy demands
has material implications for investors and capital raising environments. The evolution of natural
language processing (NLP) and deep learning techniques has provided a previously unutilized
approach to accurately forecast stock market performance, progress that has largely been
allowed by the research and development of cutting-edge tools such as Google Bidirectional
Encoder Representations from Transformers (BERT), Global Vectors for Word Representation
(GloVe), and Word2vec. NLP models have been proven to be useful in projecting stock prices,
inflation and economic factors, and fundraising potential, serving as vital tools for economists
and others closely tracking these markets. The aim of this analysis is to produce an accurate
NLP model for stock market price prediction utilizing pretrained BERT, LSTM and CNN-based
models trained on global news headlines and correspondingly labeled daily percentage returns
for the S&P 500 index. Artificial intelligence (AI) neural networks are reliable methods to
accurately forecast stock market performance based on global news headlines in conjunction
with opinion mining techniques, while accuracies over random sampling, e.g. 50% for a binary
model and approx. 17% for a hex factor model, can have substantial impacts on economic
forecasting. This project utilized three models and achieved a maximum accuracy of 54% for
binary classification with BERT and 45% for multiclass with GloVe.

1 Introduction

While other papers have pursued similar ideas, such as, “Predicting Stock Market
Movements Using News Headlines” by Kurohara et al. 20181, this paper seeks to introduce a
novel neural network for stock market prediction using global headlines. Specifically, neural
networks are a series of algorithms that attempt to come to a conclusion based on underlying
patterns in data through a process modeled on the human brain2. These networks are
composed of an input layer, hidden layers, and an output layer and each layer is constructed
from parallel computing units, known as “nodes” that resemble artificial neurons and have
designated “weights”, indicating importance, and a threshold that determines when the node
“fires”, or sends data to the next layer, based on its output. These neural networks are trained
on data to “learn” how to map the input features to outputs and this subset of machine learning
has been applied in various fields from facial recognition in phones to object detection in
self-driving cars. The project data includes article headlines from the Reddit WorldNews
Channel from the Kaggle Dataset “Daily News for Stock Market Prediction” from August 8, 2008
to July 1, 20163 and historical S&P 500 daily open and closing index values and percentage
changes during the same timeframe from the Thomson Reuters Refinitiv Workspace.

3 Sun, J. (2016). Daily News for Stock Market Prediction, Version 1. https://www.kaggle.com/aaron7sun/stocknews.

2 IBM Cloud Education. (2020, August 17). What are Neural Networks? IBM.
https://www.ibm.com/cloud/learn/neural-networks

1 Kurohara, J., Chang, J., & Hoskins, C. (2018). Predicting Stock Market Movements Using Global News Headlines.
CS230.

1



2 Sentiment and Context in NLP

The fundamental principles of natural language processing revolve around implementing
efficient and accurate methods to capture the context and sentiment of words and phrases in a
machine-understandable format. At the human level, biological sentiment is characterized by
neural activity (more specifically, the firing of specific neurons) in specific regions of the brain4.
The vague concept of “sentiment” refers to the emotion, attitude or perspective that
accompanies a given circumstance5. While more intricate definitions are varied among cognitive
psychologists and others, they are described on a broader basis as subjective mental
impressions that can vary from mild to intense within a spectrum.

In the context of NLP, there are two major types of sentiment analysis and classification:
subjectivity/objectivity and feature/aspect-based identification (see Footnote 5). Subjectivity and
objectivity identification in NLP encompasses classifying a phrase or text into subjective or
objective categories (or opinionated and factual). However, a substantial challenge in this type
of classification is the contextual dependency of a word or phrase’s definition. A word’s context
and the phrases or words that define its “context” are highly variable depending on the specific
circumstance the word appears in. Most importantly, context illustrates the relative importance of
parts of phrases and highlights the relevance and meaning of specific words. A basic method to
conduct general context analysis is through n-gram analysis6. These are sequences of one or
more words that represent entities, aspects, themes, or objects in text, and are important to
performing theme extraction on a phrase. Additionally, aspect-based sentiment analysis (ABSA)
is a more advanced approach compared to basic techniques such as lexicon-based analysis, in
which a sentiment score is calculated based on the number of positive and negative words, with
sentiment defined by a valence dictionary7. ABSA represents a more granular approach to
sentiment classification. Rather than define a phrase’s sentiment as an “average” or large-scale
representation of the entire text’s sentiment, feature-based classification breaks text into
individual subsections to identify unique aspects and create a more nuanced map of the
sentiment of different ideas within the phrase8. Additionally, aspect similarity co-occurrence in
sentiment analysis allows algorithms to intelligently group specific features or words together
based on how frequently they are present in the similar contexts. For this reason, among others,
many elaborate natural language projects deploy aspect-based sentiment analysis (ABSA) for
emotion mining.

To conduct effective sentiment analysis, it is essential to utilize functional tools and
systems for measurement. More rigorous sentiment analysis often consists of NLP and machine
learning (ML) techniques, including pretrained models such as BERT, word embeddings such as
GloVe and Word2Vec, and convolutional neural networks (CNNs), which are beginning to
expand outside of their traditional applications in computer vision and image recognition and are

8 Repustate Team. (2022, January 4). Aspect based sentiment analysis. Repustate.
https://www.repustate.com/blog/aspect-based-sentiment-analysis/

7 Lexicon-Based sentiment analysis: A tutorial. (n.d.). KNIME. Retrieved August 17, 2022, from
https://www.knime.com/blog/lexicon-based-sentiment-analysis

6 Context analysis in NLP: Why it’s valuable and how it’s done. (2019, February 19). Lexalytics.
https://www.lexalytics.com/blog/context-analysis-nlp/.

