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Abstract: 
This study discusses the role of quantum computing in the drug discovery process for KRAS 
mutants and how larger qubit counts and increases in circuit depth can enhance the process. 
Increasing system size may offer improvements in the coming years. Specifically, as quantum 
computing enters the fault-tolerant era, algorithms requiring error-correction due to their long 
runtimes and sensitivity to noise can be used. By increasing the number of high-fidelity 
operations compared to today’s error-prone quantum computers, fault-tolerant systems will 
enable new classes of more capable algorithms and enhanced discovery of KRAS inhibitors. 
Lowering maintenance costs and increasing accessibility of quantum computers are necessary 
for a larger population to be able to make more rapid advancements in the field. 
 
Introduction:  
From the Altair 8800 in 1975 to the powerful multi-use machines available today, computers 
have had an undeniable impact on human life. Classical computer systems are computers that 
operate through the use of binary 0 and 1 code, and make up virtually all of the computers that 
the world uses today. However, a novel computing system is under rapid development: quantum 
computing. Unlike classical computers that operate using bits that have a binary value (i.e. 0 or 
1), quantum computers operate using qubits, which harness the quantum mechanical properties 
of superposition and entanglement to exist in a simultaneous state of being both 0 and 1. 
When measured, a qubit collapses into one definitive value, which is dependent on the 
probabilities of each value. 
 
The quantum mechanics of superposition and measurement determine the probability that a 
qubit will be 0 or 1 when measured. Quantum entanglement is another phenomenon that 
contributes to the immense computational power of quantum systems. Entanglement is a type of 
correlation that allows for an operation on one qubit to instantly affect other entangled qubits 
despite being vast distances apart [28]. The main factor of this computational power and the 
computational advantage over classical computers is a property called magic. Magic is the 
property of entangled qubits that makes their state unable to be effectively simulated on a 
classical computer [22]. The amount of “magic” in a system is determined by how many 
non-Clifford gates, quantum gates that cannot be simulated efficiently on a classical computer, 
are needed to represent it. Non-Clifford gates can be simulated with classical systems, but 
magic leads to exponential resource requirements to represent quantum states which limits the 
amount of non-Clifford gates able to be simulated on a classical computer. For example, if a 
quantum computer were able to represent quantum states with N qubits, a classical computer 
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would require 2N complex numbers to represent that same state. It is these gates that give 
quantum computers the computational edge over their classical counterparts.  
 
A qubit can be thought of as any physical system that behaves like a two-state quantum system 
(ground and excited states that can exist in superposition) [2]. While there are many types of 
qubits, three of the most studied qubit types are spin qubits, superconducting qubits, and 
photonic qubits. [1]. Spin qubits use the spin (a quantum property that represents angular 
momentum) of an atomic nucleus or an electron as a qubit. Spin qubits are known for their 
robustness due to the relative stability of the quantum state of a spin against external 
interference [27]. Electron spin qubits are more suitable for being used in quantum processors 
since they can be manipulated and coupled to other electrons much quicker than nuclear spin 
qubits, and nuclear spin qubits are more suitable for quantum memory applications due to their 
much longer coherence time—the duration over which a qubit maintains its quantum information 
before external influences cause information loss—compared to electron spin qubits [27]. The 
interaction between an electron spin and a nuclear spin in order to transfer quantum information 
between the two is called hyperfine coupling, an interaction that is necessary for spin qubit 
application in quantum information processing [27]. Superconducting qubits are built from 
superconducting materials, which provide zero electrical resistance when cooled to an 
extremely low temperature. Photonic qubits may be prepared in multiple ways. They can utilize 
the polarization state of a photon—the orientation of a photon’s electrical field as it travels—to 
represent a qubit state. They can also use a bosonic approach, where logical qubits are 
encoded into a single bosonic mode of the electromagnetic field. The quantum state of that 
bosonic mode is being manipulated by optical elements, and each mode can hold any number 
of photons. Both of these approaches represent different encoding methods in photonic 
quantum computing.  
 

