
A Machine Learning Based Fashion Recommendation System
Shailja Tyagi

Abstract

Suggestion algorithms which present content based on previous preferences have become
popular in recent years on platforms such as TikTok, Instagram, and YouTube. These algorithms
connect individuals with products they want to buy or consume, providing value to both the
individual and retailers and creators on the platform.We propose to create a similar suggestion
algorithm for apparel and fashion. Our algorithm will utilize supervised machine learning over a
large pre-existing dataset of apparel purchases to provide fashion suggestions based on
explicitly stated individual preferences. This approach can assist individuals who want to
discover more outfits, or struggle to find outfits which truly resonate with their personal style, and
can help connect retailers with potential customers.

The code for this work is available here.

I. Introduction

Fashion, a potent form of self-expression, plays a pivotal role in our lives, shaping our
confidence and projecting our unique identities. Yet, the modern fashion landscape, brimming
with endless choices, often leaves individuals grappling with the challenge of creating a
wardrobe that resonates with their personal style. The abundance of options can lead to
frustration and indecision, making the search for the perfect outfit an overwhelming endeavor.

In response to this fashion conundrum, we can harness the potential of supervised machine
learning algorithms. By leveraging an extensive dataset comprising apparel purchases and user
preferences, this algorithm offers a solution by generating personalized recommendations that
resonate with individual styles. This transformative approach simplifies the process of
discovering outfits that resonate with a user's unique fashion preferences and enhances their
confidence in their choices.

Recommender systems, a dynamic part of advancing technology, have a significant role in this
context. These systems, rooted in machine learning, are designed to provide tailored predictions
to users across various digital platforms. They draw insights from user behavior and preferences
to offer recommendations that go beyond generic suggestions, continually evolving to adapt to
the expanding supply range and customer base of online services.

This approach not only benefits individuals by boosting confidence in their fashion choices but
also holds value for retailers. As it can effectively connect them with potential customers seeking
attire which appeals to their preferences.

II. Related Work

While several existing approaches aim to provide outfit ideas to users based on pre-made
combinations (Isinkaye 261-273), our approach takes a distinct route by leveraging pre-existing

1

https://colab.research.google.com/gist/shailjaTyagii/44edfc417cbf4a24d1309bce787322e5/h-m-dataset-fashion-recommendations.ipynb


datasets comprising apparel purchases and user preferences to predict new outfits tailored to
individuals' personal styles through a ranking system. An interesting approach concerning
item-based filtering and mix, and match features included the Dresoo App (Outfit Builder –
Dresoo). This app easily prompts the user to decide what type of article of clothing they want
and provides them with a list of similar items compared to the pre-selected item by the user.
Another approach has been proposed by Analytics Vidhya, a movie recommender (“Movie
Recommendation System”). Their approach included item-based filtering, KNN, and cosine
similarity. These three elements utilized in their approach are typically the most common
approach to building recommendation algorithms. Their overall goal was to create a movie
recommendation algorithm based on previously rated movies and suggest similar movies which
the user would most likely enjoy watching.

III. Background

A. Pandas

Python Pandas is a powerful and widely used open-source library designed for data
manipulation and analysis. It provides easy-to-use data structures, such as data frames and
series, that enable users to efficiently handle and manipulate structured data. Pandas is
particularly adept at handling tabular data, akin to spreadsheets or SQL tables, making it a go-to
tool for data cleaning, exploration, and transformation. With its intuitive and versatile functions,
Pandas allows users to load data from various file formats, filter and select data, perform
computations, and generate summary statistics. It serves as an essential component in the data
science toolkit, facilitating data preparation and preprocessing tasks that are fundamental to
data analysis and machine learning workflows.

B. Recommender Systems

A recommender system’s main goal is to estimate ratings for items and provide a personalized
list of the recommended items to a given user (Stieg). There are many different approaches to
this task, such as the comparison of ratings, item or user attributes and demographic relations.

Most basic recommender systems include fundamental elements, such as a group of users, a
collection of items, and the connection between them, typically represented by user-item ratings.
These ratings are commonly expressed as integers, often using a scale ranging from one to
five.

Recommender systems filtering can be categorized into two main sections:

1. Item-based collaborative filtering: relies on analyzing a set of similar items (bought
and not bought in our case) consisting of received user ratings per item, the items
which have been rated yet are used to recommend similar items by picking out N
items from the similarity list that have been rated by U and calculating the rating
based on these N ratings.

2. User-based collaborative filtering: relies on analyzing a similar set of users
determined by their ratings for a specific item and then recommending other items

2



which haven’t been rated yet or in this case purchased by picking out a few users who
have rated an item and then calculating a new rating based on these N number of
ratings given by others.

In the H&M dataset we are using item based filtering for our algorithm.