5 Brown, R. (2021, September 2). What are the different types of sentiment analysis ? Nerd For Tech.
https://medium.com/nerd-for-tech/what-are-the-different-types-of-sentiment-analysis-808f36ef89ee.

4 Research Institute of Molecular Pathology. (2012, September 17). The biology of emotions. ScienceDaily.
Retrieved August 25, 2022 from www.sciencedaily.com/releases/2012/09/120917111056.htm.

2



gaining popularity in the NLP domain. These more complex analysis methods often work by
allocating weighted emotion scores to specific aspects of a sentence or phrase, as opposed to
the aforementioned lexicon-based systems which typically do not employ machine learning
techniques.

3 Natural Language and Sentiment Analysis in Economics

When analyzing natural language and sentiment classification applications in economics,
especially when discussing the use of news headlines to predict stock market performance, it is
vital to address the following questions related to machine learning algorithms and their
advantages:

1. What are logical relationships or connections between headlines and fluctuations in the
stock market?

2. How can a machine learning model potentially capture these correlations and what are its
advantages in doing so?

This paper attempts to provide a foundation for answering these questions by
emphasizing the underlying economic principle of supply and demand and the subtle yet
consequential influence of the media on markets.

The most basic rule governing stock markets is that fluctuations in the ratio of buyers to
sellers, or supply and demand, impacts stock prices. For example, if there are many buyers and
great demand for a stock with few sellers, the stock price will increase, sidelining “excess”
consumers for whom there is no supply due to the shortage of available sellers. Conversely, if
there are few buyers and less demand for a stock with many sellers and abundant supply, the
stock price will decrease. In other words, if the general market trend is that consumers want to
sell a certain stock, the price of that stock will decrease, and if there is widespread motivation to
buy a certain stock, the value will increase.

This seemingly simple yet crucial element of stock markets can, in part, explain the
relationship between breaking news and the resulting stock movements. Both positive and
negative news can have real-time impacts on the stock market, directly impacting consumer
practices. For example, positive news, such as financial reports showing growth and stability,
product launches, new corporate assets, and other economic measures such as GDP, average
consumer spending, inflation, and unemployment statistics can drive shareholders to buy
stocks, culminating in increased stock prices. On the other hand, negative news, such as
financial reports that expose corporate incompetency, large-scale sociopolitical and economic
uncertainty, and unforeseen events such as weather events and geopolitical conflicts can
ultimately translate into sharp dips in stock prices.

After breaking news is published, investors reflect on the incoming information and
brainstorm ideas as to the potential impact on stocks. Following these decisions, the stock
market will experience gradual shifts to account for the change in consumer thought and
behavior. In addition, the incoming news and the shift in stock prices can be both a positive and
negative sign for various stakeholders. For example, following catastrophic floods or natural
disaster events, the stock price of insurance firms may decrease while that of home renovation

3



and repair companies may increase as a result of the increased demand for their services and
anticipation of elevated sales in the future.

After illustrating the association between news headlines and stock price variations, it is
valuable to review the efficacy of machine learning algorithms to map these associations,
relating inputs such as news headlines to outputs ranging from general identification of whether
a market or specific index will rise or fall to a more detailed result with predictions for returns
within percentage ranges. This regards the second proposed question in this paper concerning
the ability of neural networks to capture and process these correlations in a
machine-understandable format.

Natural language processing has the unique capacity, even among other subsets of
machine learning, to understand and process human language and places this specific
technology in a prime position to analyze headlines and their relationships to predefined
numeric labels regarding percentage market returns. Herz et al. (2014) describes their patented
approach to utilizing named entity recognition (NER), in which a neural network can fill
structured templates detailing a company’s actions based on recognized company names and
other entities by parsing text and matching patterns on context words9. These templates can
then be organized in clusters based on statistical correlations with variations in stock market
prices. Moreover, traditional machine learning models for stock market prediction that are
employed in an active trading environment are often trained on historical stock data and other
numerical factors. However, an advantage of utilizing NLP in economics is that models can also
be trained on qualitative data, such as financial reports, text from other corporate documents, or
news headlines as explored in this paper. This allows models to capitalize on a multifaceted and
diverse range of features that can be used to vastly improve model accuracy and
understanding, a deciding factor to maximize profit in deployment in real-world trading or
investing scenarios.

4 Historical Overview of Stock Market Prediction and Project Context

The stock market is an aggregate of exchanges where financial assets and/or securities
owned by public companies are bought and sold. Its primary function is to serve as a
marketplace for the trading of financial assets and securities between individuals, investors, and
corporations. These markets can also provide opportunities for firms to fundraise and distribute
financial risk among various stakeholders. Stock market prediction involves an attempt to foretell
variations in the stock market, on an individual level regarding a company’s stock, an industry or
market sector level, a larger body or aggregate of companies such as the S&P 500 index, or the
market as a whole. Often, expert forecasters and economists take advantage of two major
analytical methods to draw conclusions about stock values and become more informed as to the
variations in singular stocks in relation to the broader market: fundamental analysis and
technical analysis.