 
Diagram of an electron spin qubit coupled to a nearby nuclear spin through hyperfine coupling. 
This coupling enables quantum processing and storage within the system. 
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Photo credit: Christoph Boehme, Dane R. McCamey, Science Magazine 
 

 

Diagram of a superconducting quantum processor. Each qubit is formed from superconducting 
material and coupled through Josephson junctions (quantum devices made of two 
superconductors that are separated by a thin insulating barrier). Microwave control lines are 
used for qubit manipulation and readout. 
Photo credit: Toshiba Corporation 
 

 

Diagram of a silicon quantum photonic processor where qubits are encoded in photonic states 
and manipulated with optical components. Measurement is performed through photon counting 
at the output. 
Photo credit: Raffaele Santagati, Jianwei Wang, Antonio Andrea Gentile, Stefano Paesani, 
ResearchGate 
 
In order for a quantum computer to be able to function properly, unwanted interactions with the 
environment, or noise, must be minimized in order to maintain each qubits’ superpositional 
state. Some examples of external interference include electromagnetic signals and cosmic rays. 
These effects can lead to the derangement of a qubit’s quantum state, a process known as 
decoherence. Shielding qubits from their environment requires extremely precise control 
mechanisms and regulated temperatures, which are very difficult and expensive to implement 
and maintain for systems with many qubits. In essence, bigger quantum systems require 
increasingly more effort, money, and precision to be able to keep qubits in a coherent quantum 
state, which in turn limits the maximum system size a quantum system can be. 
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Noisy Intermediate Scale Quantum (NISQ) devices consist of anywhere between 50 to 1,000 
qubits. As system sizes scale and we enter the early fault-tolerant era, a distinction must be 
made between two different types of qubits: physical and logical. Physical qubits are the actual 
error-prone hardware, such as the qubits mentioned earlier, whereas a logical qubit is an 
entangled group of physical qubits that is made more stable and resistant to errors through the 
use of an error-correcting code [25]. As the frontier for the total possible number of qubits to be 
used and operations able to be run grows, and as deeper quantum circuits become more 
accessible, it becomes increasingly important to prevent decoherence. Today, the error rates for 
modern quantum computers typically lie between 1% and 0.1%. However, as error correction 
models increase in prominence, this percentage is expected to shrink to ever-so-small 
proportions: the error rate for algorithms with known quantum advantage must lie between 10-2 
and 10-6, depending on the noise model [29]. In July 2025, scientists hit a quantum error rate of 
1.510-5, an unprecedentedly low rate [3].  
 
A quantum-classical model utilizes the strengths of both quantum and classical computing to 
achieve tasks typically more complex than what can be done with a pure classical or quantum 
machine. This is because of the problems of quantum noise and decoherence that become 
increasingly detrimental as the size of the quantum system grows. Quantum-classical systems 
are typically more optimal today, as they interface classical elements to reduce the depth of the 
quantum circuit and thereby limit the effect of noise on the computation. These systems are 
stopgap solutions that allow us to seek quantum advantage with current NISQ hardware. 
 
Today, quantum computing is used in an increasing number of professions and tasks, such as 
finance tracking and management, materials science, integration with AI to create hybrid 
models, and many others. Currently, major companies such as Google, Microsoft, IBM, and 
Amazon utilize quantum computing to enhance their operations. Based on their roadmaps and 
timelines, these companies expect quantum technologies to improve in their respective tasks 
through reduced error rates, larger system sizes, and the development of hybrid quantum and 
classical models [5]. 
 
The pharmaceutical and biotech industries have also adopted quantum computing for tasks 
including materials science, genomics, catalyst modeling, and drug discovery. The intersection 
between the field of drug discovery and quantum computing occurred quite recently, with the 
first quantum computing algorithm designed for drug discovery being developed in 2001 [26]. 
Since then, many new innovations and quantum computing algorithms have allowed for 
potential quantum advantage, which describes when a quantum computer is able to outperform 
a classical computer at a specific task, to occur in areas such as medical imaging, data security, 
personalized medicine, and drug discovery; the rest of this paper focuses solely on quantum 
computing’s implications in drug discovery.  
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Research Question: 
Quantum computing has the potential to offer significant benefits to the efficiency and 
effectiveness of drug discovery. In principle, quantum computers have the capability to explore 
massive numbers of molecular structures through specialized algorithms, significantly 
decreasing time and energy spent. One process in which quantum approaches have been 
explored is the generative modeling of molecules. Because quantum computers are able to 
more efficiently emulate quantum systems compared to classical computers, quantum 
algorithms are better able to model molecular interactions between drugs and targets with a 
greater degree of precision [6]. This enhanced generative modeling coupled with more realistic 
simulations can help in developing new drugs for constantly mutating targets [7]. 
 