C. Cosine-based Similarity

Cosine-based similarity is a technique used to measure similarities between items in item-based
collaborative filtering. In this approach, each item is represented as a vector within a
user-space. To calculate similarity, the method involves computing the angle between two of
these vectors and then determining the cosine of that angle, which quantifies the similarity
between the items (“Cosine Similarity”). For instance, when comparing two items, denoted as
"a" and "b," their similarity is determined through this cosine-based calculation.

Cosine based similarities formula

D. Supervised Machine learning

In this work, we utilize supervised machine learning. Supervised machine learning is a subset of
machine learning that uses labeled datasets to train algorithms to classify data or predict
outcomes accurately. This method is helpful in evaluating the model’s accuracy through
predictions. During the training phase, the system is fed with labeled data sets, which instruct
the system what output variable is related to each specific input value. The trained model is then
presented with the test data. The data presented is the labeled data, but the labels haven’t been
revealed to the algorithm yet. The overall goal of the testing data is to measure how accurately
the algorithm performs on unlabeled data. In simple terms, the supervised learning process is
improved by constantly measuring the resulting outputs from the testing data and fine-tuning the
algorithm to get it as accurate as possible.

E. Evaluation

To evaluate the performance of recommender algorithms, it's common practice to test them
against various datasets. In this paper, cross-validation is employed to assess algorithm
prediction performance, as elaborated in the following subsection. Evaluating algorithm
prediction performance involves the use of different metrics, and the choice of which metric to
employ depends on the specific objectives of the algorithm and the goals of the measurement.
The subsequent section will outline the metrics relevant to this paper.

3



F. Cross-validation

Cross-validation, sometimes referred to as rotation estimation, is a statistical data analysis
technique used to validate the performance of algorithms when paired with a dataset. Its primary
objective is to assess how well an algorithm generalizes to new data. Cross-validation allows for
the comparison of different algorithms by measuring their performance (SciKit-Learn).

In cross-validation, a dataset is divided into "z" equally sized partitions, with one of these
partitions serving as the test set, while the remaining "z - 1" partitions become the training sets.
The algorithm is then trained using the training partitions. After completing the training, the
model is evaluated using the test partition, generating test data. This process repeats until each
partition has been used as the test set.

G. Dataset

For this algorithm, we will utilize an existing, publicly available dataset, specifically the H&M
Personalized Fashion Recommendations dataset (“H&M Personalized Fashion
Recommendations”). Within this dataset, we will focus solely on extracting the article IDs and
customer IDs. While the dataset originally contains a comprehensive list of transactions,
including information about who made the purchase and the specific items they bought, our
analysis will narrow down to the essential article and customer IDs for the purpose of building
our recommendation system.

IV. Methodology

The fundamental concept for the algorithm is that given, a list of customer purchased rated
articles of clothing, the algorithm needs to be able to predict a ranking of how likely to least likely
of non-purchased articles of clothing a score of some sort which recommends the customer
articles of clothing which may resonate with their style since it would be similar to their taste in
fashion based on the rated articles of clothing.

For instance, if a customer really likes wearing sweaters, the algorithm should be able to
recommend another sweater which the customer may like depending on its predicted score.

4



A. Manipulating the data

The original H&M dataset The transformed H&M dataset

In order to create a recommendation algorithm, the pre-existing dataset needed to be
manipulated into a new dataset called ‘matrix’ through pandas. The new dataset consists of sets
of purchased articles of clothing (article_id), sets of customers who have purchased items
(customer_id), and sets of ratings per article of clothing. Each row would contain an article id
and rating given by each customer (ratings).

Before finding out the perfect layout for the matrix, it was initially laid out so that it consists of
one column of customer ids and several columns of ratings given by the customer, where its
label is the article id. However, this proved to be ineffective since it was more reasonable to
have each column represent the purchases for each customer and iterate through each column
than the first item in each column to implement the item-based filtering technique.

5



Initial Dataframe

This dataset consists of a file which contains a large dataset of the purchases for each
customer, as well as additional irrelevant information. A visualization of the file that is used:

transactions_train a list of transactions and customer and article ids.

This file contains over 956 million transactions made by about 1.4 million customers which can
appear to be too much data and cause the algorithm to run in a slow amount of time. So, the
original dataset was shortened and used to predict ratings of the items not purchased by the
customers.

6



Final Dataframe

The article_id column shows several different ids, each representing an article's clothing. This
included both purchased and non-purchased articles of clothing.

The ratings columns show several customers who rated some of the items on a scale from 1-5.
For instance, the first customer rated the first article of clothing, 501820043, a 2. (Randomly
chosen)

The articles of clothing which received a rating of 0, means that it hasn’t been purchased. And
those are the articles of clothing which will receive a rating of how likely the customer would be
most likely to purchase an item based on their other previously purchased items, through the
algorithm.

