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The Einstein tile is a novel type of non-periodic tile that can cover
the plane without repeating itself. It has a simple shape that
resembles a fedora. This research paper unveils the aperiodicity of
the newly discovered Einstein tile using the golden ratio, marking a
paradigm shift in the field of geometric tiling. Through rigorous
analysis, mathematical modeling, and computational simulations,
we provide compelling evidence that the Einstein tile defies
conventional periodicity, lacking any repeating pattern or
translational symmetry. The unique properties of the Einstein tile
open up new avenues for exploring aperiodic tiling systems and
their implications in various scientific and technological domains.
From cryptography to materials science, the aperiodicity of the
Einstein tile presents exciting opportunities for advancements in
diverse fields, expanding our understanding of tiling theory and
inspiring future explorations into aperiodic structures.

INTRODUCTION

A tessellation or tiling of the plane is a
way of covering a flat surface with
shapes, called tiles, without leaving any
gaps or overlaps. A tiling is periodic if
there is a way to shift the tiles over and
have them match up perfectly with their
previous arrangement. For example, a
checkerboard is a periodic tiling
because it looks the same if you slide it
by two squares. [8]

Aperiodic tilings are arrangements of
shapes that cover the plane without
leaving any gaps or forming any

repeating patterns. They have been
studied extensively in mathematics,
physics, and art, and have applications
in cryptography, quasicrystals, and
self-assembly. Unlike periodic tilings,
which can be obtained by shifting a
single tile along a fixed direction,
aperiodic tilings do not have any
translational symmetry. Moreover,
they do not contain any finite regions
that repeat infinitely often in the plane. A
set of shapes is called aperiodic if it can
only form such non-repeating tilings.
[4][12][19]
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Mathematicians have been interested in
finding tilings that are not only aperiodic,
but also use only one shape. This
problem has been open for decades,
and many shapes have been proposed
and rejected as candidates for an
einstein tile. Recently, a breakthrough
was announced by David Smith, who
discovered the first true einstein tile,
which they named “the hat” [22][23]. The
hat tile is a 13-sided shape that can
cover an entire surface with no gaps or
overlaps but only with a pattern that
never repeats. The word “einstein”
comes from the German words “ein
stein”, meaning “one stone”, referring to
the fact that it is one tile. The shape is
also called “the hat” because it vaguely

resembles a fedora, a type of hat with a
brim and a creased crown.[1][3][10]

In this paper, we present an alternative
proof of the aperiodicity of the hat using
the golden ratio. We show that any
periodic tiling made from hats would
have to satisfy certain geometric
constraints involving the golden ratio (ϕ),
which are impossible to meet. We also
show that any tiling made from hats
must contain certain patterns that are
only compatible with hierarchical tilings.
Our proof is simpler and more elegant
than the original one, and it reveals a
hidden connection between the hat and
the golden ratio (ϕ).
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FIGURE 1.1

Figure 1.1 shows the arrangement of the einstein tiles following a unique and
non-repeating due to the aperiodicity of the tiles. The term "einstein" comes from the

German "ein stein", meaning "one stone" or "one tile". The first example of an einstein
tile was discovered in March 2023 by a team of computer scientists, who called it "the
hat" because of its resemblance to a fedora. The hat has 13 sides and can create a

non-repeating pattern by flipping over like a mirror image. [1][11][13]

EXISTING PROOFS OF
APERIODICITY

There are two main ways to prove that a
shape is aperiodic: one is based on the
hierarchical structure of the tiling, and
the other is based on the symmetry
group of the tiling.

The first proof of aperiodicity for the
Einstein tile was given by Smith and
colleagues in 2023. They noticed that
the tile has a feature that resembles a
hat, and that the hats arrange
themselves into larger clusters, called
metatiles. Those metatiles then arrange
into even larger supertiles, and so on
indefinitely, in a type of hierarchical
structure that is common for tilings that
aren’t periodic. They also studied the
tiling’s hierarchical structure by eye and
detected telltale behavior that opened
up a traditional aperiodicity proof. This
proof involves showing that any periodic
tiling by the Einstein tile must have
infinitely many tiles in each period,
which is impossible.