Beyond molecular modeling, quantum computing is able to improve protein folding predictions, 
speed up search for molecules with high binding affinities with the target, aid in large-scale data 
management and analysis, and optimize development of personalized medicines [6]. 
Furthermore, the cost savings that quantum computing offers are substantial. As of early 2024, 
biopharma companies spent over $2 billion on average to discover, develop, and commercialize 
a new drug [7]. Roughly 30% of this total cost can be saved when utilizing quantum computing 
[8], and quantum computing interfaced with drug discovery is projected to have an overall 
economic impact of $700 billion by 2035 [7]. 
 
What is KRAS? 
KRAS, short for Kirsten rat sarcoma viral oncogene homolog, is a gene that makes a protein 
that is responsible for regulating the growth, development, and death of cells in the body. The 
natural, unchanged form of this gene is known as the wild-type for KRAS. However, KRAS is 
also a frequently mutated oncogene, present in a variety of cancers including lung, colorectal, 
and pancreatic cancer [9]. KRAS has been difficult to target therapeutically, due to its complex 
nature and lack of deep binding pockets for a drug. Consequently, KRAS inhibitor research has 
become a promising avenue of future development for computational methods including 
classical, hybrid quantum-classical, and future-term quantum algorithms.  
 
Quantum Algorithms 
A variety of quantum algorithms can be applied to the KRAS inhibitor discovery process. 
Quantum annealing is a heuristic algorithm that is used to find the lowest-energy binding 
configuration in a system [21]. It can be used in KRAS inhibitor discovery to identify optimal 
ligand conformations that minimize the interaction energy between a candidate molecule and 
the KRAS protein. The Variational Quantum Eigensolver (VQE) algorithm is used to determine 
the ground states of molecules, information essential for accurate chemical simulations, which 
enables more accurate predictions of binding energies for drug-like molecules. Quantum Circuit 
Born Machines (QCBM) are algorithms that learn unknown probability distributions of a given 
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dataset to then generate new samples in accordance with that data [24]. It is essential to note 
that although QCBMs generate new samples, they do not explicitly compute system properties 
or physical observables, they merely learn and generate from existing probabilities. 
Consequently, in KRAS inhibitor discovery applications, QCBMs are primarily used in the 
early-stage candidate generation phase, as is seen in the following section. There also exists an 
algorithm known as QPE (Quantum Phase Estimation), which similar to VQE is also used to 
calculate the ground-state energy of molecules. We will discuss QPE in greater detail further 
into the paper.  
 

Algorithm Function (general) Function (KRAS-specific) 

Quantum 
Annealing 

Identifying lowest-energy 
binding configuration 

Minimizing interaction energy 
between candidate and KRAS 
protein 

Variational 
Quantum 
Eigensolver 
(VQE) 

Determining the ground states 
of molecules 

Precise binding energy 
predictions for drug-like molecules 

Quantum 
Circuit Born 
Machines 
(QCBM) 

Generating new samples from 
learning the unknown probability 
distribution of a given dataset 

Early-stage candidate generation 
phase 

Quantum 
Phase 
Estimation  

Like VQE, also calculates 
ground-state energies 

Detailed further into the paper 

The table outlines various quantum algorithms, their general functions, and their specific 
applications in KRAS inhibitor discovery 
 
If you were to scale the qubit count for these algorithms used in KRAS inhibitor research, what 
would improve? Can the process be made more efficient with current hardware? Are there 
consequences for introducing such algorithms? The rest of this paper will answer these 
questions by examining a recent breakthrough in the field of KRAS inhibitor discovery through 
the integration of quantum computing, then looking at the consequences and limitations of this 
integration. 
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Methodology and Study: 
As of November 2025, there are two FDA-approved KRAS inhibitors available for clinical use: 
sotorasib and adagrasib. They began to be developed both in 2013 after a discovery of a 
druggable pocket on the G12C mutant of KRAS [23]. Sotorasib was approved by the FDA in 
May 2021 and adagrasib in December 2022. However, in December 2024, a hybrid 
quantum-classical algorithm discovered two potential KRAS inhibitors that met the criteria for 
further development and possible clinical use in the future [9]. 
 