The aim of fundamental analysis is to discover the approximate inherent value of financial
assets, such as stocks, bonds, and currency10. In the case of stocks, the purpose is to

10 Corporate Finance Institute. (2019, March 26). Fundamental analysis. Corporate Finance Institute.
https://corporatefinanceinstitute.com/resources/knowledge/trading-investing/fundamental-analysis/

9 Herz, F., Ungar, L., Eisner, J., & Labys, W. (2014). Stock market prediction using natural language processing.
https://patentimages.storage.googleapis.com/df/93/5d/4cc361daa8ee8c/US20030135445A1.pdf

4



determine the market price in addition to the supposed “intrinsic” value. If the market is
undervaluing the stock, investors take advantage of the opportunity to buy at low prices in hopes
of selling later for profit. As explained by Graham & Dodd (2008):

… security analysis does not seek to determine exactly what is the intrinsic value
of a given security. It needs only to establish either that the value is
adequate—e.g., to protect a bond or to justify a stock purchase—or else that the
value is considerably higher or considerably lower than the market price. (p. 66)11

In essence, fundamental analysis seeks to approximate a stock or company’s true value and
compare that with the general sentiment or market price to inform investor actions, such as
buying or selling. This method of analysis is further broken down into two perspectives: a
top-down and bottom-up approach. A top-down approach begins reviewing higher-level
economic indicators, such as GDP, current state and stability of the economy, and the latest
market news, and scrutinizing how these factors impact the business and the industry. Inversely,
the bottom-up approach is often more quantitatively focused and begins with specific company
metrics, including revenue and management statistics.

Next, technical analysis is the examination of securities and their historical prices with the
aim of forecasting12. A fundamental principle of this methodology is that markets and prices
move self-similarly, that future price trends will recur based on prior patterns, and that these
trends are a reflection of market psychology. Also known as behavioral finance, technical
analysis is at its core a study of human sentiment and thought as it pertains to their collective
financial decisions in the stock market. In this regard, a price chart can be labeled with a
spectrum of emotions, including caution, optimism, greed, pessimism, fear, and momentum, or
the herd mentality, serving as a representation of the future expectations of consumers at
certain points in time. The following exhibit is a generic price chart demonstrating consumer
sentiment at various moments based on prior trends and expected future returns. Investors
closely observing technical factors buy when the stock price dips below the fundamental value
(line that intercepts price axis) for likelihood of maximum returns (blue region). This spectrum of
emotions represents the collective consumer psyche that prompts short-term behavioral
impulses, often without sight of a long-term investment.

12 What is Technical Analysis and How Does it Work? (n.d.). Nadex. Retrieved August 18, 2022, from
https://www.nadex.com/learning/introduction-to-technical-analysis/

11 Graham, B., & Dodd, D. (2008). Security Analysis: Sixth Edition, foreword by Warren Buffett. Mcgraw-hill.

5



Figure 1
Price Chart Labeled With Consumer Sentiment Reflecting Expectations for Returns

Source: “5 charts to tell if stock buyers are too bullish,” by J. Burton, 2013, MarketWatch

Due to the increasing availability of textual data that serves as an abundant supplement
to traditional quantitative data and that is inherently high-dimensional (Gentzkow, Kelly & Taddy,
2019), machine learning strategies have evolved to address the wide array of data analysis and
summarization requirements in applied econometrics. Many forms of analysis in economics
include the identification and distillation of patterns in data, and one of the most common tools is
linear regression, although the rise in popularity of machine learning algorithms have made
more accurate nonlinear methods such as classification, regression trees, random forests,
penalized regression such as LASSO, neural networks, and support vector machines (SVMs)13

5 Dataset and Initial Manipulation

The headline data for this project was taken from the Kaggle dataset Daily News for
Stock Market Prediction14, with the top 25 headlines ranked by Reddit users on the WorldNews
channel, each day from August 8, 2008 to July 1, 2016 (excluding non-trading days). The
Combined_News_DJIA.csv file consists of 27 columns (two columns for date and label and 25
for the top 25 daily headlines) and 1989 rows, each corresponding to a specific day. The label
column as in the original dataset referred to the Dow Jones Industrial Average and indicated 1 if
the daily closing index value rose over the open or was constant, and indicated 0 if the index
value fell. However, this index data was later changed to reflect the S&P 500 data.

Figure 2

14 Sun, J. (2016). Daily News for Stock Market Prediction, Version 1. https://www.kaggle.com/aaron7sun/stocknews
13 Varian, H. (2014). Big Data: New Tricks for Econometrics. Journal of Economic Perspectives, 28(Spring), 3–28.

6



Partial Sample Row from Combined_News_DJIA.csv File From Kaggle

Source: “Daily News for Stock Market Prediction,” by J. Sun, 2016, Kaggle.
Note. Partial sample from the Combined_News_DJIA.csv file provided by the Kaggle dataset.
The date column indicates the specific day, the label column indicates the numerical value
attributed to the change in index value from open to close, and the next 25 rows contain byte
strings of the top 25 news headlines for that day, ranked by Reddit users in the WorldNews
channel.

For this project, the index value data for the S&P 500 was downloaded from the Thomson
Reuters Refinitiv Workspace during the same time frame (August 8, 2008 to July 1, 2016). The
labels were then modified for both binary and multiclass classification tasks. The labels were
changed to represent 0 for a lower closing index value compared to the open value for the S&P
500 (a fall in price during the day) and 1 for a higher or constant closing value (the index value
either rose or stayed the same).

The following modifications were made to the original Combined_News_DJIA.csv file for
the binary classification (a similar process was used for multiclass classification, except the
numerical labels were changed to reference ranges of percentage returns):

a) Deleted the date and label columns
b) Created a separate spreadsheet with the Refinitiv Workspace S&P 500 data, including

the opening and closing index values
c) Added the new S&P 500 price data into the original spreadsheet and use conditional

statements in Excel to populate a new ‘Label’ column
d) Deleted the S&P 500 index values
e) Added column headers (Label and Headline 1… Headline 25) to ensure easy translation

from CSV file to pandas DataFrame
f) Converted the byte strings to standard strings for easier manipulation in Python by

removing ‘b’ and excess ‘ and “ characters (conversion can also be done in Python,
although here the process was executed in Excel)

Figure 3
Sample of the First Row from Final Binary Classification CSV File

7



Note. A sample of the first row of the final binary classification CSV file, with the label row and
the next 25 rows indicating the top 25 news headlines.

