Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

Reinforcement Learning (RL) Based SFC Request Scheduling in Computer Networks
Eesha Nagireddy

ABSTRACT

This study investigates the use of Reinforcement Learning (RL) to minimize the latency between
the source and destination of SFC requests in Neural Networks. This problem gains relevancy
owing to Service Function Chaining (SFC) becoming a fundamental concept in modern
computer networks to efficiently route and process network traffic through a sequence of
specialized network functions. The approach utilizes Deep-Q-Network (DQN) reinforcement
learning to determine the shortest path between two nodes using the Greedy-Simulated
Annealing (GSA) Dijkstra's Algorithm. The containers within the SFC chain help train the model
based on bandwidth restrictions (fiber networks) to optimize the different pathways in terms of
action space. Through rigorous evaluation of varying action spaces in models, we assessed the
predictive accuracy of each model based on reward-request relationships graphed. A
scheduling agent can then manipulate this algorithm to handle maximum scheduling pathways.
The findings offer practical implications for reinforcement learning (RL) that can be applied to
request scheduling in computer networks to optimize resource allocation, improve the quality of
service, and enhance network performance.

INTRODUCTION

Considering the technological boom that has been occurring over the past few decades,
day-to-day users are more inclined to yearn for faster network speeds, better resource
management, and a seamless integration between the real and virtual world. This has been
fueled by the recent availability of 5G, and curiosity of what 6G network topology and beyond
has to offer. 5G networks communicate via widespread cellular towers, however their rampant
technological delivery has been stunted by a lack of nodes and receiving towers across the
globe. This has brought up the question of how to maximize the efficiency these towers have
across source-destination SFC chains, a sequence of multiple VNF’s to perform traffic steering
chains, in order to remove latency through efficiency. The answer lies within a series of a much
larger topology of devices that work to reshape the CPU by accounting for network bandwidth
and data harvesting: edge computing, where data travels between nodes within paths. But
within this complex topology, how are devices meant to know which server to send a signal to,
and vice-versa, to achieve maximal profit? There are many algorithms that may be used to
achieve maximal profit, one of which includes Dijkstra’s algorithm. This algorithm was developed
by Edsger W. Dijkstra in 1956 and used to find the shortest path through a network topology
given a source and destination, however has never been used in combination with
Deep-Q-Networking for matrix bandwidth minimization problems [1].

The basis of RL’s application in service based function chains is as follows; the optimization of
resource allocation and efficient routing of traffic through short form pathways. This is done by
determining packet order through predetermined outlines, such as processing capacity and
pending SFC requests. The first step is defining state space, in this context the space would
contain information regarding the status of service functions and basis for the current fluctuating

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

network load. Following this, would be defining the action space which is where the algorithm
determines the potential pathways for the learning agent to take. For RL based instructions,
these decisions rely on routing decisions made at each interval node, rather than the more
common and less efficient Random Walk with Restart (RWR) application. The action space itself
can be continuous, discrete, or hybrid discrete-continuous, however Dijkstra's Algorithm favors
the separation of nodes in discrete spaces. Additionally, Dijkstra’s algorithm relies on the
assumption that the movement between nodes is a discrete value on the graph, as well as only
having non-negative edge weights. Potential negative weights when factored into the algorithm,
would skew the data and favor those nodes over others despite there being no correlation
between negative edge weights and shorter pathways.

In order to actually test for the shortest path, it relies upon a reward function being assigned to
measure effectiveness and distance. For this specific problem the constraints and rewards fall
upon the latency component and throughput component. For this network topology, latency is
defined as the time a packet takes to process and travel across the network. Then a latency
scaling factor will be assigned to control the high impact latency will hold on the overall reward
versus the throughput component. Following iterative refinement, these processes apply the
Dijkstra’s algorithm as a RL based model versus policy based.