The process for discovering these candidates involved three main stages. First, a dataset of 
around 650 previously known KRAS inhibitors was created, where then classical and 
quantum-classical algorithms added roughly a million more structurally-similar molecules. With 
over 1 million possible drug candidates, the dataset was used to train the quantum-classical 
generative model that ultimately designed the KRAS inhibitors. The second stage of the process 
used the generative model, a combination of a QCBM with a 16-qubit processor and a classical 
long short-term memory (LSTM) network to generate around 1 million new molecules. In the 
third stage, these 1 million new compounds were first sampled and screened for 
pharmacological viability and ranked based on their protein-ligand interaction (PLI) scores, 
where a higher score meant a stronger binding affinity. Then, the 15 candidates with the highest 
PLI scores were synthesized and tested via experimental methods that provide insight into how 
a molecule will perform in a more complex biological environment. Of these 15 candidates, two 
molecules demonstrated significant promise as KRAS inhibitors: ISM061-018-2 and 
ISM061-022. 
 
The application of quantum computing elements in the KRAS ligand development process 
resulted in significant time, energy, and money savings. The hybrid generative model was able 
to more effectively generate high-quality samples. In fact, the molecules generated by the 
QCBM-LSTM model resulted in around a 21.5% improvement in passing filters that assessed 
stability and synthesizability compared to if a purely classical LSTM model had been used [9]. 
This efficiency resulted in a shorter period of preclinical discovery, significantly lowering costs, 
energy, and time.  
 
However, the discovery process for these two candidates would not have been significantly 
improved by running the QCBM on a processor with more than 16 qubits. This is because of an 
inherent limitation of QCBMs. QCBMs are a specific type of algorithm known as variational 
algorithms. In essence, these variational algorithms consist of a series of parameterized 
quantum circuits that are all trying to guess the correct quantum state needed in solving a 
problem. Each of these guesses are then refined by classical methods to find an approximate 
solution. As the system size of a variational algorithm increases, there needs to be more 
parameters. More parameters signifies a higher dimensional space being explored, and 
variational algorithms become less useful when the dimensions of the search space are high. 
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Optimizing the parameters of quantum circuits requires significant time, so including more 
parameters makes it harder for VQAs to find optimal solutions. The issue of barren plateaus 
(regions in the variational optimization landscape where gradients become very small) also 
arises, resulting in the algorithm getting stuck in regions of bad solutions or no solutions. 
Moreover, VQAs are not the most robust when it comes to noise mitigation, especially as 
complexity increases, which also acts as a significant limiting factor for QCBMs [14]. Current 
research indicates that these limitations are significant enough to require novel approaches.  
 
Quantum computing itself needs to enter a new era, an era known as the MegaQuop Era (early 
fault-tolerant quantum computing). Expected to consist of tens of thousands to over a million 
physical qubits, MegaQuop quantum computers involve quantum processors executing up to a 
million quantum operations before error affects computation [15]. Though considerable progress 
for achieving this stage in quantum computing has been made, MegaQuop computers do not 
exist today and remain as a goal for the near future. They offer significant advantages compared 
to NISQ computers, such as the ability to explore significantly higher dimensional spaces than 
what QCBMs can efficiently explore by incorporating significant quantum error correction. This 
heightened exploration can speed up the steps of drug discovery, from faster simulations to 
better drug binding predictions. MegaQuop will be the next big step towards more efficient 
KRAS inhibitor research, and will bring us closer to achieving the ideal fully fault tolerant 
quantum computer. 
 
When this new era of quantum computing is achieved, there will be novel FTQC (fault-tolerant 
quantum computing) approaches that could possibly replace or outperform QCBMs in the 
process of discovering KRAS inhibitors. The main issue with the current QCBM and generative 
machine learning hybrid model is that it is a mere heuristic, using probability distributions to 
generate data, not physical observables such as molecular ground-state energies [16]. Thus, a 
more precise fault-tolerant approach that could replace QCBMs is QPE (Quantum Phase 
Estimation). QPE can compute the eigenvalues of molecules with a guaranteed level of 
accuracy [17]. Accurately knowing the ground-state energies, reaction profiles, and potential 
energy surfaces of a molecule offers a key advantage over QCBMs in reliably predicting a 
drug’s binding affinity and interactions with its target, making it a promising future replacement 
for QCBMs in the new molecule generation phase of KRAS inhibitor research. However, QPE is 
heavily resource intensive, requiring deep circuits and many logical qubits [18]. 
 