The second proof of aperiodicity for the
Einstein tile was given by Myers and
Goodman-Strauss in 2023. They used a
different approach, based on the
symmetry group of the tiling. The
symmetry group is the set of all
transformations (such as rotations,
reflections, translations, etc.) that
preserve the tiling. They showed that
any periodic tiling by the Einstein tile
must have a symmetry group that
contains an infinite cyclic subgroup,
which means that there is a
transformation that can be repeated
infinitely many times to get back to the
original tiling. However, they also
showed that the symmetry group of any
tiling by the Einstein tile is finite, which
contradicts the existence of such an
infinite cyclic subgroup. Therefore, any
tiling by the Einstein tile must be
aperiodic. [10]
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GOLDEN RATIO

The golden ratio, often represented by
the Greek letter phi (Φ) or the symbol τ
(tau), is a mathematical constant that
has fascinated mathematicians,
scientists, and artists for centuries. The
golden ratio is an irrational number
approximately equal to . It1. 6180339887
is derived from the ratio of two quantities
such that the ratio of the sum of the two
quantities to the larger quantity is equal
to the ratio of the larger quantity to the
smaller quantity. [2]

Mathematical Representation:

The golden ratio can be mathematically
represented as follows:

Φ =  1+ 5
2

The golden ratio is irrational, which
means that it cannot be written as a
fraction of two integers. There are
different ways to prove this, but one
common method is to use a
contradiction. The

golden ratio, denoted by Φ, is rational.
Then we can write it as

Φ =  𝑎
𝑏

where a and b are positive integers with
no common factors. That is, the fraction
a/b is in its lowest terms.

Now, using the fact that
1
Φ =  Φ − 1

which comes from the definition of the
golden ratio as the solution of:

𝑥2 −  𝑥 −  1 =  0

we can rearrange this equation to get
𝑏
𝑎  =  𝑎

𝑏  −  1

Multiplying both sides by ab, we get

𝑏2 =  𝑎2 −  𝑎𝑏 

This implies that is a factor of𝑏
, or equivalently, that divides𝑎2 −  𝑎𝑏 𝑏

. But since a and b have no(𝑎 −  𝑏)𝑎
common factors, this means that must𝑏
divide . However, this also means𝑎 −  𝑏
that must divide . But𝑏 𝑎 – 𝑏( ) +  𝑏 =  𝑎
this contradicts the assumption that a
and b have no common factors.
Therefore, our initial supposition that Φ
is rational must be false. Hence, Φ is
irrational. [15]

FIBONACCI SERIES

This is The Fibonacci series is a
sequence of numbers where each
number is the sum of the

two preceding ones. The first two
numbers are usually 0 and 1, but some
authors start the sequence from 1 and 1
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or 1 and 2. The sequence is named
after the Italian mathematician

Leonardo of Pisa, also known as
Fibonacci, who introduced it to Western
European mathematics in his 1202 book
Liber Abaci.

The Fibonacci series can be defined by
the following formula:

𝐹_𝑛 =  𝐹_(𝑛 − 1) +  𝐹_(𝑛 − 2)

where F_0 = 0 and F_1 = 1.

The first few terms of the Fibonacci
series are:

0,  1,  1,  2,  3,  5,  8,  13,  21,  34,  55,  89,  144,  2

The Fibonacci numbers have many
interesting properties and applications in
mathematics, computer science, biology
and art. Some examples of how the
Fibonacci numbers appear in nature
are:

The number of petals in some flowers is
a Fibonacci number.

The arrangement of leaves on a stem
follows a Fibonacci pattern.

The spirals of a pineapple or a pine
cone are based on Fibonacci numbers.

The branching of trees or the veins of a
leaf follow a Fibonacci sequence.

The Fibonacci series can also be used
to create artistic patterns such as the
Fibonacci spiral, which is an
approximation of the golden spiral
created by drawing circular arcs

connecting the opposite corners of
squares in the Fibonacci tiling. [5]

RELATION BETWEEN THE
GOLDEN RATIO AND THE
FIBONACCI SERIES

As we already know that the Fibonacci
series is a sequence of numbers that
starts with 0, 1, 1 and then continues by
adding the previous two numbers. For
example, the next number after 1, 1 is

, then 1 + 2 = 3, then 2 + 31 +  1 =  2
= 5, and so on. The series can be
written as