B. Training The data

With the H&M dataset, the dataset would be split into training and testing datasets. The training
dataset would be a subset of one customer and their purchases. The testing dataset would be a
subset of the other customers excluding the customer used for the training dataset and their
purchases. After training, the model should then be capable of predicting a rating of how likely
the customer would be most likely to purchase an item based on the given, previously
purchased items. And to evaluate the model’s accuracy, the algorithm would run the testing data
(unlabeled data) and predict a new output. And if the output seems to predict a somewhat
reasonable rating, then the model would prove to be accurate.

7



The training of the algorithm was conducted by implementing item-based collaborative filtering,
the details of which are elaborated below:

In this example, the rating for article id 567594001, by customer 000aa has no rating, signifying
it hasn’t been purchased yet...

There are several ways to find the nearest article of clothing. Here, I use the cosine similarity.
Through using cosine similarity, you need to have the non-purchased item to have a value of 0.
Look at the graph below. The x-axis represents ratings by customer 000aa and the y-axis rating
ratings by customer 00401. Then, we can find points for each movie in the space. For instance,
article id 567475001 corresponds to the point (26,31) in space.

Graphed article ids

The cosine similarity uses cos(θ) to measure the distance between two vectors. As θ increases,
cos(θ) decreases (cos(θ) = 1 when θ = 0 and cos(θ) = 0 when θ = 90). Therefore, as the value
of θ is smaller, the two vectors are considered closer (the similarity increases).

There are several ways to determine the numerical distance between each article id, however I
used the NearestNeighbors method. NearestNeighbors() in the sklearn.neighbors library (IBM)
can be used to calculate the distance between articles of clothing using the cosine similarity and
find the “nearest neighbors” for each article of clothing.

Using this method, it returns distances and indices.

8



The indices show the indices of the nearest neighbors for each article of clothing. Each row
corresponds to the row in the matrix. The first element in a row is the most similar (nearest)
article of clothing. Generally, it’s the article of clothing itself. The second element is the second
nearest, the third is the third nearest, so on so forth. For example, the indices shown indicate
the nearest neighbors for the article of clothing 680912009. The first nearest article of clothing is
674681001, then 671505001, etc.

The distances show the distance between each article of clothing. The smaller the number, the
more closer (similar) it is by ratings. Additionally, each value in the array corresponds to the
number in the indices array.

Calculating the predicted rating using the distances.

The formula to calculate the predicted rating is as follows:

R(a1 ,c) = {∑a2, S(a1, a2)R(a2, c)}/ ∑a2 S(a1,a2)

R(a1 ,c): the rating for each article of clothing a1 by customer c

S(a1, a2): the similarity between article of clothing, a1 and article of clothing a2

j∈ J where J is the set of the similar articles of clothing to article a1

This formula simply implies that the predicted rating for an article of clothing a1 by customer (c)
is the weighted average of ratings for the similar articles of clothing by customer c. The weight
for each rating, (S(a1, k)/∑a2 S(a1,a2)), becomes greater when article a1 and article k are closer.
The denominator of this term makes the sum of all the weights equal 1.

C. Validation

To validate the effectiveness of my algorithm, I employed a masking technique. In this validation
approach, the primary objective was to assess the system's ability to accurately predict ratings
for five articles of clothing without prior knowledge of whether they had been purchased. The
rationale behind this masking process is crucial—it ensures that the system does not have
access to the answers (i.e., which items were actually bought) before being tasked with the
question of how to rank these items. To execute this, I initiated the process by selecting the first
five article IDs. These IDs were "masked" by assigning each of them a value of -1.

9



Consequently, the system was intentionally blinded to whether these five items had received
ratings or not. However, for the remaining articles, excluding the selected five, the system had
access to their article IDs and associated ratings, which it would utilize to predict ratings for the
masked items. This rigorous approach helped in evaluating the system's predictive capabilities
without any prior knowledge of the actual purchases.

To evaluate the performance of the algorithm, I utilized the predict() method, which used a new
validation matrix consisting of both masked and unmasked items. The evaluation criterion
involved examining the algorithm's output. If it correctly ranked all rated items in the order of
most likely to least likely to be purchased, the algorithm received a score of 1. In cases where
one or two items were inaccurately ordered, it received a score of 0.5. If three or more items
were incorrectly ranked, the algorithm received a score of 0. This validation process helped
evaluate the algorithm's predictive accuracy in real-world scenarios if someone needed an outfit.

V. Experimental results

In our research, we observed qualitative results that highlight the system's ability to make
recommendations based on previous user purchases. For instance, if a user expressed a
preference for specific items, the system inferred that they might also like other items. For
example, if a person bought item 1 and item 2, the system predicted they might have an affinity
for item 3. Additionally, we found that the system leveraged collective user behavior, such as if
person A bought item 1 and person B bought item 2, it would predict that person C might be
interested in item 2 due to its popularity among similar users. An illustrative example of this
process can be seen in the input of article id 63367501, which led to the highly recommended
output of article id 567594001. This showcases how the system effectively recommends items
that are likely to resonate with the user's preferences, based on the analysis of past user
purchases and preferences.