RESULTS

The main goal of Dijkstra’s algorithm is to

2\ 7 2 achieve the best path from a source to the
9 Y 3 ¢ destination with minimal cost [1]. In this
3 case, cost refers to the distance between

vy 2 4 v.) Vvarious nodes. In Figure 1, V1 is the source
-~ and V6 is the destination. To determine the
\ 1 7 / shortest path, it is helpful to create a table

. V5] {vs) to keep track of the distances. This

6 topological mpa is a simplified version of

VEN multi-domain SFC orchestration
diagrams, illustrating the VFN lifestyle as it
iterates through a status monitoring node.
Similarly, table initialization gives Dijkstra's method the context and starting point it needs to
carry out iterations successfully. It guarantees that the method can determine the shortest path
connecting the source node to every other node in the network through distance. By default,
setting the distances to infinity will allow the values to be updated through each iteration. It
would also be helpful to create a list of the visited and unvisited nodes. By setting all nodes as
unvisited initially, the algorithm ensures that it considers all nodes for potential exploration.
Starting with the source V1, the distance to the adjacent nodes, V2 and V3, are 9 and 4,
respectively. We then update the table to include these values, and mark V1 as visited to ensure
it does not get counted as an adjacent neighbor node again. Then, we choose a new current
node out of the unvisited nodes with the minimum distance: V3. Again, we calculate the distance
to all the unvisited neighbor nodes and update the shortest distance if it's shorter than the old
distance. The distance to V2 is 6, V4 is 1, and V5 is 6. We also add V3 to the visited nodes list.

Figure 1: University of Wisconsin Example of Network Topology

A P
2N R?geqrch Archive of . Where bright minds share their learnings
Rising Scholars (preprint)

This process repeats until termination, of which is when there are no unvisited nodes left or
when there is no node with a tentative distance less than infinity. This means that all nodes
reachable from the source node have been visited. The completed table should look similar to
the tabulation below. The last step to finding the shortest path is to retrace the path starting from
the destination to the corresponding previous node. This program would run until completion,
and would be rewarded when a choice leads to a shorter pathway. It is able to do this because
Dijkstra's algorithm is greedy, meaning an agent will travel to the nearest vertex. Essentially
making the shortest and most optimal transversal steps in order to translate to the shortest
possible global output. Thus, the shortest path is V1-V2-V4-V5-V6 with a total cost of 11, but not
just for individual decisions across different nodes but the optimal path for the network’s
topology (going from source to destination).

Node Shortest Distance Previous Node
V1 0

V2 9 V1

V3 4 V1

V4 oo

V5 oo

V6 oo

Node Shortest Distance Previous Node
V1 0

V2 6 V3

V3 4 V1

V4 1 V3

V5 6 V3

V6 oo

Node Shortest Distance Previous Node
V1 0

V2 3 V5

V3 4 V1

V4 1 V3

V5 4 V4

V6 2 V5
DISCUSSION

Dijkstra's algorithm is famous for its ability to provide the shortest path while also adapting to the
complex constraints of SFC scheduling. This algorithm is a Greedy-Simulated Annealing(GSA)
algorithm that was initially chosen because of its two step approach, allowing for higher contrast
on the basis of their heuristic framework [2]. However, successful implementation requires
consideration of factors such as edge weights, dynamic network conditions, and real-time
adaptability. Its comprehensive approach and meticulous journey provide a powerful mechanism

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

for optimizing SFC scheduling in complex network topologies, ensuring efficient service delivery
and resource utilization. Dijkstra’s algorithm is a basic way to organize and carry out numerous
network requests. This algorithm involves comparing the cost required to connect to adjacent
nodes and thus resulting in the shortest path that is the most cost efficient. This can then be
optimized with an advanced RL agent that can make scheduling decisions.

Finding the shortest path from a specific source to a specific destination is an example of just
one request a potential user may have. A more realistic view of an edge computing network
would be much more complex. Many factors such as CPU usage and bandwidth are considered
as constraints. Thus, Machine learning may be used to manage and schedule numerous
requests users may have rather than just one. Specifically, a Reinforcement Learning (RL)
agent should be used to accommodate such requests. The RL framework displayed here can
suitably work with a given number of CPU cores, bandwidth, and compute the shortest path
using Dijkstra’s algorithm. Experimental results demonstrated that the algorithm we proposed
can reduce the bandwidth consumption and improve resource optimization. In future studies,
owing to the encroachment of new 5G, 6G, and intel processors; RL based machine learning is
expected to be deployed in SFC request scheduling networks.

METHODOLOGY

We will now analyze the current implementations of RL algorithms on schedule based
pathways, specifically the various methods of approach. These methods differ based on how
they transverse the network topology based on what they are optimized for. Then these
methods will be compared to the short form pathfinding found in Dijikstra’s algorithm.