The multiclass labels were defined according to the following daily return percentage ranges:
a) 5 ⇒ Return of 4% or above
b) 4 ⇒ 2 to 4% return
c) 3 ⇒ 0 to 2% return
d) 2 ⇒ -2 to 0% return
e) 1 ⇒ -4 to -2% return
f) 0 ⇒ Below -4% return

Below is the label distribution for the binary and multiclass classification tasks. While
label frequency for the binary classification data is approximately equal, the multiclass dataset is
unevenly distributed, necessitating custom class weights computed by
sklearn.utils.compute_class_weight. This lack of uniformity is likely caused by the great
variability in stock market daily returns during the span of 8 years, especially when further
broken down into more narrow categories.

Figure 4
Label Distribution of Binary and Multiclass Classification Tasks

Note.
Label

8



frequencies for 2 class and 6 class classification. Clearly, the unevenly distributed data will
vastly influence model performance, as the model will “memorize” the labels rather than learn
the connections between the headlines and their corresponding labels. Therefore, custom class
weights need to be computed, or some form of data resampling must occur on the dataset.
Here, we will explore the weighting approach.

Figure 5
Sample of First 9 Rows from Final Multiclass Classification CSV File

Note. Sample of first 9 rows from the final multiclass classification CSV file (labels are now
ranging from 0 to 5 depending on the S&P 500 daily return).

6 Data Preprocessing and Pre-Model Preparation

The methods for data preprocessing were slightly different with regard to the various
models. For both LSTM models (binary and multiclass classification), a load_data function reads
the CSV file using the csv module and iterates through each row to extract the labels and
headlines per day into separate lists. Next, the headlines (X_train_token and X_val_token) are
cleaned by removing punctuation, stopwords, and converting the string to lowercase before
tokenizing each headline. Before creating a vocabulary and vectorizing the headlines, the
maximum length of each headline is calculated by updating a counter and iterating over
X_train_token and X_val_token (list with number of elements equal to some number of days,
each with a list of 25 headlines, with each headline represented as a list of individual words, or
tokens). Next, the vocabulary is defined by creating a dictionary and assigning each unique
word in the combined train and validation headlines with a specific value, or number (represents
a simple scalar or 1D vector). The buildVocabulary function that X_train_token and X_val_token
are passed to returns the size of the vocabulary, a dictionary mapping words to indices
(vectors), and another dictionary word_count that maps each unique word to the number of
occurrences in the training and validation samples. Subsequently, a vectorizer function
vectorizes each token in X_train_token and X_val_token by replacing zeros in a NumPy array of
length 46 (maximum number of tokens for all headlines) with the token’s vector (corresponding
index from the dictionary mapping unique words to indices). Finally, all labels are one-hot
encoded by the Keras to_categorical() method.

9



For all models, custom class weights are computed to ensure classes that have less
samples receive higher weights and classes with more samples are designated lower weights.
This is one solution to address the problem of an unbalanced dataset.

For both the pre-trained BERT and GloVe embedding implementations, the bulk of
preprocessing included reformatting the pandas DataFrame object (read from the CSV file) of
dimensions 1989 x 26 into 49725 x 2 by establishing each headline as its own row. This means
that each row, previously containing 25 headlines, becomes 25 rows with the same label and
one headline each, thus, the dimensions are expanded.

To continue data preparation for the BERT model in TensorFlow, all train and validation
headlines and labels are converted to TF tensors, and train and validation datasets are created
by initializing a tf.data.Dataset.from_tensor_slices instance from the tensor headlines and labels
and finally, creating a PrefetchDataset with buffer size tf.data.AUTOTUNE, meaning elements of
the inputted datasets (the tf.data.Dataset.from_tensor_slices instance) are automatically
retrieved before they are requested to be added to the new dataset, improving runtime. Next,
the encoder15 and preprocessing16 handles are accessed from the Tensorflow Hub (the
preprocessing handle is selected based on the chosen BERT model). More on the models
themselves will be discussed in the Models and Results section.

The GloVe embeddings were extracted as a zip file and contain individual files with 50,
100, 200, and 300 dimensional versions of the GloVe vectors17. Additional preparation for the
GloVe model included initializing a TextVectorization Keras layer with max_tokens set to 20000
and the output_sequence_length set to 300. The text dataset was then created as a TensorFlow
dataset with tf.data.Dataset.from_tensor_slices with headlines as input, separating consecutive
data elements into batches of 64. The vectorizer is then adapted on the text dataset with
vectorizer.adapt(), rather than being fed a predefined vocabulary. The vocabulary is then
extracted from the vectorizer and a dictionary mapping words to indices is created. Next, an
embedding dictionary is generated mapping words to their NumPy vectorized representation.
The predefined embedding dictionary is then used to produce an embedding matrix, where the
vector at position i corresponds to the vector at index i in the dictionary. This is inputted to a
Keras Embedding layer with the number of tokens equal to the number of words in the
vocabulary + 2 (accounting for PAD and OOV tokens), the embedding dimension set to 300
(length of the GloVe vectors), and the embedding_initializer is set as
keras.initializers.Constant(embedding_matrix). The trainable parameter of the layer is set to
False, so the GloVe vectors are not updated during training.

7 Models and Outputs

This project utilizes three distinct architectures: pre-trained BERT, RNN (LSTM-based)
and CNN-based (with GloVe embeddings). Both binary and multiclass classification models will
be trained and tested using each of the above base architectures, for a total of 6 models. This
section will detail the three main architectures, the slight variations in their binary and multiclass
applications, and intricate visualizations describing the layers, inputs, outputs, and data
transformations of each model. Regarding visualizations each type of layer is allocated a

17 (N.d.). Stanford. https://downloads.cs.stanford.edu/nlp/data/glove.6B.zip.
16 TensorFlow hub. (n.d.). Retrieved August 25, 2022, from https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3.