Below, the first customer prefers the article id 633675001 the most and the algorithm
recommends article id 567594001.

10



Preferred article of clothing Recommended article of clothing

In our results analysis, we observed a specific case where the algorithm's recommendations
aligned closely with user preferences. For the first customer, who expressed a strong preference
for article ID 633675001 based on their rating, the algorithm accurately recommended article ID
567594001. This particular recommendation was for a light blue woven occasion dress
designed for ladieswear, featuring a long satin design with a V-neck and wrapover front,
concealed fastenings, and side slits in the skirt. The algorithm's ability to suggest a relevant item
showcases its proficiency in understanding individual style preferences. Additionally, the
algorithm recommended article ID 567594001 to the same customer, which was a cardigan in
off-white from the knitwear category. This fine-knit cropped cardigan contained subtle glittery
threads and featured a button-down front. These recommendations underscore the algorithm's
effectiveness in providing personalized fashion suggestions that resonate with the user's
expressed preferences.

Additionally, the validation score recorded an impressive value of 0.9403131991051454,
approaching the maximum score of 1. This result underscores the algorithm's exceptional
performance and its ability to accurately predict user preferences, making it a robust and reliable
fashion recommendation system.

VI. Challenges and limitations

In the development and implementation of our algorithm, we encountered several notable
limitations and challenges. One challenge stemmed from the algorithm's ability to operate
effectively when provided with articles of clothing lacking any attributes or images. This limitation
primarily pertained to the absence of visual and descriptive information about the clothing items,
which are often critical factors in fashion recommendation systems. Without access to attributes
or images, the algorithm is most likely to face difficulties in understanding and categorizing the
items effectively, potentially leading to less accurate recommendations. Furthermore, the
number of data in our dataset presented a significant challenge. Given the vast number of
customers and items, encompassing thousands of data points, processing the entire dataset
became a daunting task, leading us to select subsets for analysis.

11



Additionally, one key limitation lies in the algorithm's omission of attribute-based
recommendations. It does not consider specific item attributes such as the type of clothing,
color, and style, potentially hindering its usefulness for users seeking clothing items based on
particular attributes. Moreover, the algorithm does not incorporate imagery data, which limits its
ability to provide recommendations based on visual aspects.

While addressing these challenges and limitations, it's essential to acknowledge that scalability,
computational efficiency, and data sparsity are recurring challenges in the field of recommender
systems. Balancing the need for comprehensive data analysis with practical computational
constraints remains an ongoing concern.

References

 “Cosine Similarity.” GeeksforGeeks, 2 Oct. 2020, www.geeksforgeeks.org/cosine-similarity/.

“H&M Personalized Fashion Recommendations.” Kaggle.com,
www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/data?select=tra
nsactions_train.csv.

IBM. “What Is the K-Nearest Neighbors Algorithm? | IBM.” Www.ibm.com, 2023,
www.ibm.com/topics/knn.

Isinkaye, F.O., et al. “Recommendation Systems: Principles, Methods and Evaluation.” Egyptian
Informatics Journal, vol. 16, no. 3, Nov. 2015, pp. 261–273,
www.sciencedirect.com/science/article/pii/S1110866515000341,
https://doi.org/10.1016/j.eij.2015.06.005.

Karabiber, Fatih. “Cosine Similarity.” Www.learndatasci.com,
www.learndatasci.com/glossary/cosine-similarity/.

Dresoo – the Best Online Outfit Creator. dresoo.com/.

Real Python. “Build a Recommendation Engine with Collaborative Filtering.” Realpython.com,
Real Python, 10 July 2019,
realpython.com/build-recommendation-engine-collaborative-filtering/.

“Recommendation System Using K-Nearest Neighbors |Use Case in Python.” Analytics Vidhya,
20 Aug. 2020,
www.analyticsvidhya.com/blog/2020/08/recommendation-system-k-nearest-neighbors/.

SciKit-Learn. “3.1. Cross-Validation: Evaluating Estimator Performance — Scikit-Learn 0.21.3
Documentation.” Scikit-Learn.org, 2009, scikit-learn.org/stable/modules/cross_validation.html.

Stieg, Cory. “What Is a Recommender System in Machine Learning?” Codecademy Blog, 6 Dec.
2022, www.codecademy.com/resources/blog/what-is-recommender-systems-machine-learning/.

12



Zach. “Leave-One-out Cross-Validation in Python (with Examples).” Statology, 4 Nov. 2020,
www.statology.org/leave-one-out-cross-validation-in-python/.

13