𝐹 2( ) =  1,   𝐹 3( ) =  1,   𝐹 4( ) =  2,   𝐹 5( ) =  3,   𝐹 6( ) =  5,

where is any positive integer.𝑛

The golden ratio, or phi, is an irrational
number that is approximately equal to

. It has many interesting properties1. 618
and applications in mathematics, nature
and art. One way to define the golden
ratio is by using the Fibonacci series. If
we take any two consecutive numbers in
the series and divide the larger one by
the smaller one, we get a ratio that is
close to the golden ratio. As the
numbers get larger, the ratio gets closer
and closer to the golden ratio. In other
words, the limit of as n  𝐹 𝑛+1( )

𝐹 𝑛( )

approaches infinity is equal to phi. This
can be written as:

𝑛 → ∞ 𝐹 𝑛 + 1( )
𝐹 𝑛( ) = Φ 
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This property holds true regardless of
the initial values chosen for the
Fibonacci series. As long as we start
with two positive numbers and follow the
rule of adding the previous two
numbers, we will get a series that
converges to the golden ratio. [6][7][14]

For example, if we start with 𝐹 (1) =  3
and , we get the series:𝐹 (2) =  5

3,  5,  8,  13,  21,  34,  …

If we divide any two consecutive
numbers in this series, we get ratios that

are close to phi:
5
3  ≈ 1. 667

8
5  ≈ 1. 600

13
8  ≈ 1. 625 

21
13  ≈ 1. 615

34
21  ≈ 1. 619 

As another example, if we take 𝐹(87)
and , which are very large𝐹(88)
numbers in the Fibonacci series, we get:

𝐹 (87) =  1100087778366101931

𝐹 (88) =  1779979416004714189

If we divide these numbers, we get a
ratio that is very close to phi:

𝐹 88( )
𝐹 87( ) =  1779979416004714189

1100087778366101931  

=  1. 61803398875 ≈ Φ

This shows that as the Fibonacci series
progresses, the ratio between
consecutive Fibonacci numbers
approaches the golden ratio. [16][18][24]

.
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FIGURE 5.1

Figure 5.1 shows a computed graph on how the ratios of the numbers from the
Fibonacci Series converge to the golden ratio. The red colored dotted line in the graph
represents the value of the golden ratio which is and the blue colored1. 61803398875

graph line shows the ratios of the different numbers in the Fibonacci Series.

OEIS A027941 SEQUENCE

According to the On-Line Encyclopedia
of Integer Sequences the sequence
OEIS A027941 is defined as 

𝑎 𝑛( ) =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 2 𝑛 +  1( ) −  1

where Fibonacci(n) denotes the nth
Fibonacci number. This can be seen as
a variation of the Fibonacci numbers
that skips every even-indexed term and
subtracts one from each term. The
sequence starts with is

and it can be0,  1,  4,  12,  33,  88…
obtained by subtracting 1 from every
odd-indexed Fibonacci number. For
example:

𝐹(3) −  1 =  2 −  1 =  1,  

𝐹(5) −  1 =  5 −  1 =  4,

,𝐹(7) −  1 =  13 −  1 =  12

and so on. [9]

This sequence has some similarities
and differences with the original
Fibonacci sequence. For instance, both
sequences grow exponentially as n
increases, but the OEIS A027941
sequence grows faster than the

Fibonacci sequence because it skips
half of the terms. Moreover, both
sequences satisfy a recurrence relation
that involves adding two

previous terms, but the OEIS A027941
sequence has a different initial condition
and a different constant term. The
recurrence relation for the OEIS
A027941 sequence is:

𝑎(𝑛) =  𝑎(𝑛 − 1) +  𝑎(𝑛 − 2) +  2 

for , with𝑛 >  2
𝑎(0) =  − 1 𝑎𝑛𝑑 𝑎(1) =  0

The sequence OEIS A027941 also has
some connections with other sequences
and mathematical objects. For example,
it can be shown that the sum of the first
n terms of this sequence is equal to the
nth Lucas number minus one. The
Lucas numbers are another sequence of
natural numbers that start with 2 and 1,
and each subsequent term is the sum of
the previous two terms. The Lucas
numbers are closely related to the
Fibonacci numbers and they also
appear in many contexts.