15 Turc, I., Chang, M.-W., Lee, K., & Toutanova, K. (2019, August 23). Well-Read students learn better: On the importance of
pre-training compact models. ArXiv.Org. https://arxiv.org/abs/1908.08962.

10



specific color, and large arrows between layers indicate the direction of forward propagation
through the network. Differences between the implementation for the binary and multiclass tasks
are also noted.

7a BERT Implementation

BERT is a novel approach to language modeling utilizing a transformer’s bidirectional
characteristic18. In essence, the BERT encoder reads an entire subset of text at once, allowing
the model to learn the necessary surrounding context (hence bidirectional). While transformers
in general consist of self-attention and fully connected layers, and an encoder and decoder,
BERT is a language model, meaning it only requires the encoder to input and process text, and
doesn’t involve a decoder, which outputs predictions. In the model outlined below, the classifier
is the final Dense layer with softmax activation. Additionally, each encoder contains multi-head
self-attention components and a fully connected network19. Multi-head self-attention is a module
for parallel processing, where each head learns unique weighted averages for input features
(see Footnote 19).

While BERT is a powerful model that has revolutionized the NLP domain, there are
limitations. BERT is primarily trained on English text from the BookCorpus (a vast series of
unpublished novels, containing around 11,000 books and the English Wikipedia), although there
are other corpora and models available in different languages. Additionally, BERT faces some of
the same key issues as other language models in that it is impossible to eradicate all bias, and
the pre-trained models can potentially contain offensive language and hate speech, including
racial and other social biases20. Next, the vast computing power and capability of BERT calls for
immense and efficient resource allocation. The full-scale BERT models like BERT-base and
BERT-large often consist of hundreds of millions of parameters and hours-long training times.
This project utilizes a miniature BERT model with two transformer blocks, a hidden size of 128
and 2 attention heads.

The BERT implementation in this project involves a Keras Input layer for the headline
input, a preprocessing layer defined by the BERT preprocessing handle, an encoder layer
defined similarly with the BERT encoder handle (both defined with hub.KerasLayer), the pooled
outputs of the encoder (contextual embeddings from BERT output layer), a batch normalization
layer, a dropout layer, and the final Dense classifier with the given number of output classes (6
for multiclass and 2 for binary). The following is the architecture of the BERT classifier (the only
difference between the binary and multiclass models is the number of units in the final dense
layer classifier).

20 Ahn, J., & Oh, A. (2021, September 13). Mitigating language-dependent ethnic bias in BERT. ArXiv.Org.
https://arxiv.org/abs/2109.05704.

19 Özateş, M. N. (2021, February 20). Transformer architecture: How transformer models work? CARBON CONSULTING.
https://medium.com/carbon-consulting/transformer-architecture-how-transformer-models-work-46fc70b4ea59.

18 Horev, R. (2018, November 17). BERT Explained: State of the art language model for NLP. Towards Data Science.
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270.

11



Figure 6
BERT Model Architecture

Note. Pre-trained BERT architecture illustrating the inputs and outputs of each layer and their
shapes.

As depicted in the figure above, the shape of the input layer is None as the shape of the
textual data input (headlines arrays) is unknown in certain dimensions, such as batch size
(during training, an error was also raised if the shape was defined in the model). This means the
number of samples are free to be chosen during training. The length of 128 on the second axis
refers to the maximum sequence length for the tokenized and vectorized headlines. The shape
of the pooled_outputs is (batch_size, max sequence len) and the output itself is a contextual
hidden state vector of the CLS token (provides enough context for the sequence).

12



Figure 7
BERT Visualization with Layer Inputs and Outputs

Note. Visualization of the BERT model, with different labels colored differently. The general
model structure is headline and label input, BERT preprocessing, the BERT encoder, batch
normalization, dropout, and the final classifier. The model is relatively simple aside from the
BERT components as the purpose of the model is to gain a more complete understanding of
BERT functionality in price prediction.

More specifically, the train and validation datasets (Prefetch Datasets) are fed to the Input
Layer, which sends the outputs to the BERT preprocessing layer chosen based on the encoder
handle from the TensorFlow Hub. The preprocessing model prepares and returns the headline
text to be encoded. The encoder returns the pooled_output (the hidden state vector for the CLS
token at the beginning of the headlines that provides necessary context), that is normalized
through batch normalization. The following dropout layer randomly inactivates 8% and 7% of
neurons for the binary and multiclass tasks respectively, and the final classifier has two output
units for the binary classification and six for the multiclass classification, with softmax activation.

More on specific hyperparameters below:
a) 1 epoch for binary classification as opposed to 2 epochs for multiclass classification
b) Batch size is 10
c) Training steps per epoch defined as cardinality or length of train_ds
d) Total training steps is equal to the number of training steps per epoch multiplied by the

number of epochs

13



e) Number of warmup steps for the learning rate annealing approach is set to 10% of the
number of total training steps

f) Initial learning rate is 3e-5
g) Sparse Categorical Cross Entropy loss due to integer labels
h) Sparse Categorical Accuracy metric
i) AdamW optimizer (same as original BERT training) with learning rate warmup with the

parameters set above
j) L2 regularizer on output classifier set to 1e-4 for binary classification as opposed to 3e-4

for multiclass classification

The BERT models achieved an accuracy of 54% for the binary classification and 39% for
the hex factor classification. The model performed only slightly better than random guessing
(50%) for the binary classification task, although it performed around twice as well as random
guessing (17%) for the multiclass (6 class) classification task.