CURRENT SCHEDULE BASED PATHWAYS

Shortest Remaining Time First (SRTF) algorithms are most commonly used for SFC based
Scheduling requests, however there are many downsides through implementation. SRTF
algorithms are the preemptive form of SFJ algorithms. The nodes and pathway for the packets
are determined by the agent's evaluation of the burst time. Burst time is also known as the
execution time, which is the amount of time it takes the CPU to process an input. However when
compared to Dijkstra’s algorithm, process starvation occurred sooner in the SRTF algorithm [2].
Essentially the SRTF algorithm would prioritize short form pathways over and long term
topological decisions. Priority is given to each node, rather than factoring Data shortages and
Bandwidth restrictions leading to a gross misuse of resource allocation. Despite its benefits, this
would be the incorrect method for scheduling requests because the reward metrics could not
utilize scalability with flow rates[3].

Multi-Objective Shortest Path Algorithms are a similarly quick short path algorithm, however for
this specific problem type the advantages of said algorithm hold little significance.
Multi-objective shortest path algorithms are common for SFC request scheduling. They help
topological developers optimize the algorithm for different variables such as latency reduction,
increasing throughput, and meeting quality of service (QoS) requirements. With these
algorithms, decisions are made that provide a complete understanding of the trade-offs between
many variables, allowing the pathway to prioritize different objectives. However, they have

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

some disadvantages because multi-objective algorithms are often more complex than
single-objective algorithms, they have higher thresholds in order to actually maintain the
software [4]. Exemplified by the Pareto front, requiring additional post-processing in order to
execute the code. Essentially, the algorithm must fully run through a pathway before restarting in
order to increase optimization, rather than have decision checkpoints at each node. Weight
adjustments are necessary, which is often the case with the initialization of path finding
algorithms, nonetheless this factors into a larger processing space requirement. Despite these
challenges, multi-objective shortest path algorithms provide a versatile and adaptive solution to
complex planning problems, making them a useful tool.

DIJKSTRA'S ALGORITHM

Dijkstra's algorithm, a fundamental tool in network pathfinding, provides a systematic approach
to finding the shortest path in a weighted graph. In the context of Service Function Functions
(SFC) it begins with graphing the topology, with network nodes and edges (what is constrained
by bandwidth and latency issues). Beginning by simulating the environment using Java.
Adopting figure 1 as a small scale network instance for physical networks of SFC deployment. In
this paper the assumed model contains 6 nodes, so | chose a machine with an i7 CPU and
accorded RAM. During initialization, the algorithm sets non-negative conditions, specifying the
distance between the source node and itself to be 0, while all other distances are initially set to
infinity. The visited nodes record starts with an empty list. At the heart of the algorithm, an
iterative process, goes as follows: at each iteration, an unvisited node with the smallest
expected distance (lowest cost) becomes the current node.. If the neighboring node’s temporary
distance is less than its recorded, the table is updated and the path is altered.

The algorithm continues until all nodes have been visited or the destination node (last node of
the SFC query) is visited. Once finished, path rebuilding follows to determine the shortest path
from source to destination. During this process, constraint checking ensures that the criteria of
the SFC request, such as the sequence of service functions and any quality of service (QoS)
requirements, are met.

ACKNOWLEDGMENTS

| would like to thank Congzhou Li, my mentor during the summer research project. | could not
have done this without him, along with the rest of the research team.

REFERENCES

Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

[1]D. Rachmawati, L. Gustin. (2020). Analysis of Dijkstra's Algorithm and A* Algorithm in
Shortest Path Problem. Journal of Physics: Conference Series, 1566, 26-27. doi:
https://doi.org/10.1088/1742-6596/1566/1/012061

[2]Y. Wu, J. Zhou. (2021). Dynamic Service Function Chaining Orchestration in a Multi-Domain:
A Heuristic Approach Based on SRv6. National Library of Medicine, 21 (19), 26-27. doi:
https://doi.org/10.3390/s21196563

[3]T. O. Omotehinwa. (2022). Examining the developments in scheduling algorithms research: A
bibliometric approach. Heliyon, 5 (8), 9510. doi: https://doi.org/10.1016/j.heliyon.2022.e09510

[4]1S. Zheng, C. Zheng and W. Li(2022). Research on Multi-objective Shortest Path Based on
Genetic Algorithm. International Conference on Computer Science and Blockchain (CCSB), 2 ,
127-130. doi: https://doi.org/10.1109/CCSB58128.2022.00030