7



RESEARCH METHODOLOGY

If you look at the lines of tiles that form concentric rings around a central hat, you will
notice that some tiles are normal and some are flipped (Figure 7.1) [17][18][27]. The
number of normal tiles in each line follows a sequence is 0, 1, 4, 12, 33, 88, which is
equal to the OEIS A027941 Sequence (Figure 7.2). [27]

FIGURE 7.1

Analyzing this series carefully, if we let a(n) be the nth term of the OEIS A027941
Sequence, we find that: a(n+1) / a(n) slowly and gradually approaches a specific
number. The observation presented is indeed fascinating which was developed by
delving deeper into the analysis of the A027941 sequence and the intriguing
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relationship between its terms. By examining the ratios between consecutive terms, we
can explore the convergence towards a specific number.

To begin, let us consider the 25th, 26th, and 27th numbers of the series:
𝑎 25( ) =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 2 × 25 +  1( ) −  1 =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 51( ) −  1 =  20365011072

𝑎 26( ) =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 2 × 26 +  1( ) −  1 =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 53( ) −  1 =  53316291172

𝑎 27( ) =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 2 × 27 +  1( ) −  1 =  𝐹𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖 55( ) −  1 =  139583862444

FIGURE 7.2
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Now, we can examine the ratios between consecutive terms to determine if there is a
common value to which they converge. [27]

For the ratio between the 25th and 26th numbers, we have:
𝑎 25+1( )

𝑎 25( ) = 𝑎 26( )
𝑎 25( ) =  53316291172

20365011072 ≈ 2. 61803398896

Similarly, for the ratio between the 26th and 27th numbers, we have:
𝑎 26+1( )

𝑎 26( ) = 𝑎 27( )
𝑎 26( ) =  139583862444

53316291172 ≈ 2. 61803398878

Lastly, for the ratio between the 27th and 28th numbers, we have:
𝑎 27+1( )

𝑎 27( ) = 𝑎 28( )
𝑎 27( ) =  365435296161

139583862444 ≈ 2. 61803398875

Based on the ratios we have calculated
so far, it is evident that they all
approximate a common value,
approximately 2.61803398875. This
number is extremely special because it
is equal to 1 added to the golden ratio
(Φ + 1). Moreover, the golden ratio has
an amazing property which states that it
is the only number which equals to the 1
added to the number itself when
squared or multiplied by the same
number.

=> Φ x Φ

=> x1. 61803398875 1. 61803398875 

=>
2. 61803398875 =  1 +  1. 61803398875

=> 1 +  Φ =  Φ 2  

As we all already know that the golden
ratio is an irrational number, its square is
also irrational. This can be proved by a

classic example of contradiction, where
we assume the opposite of what we
want to prove and show that it leads to a
logical contradiction. Here is one
possible way to prove that the square of
an irrational number is also irrational:

Suppose that the square of an irrational
number is rational. That means there
exists some irrational number such𝑥
that is rational. By definition of a𝑥2

rational number, there are two positive
integers and such that𝑝 𝑞 𝑥2 =  𝑝

𝑞

where and have no common factors.𝑝 𝑞

Taking the square root of both sides, we
get

𝑥 = 𝑝
𝑞( ) = 𝑝

𝑞( )
Since p and q have no common factors,

neither do and . Therefore, is𝑝 𝑞 𝑝
𝑞( )

in lowest terms. But this means that x is
rational, because it can be written as a
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fraction of two integers, sqrt (p) and sqrt
(q) where are both integers if p and q
are perfect squares. This contradicts our
assumption that x is irrational.
Therefore, the square of an irrational
number must be irrational. [15]

So, the ratio of the numbers in the
sequence which the normal tiles follow
in each line happens to be the square of

the golden ratio which is irrational. So
there turns out to be no way that the
pattern made by the einstein tile
repeats. Even if the pattern did repeat,
the ratio would have to be rational which
the square of the golden ratio is not.
This proves that the einstein tile is an
aperiodic tile [25][26].

APPLICATIONS AND
IMPLICATIONS

The newly discovered einstein tile has a
lot of implications and applications in
mathematics and material science.
Listed below are some of the most
important applications of the ‘hat’ shape
or the einstein tile.