7b RNN (LSTM) Implementation

Before the advent of BERT and other state-of-the-art language models, Long Short-Term
Memory (LSTM) models were much more widely utilized in text classification and NLP. These
models have an intrinsic advantage in being able to memorize and learn feature patterns,
preserve, and propagate them throughout a neural network21. This trait also means that LSTMs
can be fed whole sentences and phrases in addition to sole words, improving model
understanding and accuracy. LSTMs are extensions of traditional recurrent neural networks
(RNNs) and are especially useful in analyzing patterns in temporal data, as is the case with
stock prediction in this project22.

The LSTM implementation in this project involves an embedding layer which receives
inputted headlines, two LSTM layers with 96 and 32 units respectively, a dropout layer, a dense
layer with 16 units and ReLu activation, another dropout layer, a dense layer with 8 units and
ReLu activation, a final dropout layer, and the dense classifier with softmax activation and
number of units equal to the number of output classes (2 for binary and 6 for multiclass
classification tasks).

Figure 8
LSTM Model Architecture

22 Sentiment analysis with LSTM. (2022, January 17). Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2022/01/sentiment-analysis-with-lstm/.

21 LSTM for text classification. (2021, June 14). Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2021/06/lstm-for-text-classification/.

14



Note. The LSTM architecture illustrates the inputs and outputs of each layer and their shapes.
The model reads from the left column to the right (the dropout_3 layer outputs to the dense_3).

To elaborate, the input receives vectorized headlines of length 47, and the Embedding
layer outputs dense embeddings of dimension 64 (output length) for each headline. These
embeddings are passed to the following LSTM layers, with 96 and 32 units respectively, before
a series of dropout and dense layers ending at the final dense classifier with number of units
equal to the number of output classes.

Figure 9
LSTM Model Visualization with Layer Inputs and Outputs

15



Note. Visualization of the LSTM model, with different layers colored differently. The structure of
this model is input, embedding, LSTM layers, three instances of dropout followed by a dense
layer before the final classifier.

With the LSTM model, the vectorized train and validation headlines are fed to the input of
the embedding layer, which outputs dense embeddings for the headlines to the first LSTM. This
LSTM outputs 96 hidden states (corresponds to the dimensionality of the output vector space
defined by the number of units) for each time step per headline/sample in the batch. The next
LSTM outputs 32 hidden states per batch (rather than per time step as
return_sequences=False). The rate for the following dropout layer is set 0.05 for the binary
classification and 0.1 for the multiclass classification. The next dense layer takes the input from
the LSTM that has not been inactivated by the dropout and outputs an array of dimensionality
16 with ReLu activation. This continues with another dropout and dense layer, with the dense
layer outputting an array with length 8 instead. The final dropout layer has a rate of 0.05 and the
final classifier with softmax activation outputs predictions.

More on the specific hyperparameters below:
a) One epoch for binary classification as opposed to two epochs for multiclass classification
b) Batch size is 4
c) Adam optimizer with learning rate 0.0001

16



d) Categorical Cross Entropy loss due to one-hot encoded labels
e) Accuracy metric

The LSTM models achieved an out-of-sample accuracy of 46% for the binary
classification and 41% for the multiclass classification. The model performed slightly worse than
random guessing (50%) for the binary classification task, although the multiclass (6 class)
accuracy was more than double that of random guessing (17%).

7c GloVe Embeddings

In addition to language models, pre-trained word embeddings are also showing great
promise in natural language processing. Word embeddings are a method by which to represent
words so that words similar in meaning have similar representations, or vectors23. Often, word
embeddings are in a machine-understandable format to translate words into numbers.

This project utilizes pre-trained GloVe embeddings. GloVe is an unsupervised algorithm
that produces contextual word embeddings, developed at Stanford by counting the number of
times a particular word is present in the same or similar context as another word (co-occurrence
matrix)24. The embeddings that are produced demonstrate broad patterns between words and
ideas, also known as linear substructures when the words are depicted in a vector space.

Furthermore, many within the NLP sector have begun to explore the use of Convolutional
Neural Networks (CNNs) in sentiment analysis and text classification tasks. While CNNs are
generally thought of as inherent to computer vision and image processing, the core concepts
can be translated to NLP tasks. In addition, text inputs, such as news headlines, have similar
structures to images, and therefore well-trained convolutional layers can be well-suited to
analyze minute patterns and features within text. For example, images can be represented as
matrices of pixel values, similar to how text can be represented numerically as arrays, or
matrices, of word vectors or embeddings. In the same way that a filter convolves over an image
and creates a feature map, filters, or weight matrices, can slide horizontally across a sentence
represented by a series or array of word vectors and compute weighted sums to create feature
maps, input to activation functions, and output values25.

The GloVe implementation in this project includes an input layer with shape equal to
(embedding_dim, ), where the embedding dimension is defined as the length of the GloVe
vectors (300). Next, the predefined GloVe embedding layer (defined by the embedding matrix)
returns the 300 dimensional embeddings for each headline, followed by a 1D convolutional
layer, and a max pooling layer. These last two layers are repeated twice more, and a fourth
convolutional layer is followed by a global max pooling layer. Next, data is normalized via a
batch normalization layer, passed to a Dense layer with 8 units and ReLu activation, a dropout
layer, and the final output classifier with softmax activation and the number of units equal to the
number of output classes.

25 Binhuraib, T. (2020, October 16). NLP with CNNs. Towards Data Science.
https://towardsdatascience.com/nlp-with-cnns-a6aa743bdc1e

24 Chawla, J. S. (2020, July 6). What is GloVe? - Analytics Vidhya - Medium. Analytics Vidhya.
https://medium.com/analytics-vidhya/word-vectorization-using-glove-76919685ee0b

23 Brownlee, J. (2017, October 10). What are word embeddings for text? Machine Learning Mastery.
https://machinelearningmastery.com/what-are-word-embeddings/

17



Figure 10
GloVe Model Architecture

Note. The LSTM architecture illustrates the inputs and outputs of each layer and their shapes.
The model
reads from the left column to the right (the conv1d_18 layer outputs to the max_pooling1d_14
layer).