● Advancements in Aperiodic
Tiling Theory: The aperiodicity of
the Einstein tile contributes to the
broader field of aperiodic tiling
theory. Aperiodic tilings have
been a subject of great interest in
mathematics, and the discovery
of new aperiodic structures
expands our understanding of
their properties and possibilities.
The Einstein tile presents a
unique example that can help
refine existing theories and
inspire further research in this
area.

● Number Theory and Irrational
Numbers: The aperiodicity of the

Einstein tile reinforces the
relationship between aperiodic
structures and irrational numbers,
particularly the golden ratio. It
deepens our understanding of
how irrational numbers manifest
in mathematical patterns and
connects to various aspects of
number theory. This discovery
offers new insights into the
interplay between irrationality,
aperiodicity, and mathematical
structures.

● Geometric Structures and
Symmetry: Aperiodic structures
often exhibit intricate symmetries
and complex geometric patterns.
The Einstein tile's aperiodicity
opens up possibilities for studying
and classifying such structures.
Its unique properties can
contribute to the development of
novel geometric frameworks,
leading to advancements in fields
such as crystallography,
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architectural design, and fractal
geometry.

● Cryptography and Information
Security: Aperiodic structures
have found applications in
cryptography and information
security. The complex and
non-repeating nature of the
Einstein tile's pattern can be
leveraged in cryptographic
algorithms, offering enhanced
security through the creation of
unique and unpredictable
encryption keys. The aperiodicity
of the Einstein tile may inspire the
development of new encryption
techniques based on aperiodic
structures.

● Mathematical Modeling and
Simulation: Aperiodic structures,
including the Einstein tile, have
practical implications in
mathematical modeling and
simulation. They can be utilized
to model various phenomena in
physics, biology, and material
science, where irregular patterns
and aperiodic behavior occur.
Incorporating the properties of
aperiodic structures in
mathematical models can lead to
more accurate and realistic
simulations of natural
phenomena.

● Art and Design: Aperiodic
structures, with their visually
captivating and intricate patterns,
have long inspired artists and
designers. The discovery of the
aperiodicity of the Einstein tile

opens up new possibilities for
incorporating unique and
non-repeating patterns in artistic
creations. Artists, architects, and
designers can draw inspiration
from the mathematical properties
of the Einstein tile to create
visually appealing and
intellectually stimulating works of
art and design.

The aperiodicity of the newly discovered
Einstein tile has implications that span
multiple disciplines. It contributes to
aperiodic tiling theory, advances our
understanding of irrational numbers and
number theory, explores complex
geometric structures, offers applications
in cryptography and information security,
facilitates mathematical modeling and
simulation, and inspires artistic
endeavors. The discovery of the
aperiodicity of the Einstein tile opens up
new avenues for exploration and
application in various fields, broadening
our understanding of mathematical
structures and their practical
significance. [20][21][27]

CONCLUSION

The Einstein tile's aperiodicity has been
confirmed, marking a dramatic break
from the long-established periodic tiling
systems that have dominated the field.
This finding calls into question our basic
assumptions about tiling and creates
new research opportunities in physics,
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mathematics, and other fields of study.
The Einstein tile's aperiodicity has
significant ramifications. It gives us a
better grasp of the mathematical ideas
that underlie tiling theory and offers a
fresh take on the ideas of symmetry and
order. To examine the complicated
interactions between local and global
features in complex systems and to test
the boundaries of regularity, researchers
might take use of the departure from
periodicity in tiling patterns.

The Einstein tile's aperiodicity also has
prospective uses in a number of
scientific and technical fields. The tile's
non-repeating properties provide
fascinating potential for cryptography,
where the lack of predictable patterns
might encourage the creation of more
secure algorithms. The complex

configurations of the Einstein tile may
also serve as an inspiration for the
creation of novel materials with
distinctive features, such as photonic
crystals or metamaterials, facilitating
advancements in the fields of optics,
photonics, and nanotechnology. The
finding of the Einstein tile also advances
our knowledge of the interesting realm
of quasicrystals. Materials having
long-range order but no translational
symmetry are known as quasicrystals,
and research into them has already
revealed several fascinating
occurrences. The aperiodic tiling
paradigm introduced by the Einstein tile
provides a valuable tool for investigating
the properties of quasicrystals and
potentially unlocking their potential in
various fields, including materials
science, solid-state physics, and
chemistry.
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