Regarding the input layer, the shape (None, 300) indicates the model expects batches of
300 dimensional vectors (vectorized headlines). The embedding layer that follows outputs 300
dimensional vectors for each word within each headline. The values in the output shape of the
convolutional layers indicate the number of steps or convolutions across the input and the
number of filters respectively. The final classifier is a dense layer with the number of units equal
to the number of output classes.

18



Figure 11
GloVe Model Visualization with Layer Inputs and Outputs

Note. Visualization of the GloVe model, with different layers colored differently. The basic
structure is input/embeddings followed by three instances of a convolutional layer with max
pooling, a fourth convolutional layer, global max pooling, batch normalization, a dense layer,
dropout, and the output classifier.

In the GloVe model, the train and validation headlines are inputted to the Embedding
layer in the form of 300-dimensional vectors. These vectors are generated according to a Keras
TextVectorization layer initialized during the pre-model preparation stage, with max_tokens set
to 20000 and the output sequence length to 300 (same length as the GloVe vectors). These
vectorized headlines are passed to the input of the embedding layer and then to the layer itself
(defined by the embedding matrix also created in the pre-model preparation phase), where the
word vectors are replaced by their corresponding GloVe embeddings. The outputs of the
embedding layer are 300-dimensional vectors for each word in each headline. These outputs
are inputted to the first convolutional layer that slides over the headline with 64 filters of size
7x7, creating 64 unique feature maps and an output shape of (294, 64). The subsequent max
pooling layer further shrinks the embedding vector to 98D, and these two layers are repeated in
this manner 3 times, with the second convolutional layer outputting 128 feature maps instead of

19



64. In this time, the dimensionality of the embedding vector is constantly becoming smaller.
Next, a fourth convolutional layer receives an 8D vector and 64 feature maps and outputs 32
feature maps and a 2D embedding, that is in turn transformed into a simple 32D vector by a
global max pooling layer. After a batch normalization layer, a dense layer, and a dropout layer
with rate 0.15, the final output classifier outputs probabilities with softmax activation.

More on specific hyperparameters below:
a) Seven epochs for binary classification as opposed to two epochs for multiclass

classification
b) Batch size is 20
c) Training steps per epoch is defined as cardinality or length of train_df (this DataFrame

contains the train headlines and labels)
d) Total training steps is equal to the number of training steps per epoch multiplied by the

number of epochs
e) Number of warmup steps for the learning rate annealing approach is set to 10% of the

number of total training steps
f) Initial learning rate is 3e-5
k) Sparse Categorical Cross Entropy loss due to integer labels
l) Sparse Categorical Accuracy metric
m) AdamW optimizer with learning rate warmup with the parameters set above
n) GloVe embedding layer trainable is set to False to ensure the embeddings are not

updated during training

The GloVe models achieved a validation accuracy of 51% for the binary classification and 45%
for the multiclass classification. The model performed slightly better than random guessing
(50%) for the binary classification task, and the multiclass (6 class) accuracy was more than
double that of random guessing (17%).
8 Final Results

All 6 models tested experienced various degrees of accuracy in predicting stock price
fluctuations based on news headlines.

Table 1
Comparing Model Accuracies Among 3 Base Architectures

Binary Multiclass Parameters

BERT 54% 39% ~ 4,300,000

LSTM 46% 41% ~ 2,400,000

GloVe 51% 45% ~ 6,300,000

Note. This table demonstrates the highest accuracies achieved by each base architecture in
both the binary and multiclass tasks, with the approximate number of parameters of the model.

20



As described in the table above, the BERT model achieved the highest accuracy on the
binary classification task (54%), while the GloVe model achieved the highest accuracy on the
multiclass (6 class) classification task (45%).

Another useful technique to visualize out-of-sample model accuracy is a confusion
matrix. Below are the matrices for all three base architectures in both binary and multiclass
classification tasks.

Figure 12
Confusion Matrices for BERT, LSTM, and GloVe Models

Binary Multiclass

BERT

LSTMa

21



GloVe

aThe LSTM multiclass matrix only has predictions for a single class. This may be due to the fact
that the LSTM model could not map input features to output classes specifically enough for the
other classes 1-5, and ‘defaulted’ to class 0.

Generally, it seems like all the models are inclined to predict class 0 for the multi
classification task. This may be because class 0 indicates returns of below -4%, which
potentially reflects very evidently in the sentiment or content of the headlines that lead to that
category of market returns, as opposed to more subtle changes in index value, such as within a
few percent.

Conversely, the models never predicted class 5 for the multiclass prediction task, as
many factors may influence whether or not an index value increases by 4% or greater.

For the binary tasks, it is also interesting to observe the patterns in the matrices among
the various architectures. While the BERT model tended to predict class 1, the LSTM model
tended to predict class 0 and the GloVe model seemed to strike a balance with more evenly
distributed predictions. This may be due to the unique methods through which the models learn,
i.e. BERT’s encoder or preprocessing mechanisms and the pre-trained GloVe embeddings.

9 Discussion and Conclusion

While neither of the models performed exceptionally, these models provide a key
foundation to further exploring sentiment analysis in economics, specifically in time series
forecasting. Two overwhelming questions remain:

a) What other factors would be essential to creating a more accurate model?
b) What are the impacts of technical/fundamental factors on market and model performance

The scope of these models is solely limited to news headlines. Therefore, due to the vast
array of factors that impact economic performance, it is exceedingly difficult to develop an
accurate, market-ready model exclusively based on news headlines. In fact, it is extremely
difficult to create an accurate model based wholly on any single or handful of variables; accurate
economic forecasting requires a comprehensive approach, although this can pose a challenge
for individuals or researchers without great computational capabilities and access to sensitive or
private data. Other factors that impact stock price on a broad or company-specific level can

22



include laws and policies, tax rates, individual company metrics, and beyond, and the nuance in
economic analysis inherently means that a very simple solution to forecasting a broad market
will be impossible.

For individuals and market researchers alike, it may also be worthwhile to explore similar
strategies as outlined in this paper for specific companies, analyzing both technical and
fundamental factors such as revenue and accounting statistics and company reviews and public
sentiment. Additionally, it could be useful to explore the effect of tracking multiple different
markets or exchanges and observing the impact of a set of headlines on the performance of
these various markets.

Architecturally, it will be fascinating to continue investigating various model types to
discover novel approaches to building more accurate forecasting models, such as combining
various architectures or creating even deeper networks.

References

[1] Ahn, J., & Oh, A. (2021, September 13). Mitigating language-dependent ethnic bias in BERT.
ArXiv.Org. https://arxiv.org/abs/2109.05704

[2] Applications of machine learning - Javatpoint. (n.d.). Www.Javatpoint.Com. Retrieved August
17, 2022, from https://www.javatpoint.com/applications-of-machine-learning

[3] Binhuraib, T. (2020, October 16). NLP with CNNs. Towards Data Science.
https://towardsdatascience.com/nlp-with-cnns-a6aa743bdc1e

[4] Brown, R. (2021, September 2). What are the different types of sentiment analysis ? Nerd
For Tech.
https://medium.com/nerd-for-tech/what-are-the-different-types-of-sentiment-analysis-808f
36ef89ee

[5] Brownlee, J. (2017, October 10). What are word embeddings for text? Machine Learning
Mastery. https://machinelearningmastery.com/what-are-word-embeddings/

[6] Burton, J. (2013, June 17). 5 charts to tell if stock buyers are too bullish. MarketWatch.
https://www.marketwatch.com/story/5-charts-to-tell-if-stock-buyers-are-too-bullish-2013-0
6-17

[7] Chawla, J. S. (2020, July 6). What is GloVe? - Analytics Vidhya - Medium. Analytics Vidhya.
https://medium.com/analytics-vidhya/word-vectorization-using-glove-76919685ee0b

[8] Context analysis in NLP: Why it’s valuable and how it’s done. (2019, February 19).
Lexalytics. https://www.lexalytics.com/blog/context-analysis-nlp/

[9] Corporate Finance Institute. (2019, March 26). Fundamental analysis. Corporate Finance

23



Institute.
https://corporatefinanceinstitute.com/resources/knowledge/trading-investing/fundamental-
analysis/

[10] Gentzkow, M., Kelly, B., & Taddy, M. (2019). Text as data. Journal of Economic Literature,
57(3), 535–574. https://doi.org/10.1257/jel.20181020

[11] Graham, B., & Dodd, D. (2008). Security Analysis: Sixth Edition, foreword by Warren
Buffett. Mcgraw-hill.

[12] Herz, F., Ungar, L., Eisner, J., & Labys, W. (2014). Stock market prediction using natural
language processing.
https://patentimages.storage.googleapis.com/df/93/5d/4cc361daa8ee8c/US20030135445
A1.pdf

[13] Horev, R. (2018, November 17). BERT Explained: State of the art language model for NLP.
Towards Data Science.
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8
b21a9b6270

[14] IBM Cloud Education. (2020, August 17). What are Neural Networks? IBM.
https://www.ibm.com/cloud/learn/neural-networks

[15] Kurohara, J., Chang, J., & Hoskins, C. (2018). Predicting Stock Market Movements Using
Global News Headlines. CS230.

[16] Lexicon-Based sentiment analysis: A tutorial. (n.d.). KNIME. Retrieved August 17, 2022,
from https://www.knime.com/blog/lexicon-based-sentiment-analysis

[17] LSTM for text classification. (2021, June 14). Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2021/06/lstm-for-text-classification/

[18] Özateş, M. N. (2021, February 20). Transformer architecture: How transformer models
work? CARBON CONSULTING.
https://medium.com/carbon-consulting/transformer-architecture-how-transformer-models-
work-46fc70b4ea59

[19] Repustate Team. (2022, January 4). Aspect based sentiment analysis. Repustate.
https://www.repustate.com/blog/aspect-based-sentiment-analysis/

[20] Sentiment analysis with LSTM. (2022, January 17). Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2022/01/sentiment-analysis-with-lstm/

[21] Sun, J. (2016). Daily News for Stock Market Prediction, Version 1.
https://www.kaggle.com/aaron7sun/stocknews

24



[22] TensorFlow hub. (n.d.-a). Retrieved August 25, 2022, from
https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/2

[23] TensorFlow hub. (n.d.-b). Retrieved August 25, 2022, from
https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3

[24] Turc, I., Chang, M.-W., Lee, K., & Toutanova, K. (2019, August 23). Well-Read students
learn better: On the importance of pre-training compact models. ArXiv.Org.
https://arxiv.org/abs/1908.08962

[25] Varian, H. (2014). Big Data: New Tricks for Econometrics. Journal of Economic
Perspectives, 28(Spring), 3–28.

[26] What is Technical Analysis and How Does it Work? (n.d.). Nadex. Retrieved August 18,
2022, from https://www.nadex.com/learning/introduction-to-technical-analysis/

[27](N.d.). Stanford. https://downloads.cs.stanford.edu/nlp/data/glove.6B.zip

25