A less intensive approach that uses shallower circuits yet is still systematically improvable are 
Quantum Krylov Subspace and Diagonalization methods. These algorithms work by first 
preparing an initial quantum state and then allowing it to evolve under the system’s energy 
structure for several short time intervals to record how the state changes [19]. The algorithm will 
then collect a small set of the states that captured the most important energy behavior, resulting 
in a low-dimensional space known as the Krylov subspace [19]. Finally, the algorithm will 
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calculate how strongly these states are related to one another and feed the info to a classical 
computer, which will extract the approximate energy levels [19]. This Krylov subspace approach 
is also more realistic for the near future, as it is more feasible for near-term or MegaQuOp 
hardware as opposed to needing full fault tolerance to operate efficiently. 
 
Another MegaQuOp approach is a variant of VQE that uses only some fault tolerance to give 
better and more reliable results than NISQ VQE. These variants, like the Krylov Subspace and 
Diagonalization methods, also can replace QCBMs for tasks that require physics-based energy 
calculations. However, they cannot replace them for generative and explorative tasks. It is also 
important to note that in order for fully fault-tolerant machines to have realistic Hamiltonian (time 
evolution) simulations, techniques such as qubitization and advanced factoring must be 
implemented [20]. These techniques result in higher precision with fewer machine resources, 
breaking down chemical Hamiltonians into smaller pieces and compressing symmetrical 
molecular interactions [20]. Without these techniques, realistic chemical simulations will be too 
slow and expensive even for fault-tolerant quantum computers to simulate.  
 
 

Approach to 
replace QCBMs 

Function Feasibility in near-future use 

Quantum Phase 
Estimation 
(QPE) 

Can accurately compute the 
ground-state energies, reaction 
profiles, and potential energy 
surfaces of a molecule 

Not feasible for near-future or 
MegaQuOp: heavily resource 
intensive, requires deep circuits 
and many logical qubits 

Quantum Krylov 
Subspace and 
Diagonalization 
Methods 

Extracts the approximate 
energy levels with the help of a 
classical computer 

Feasible for near-term or 
MegaQuOp hardware, does not 
require full fault-tolerance 

MegaQuOp 
VQE Variants 

VQE variants developed for 
MegaQuOp machines, 
improvement in precision and 
circuit depth from NISQ VQE 

Feasible for near-term or 
MegaQuOp hardware, does not 
require full fault-tolerance 

The table outlines various alternative quantum algorithms that could replace QCBMs in the 
KRAS inhibitor discovery process in the future. It outlines feasibility for near-term use and the 
varying levels of precision for the different algorithms. 
 
Evaluation of Study: 
Despite the promise quantum computing brings to the field of KRAS inhibitor and drug discovery 
as a whole, several limitations arise with the large-scale adoption of quantum technology into 
the industry. Despite the improvements quantum technology brings to the field, drug discovery 
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still requires a significant amount of money, which isn’t attainable for smaller institutions and 
research facilities. This results in economic inequality and a widening gap between nations and 
institutions that have and do not have access to quantum technology, and the latter will have 
less access to novel pharmaceutical remedies and therapies acquired through the integration of 
quantum systems. This does not apply solely to biopharma companies with drug discovery, but 
with any company looking to integrate quantum tech into their pipelines. The estimated cost for 
just a singular superconducting qubit is between $10,000 to $50,000, while a fully operational 
quantum computer can cost tens of millions of dollars [12], meaning that quantum technology is 
simply not accessible for many institutions, facilities, and nations.  
 
There also exists a shortage of qualified individuals qualified to work with quantum computers 
due to the highly specialized knowledge required for it [11]. In a recent study conducted by BBC 
Research, the quantum computing market is expected to grow from $1.6 billion in 2025 to $7.3 
billion by 2030, with an associated compound annual growth rate of 34.6% [4]. Yet at the same 
time, deployment costs are only increasing. If not solved soon, the problem of shortage of talent 
may become the primary obstruction of quantum computing research. 
 

 

Projected growth of the global quantum computing market from 2025 to 2034, indicating rapid 
industry expansion. 
 
Data adapted from Precedence Research 
 
Implications for future research: 
Firstly, further investigation into the two candidates found in the December 2024 study must be 
conducted to acquire information regarding their mechanisms of action, and cocrystallization 
studies must be conducted to validate these mechanisms. There also exists quantum 
simulations that can be used to accurately predict its mechanisms of action, where 
computational results match closely with laboratory findings. In terms of quantum computational 
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power, increasing quantum system size and development towards fully fault-tolerant quantum 
systems must occur. Although encouraging, current findings cannot definitively prove quantum 
advantage in drug discovery, and future research should aim to find more conclusive evidence 
suggesting this advantage. Moreover, efforts to lower the costs of quantum computing as a 
whole and to make it more accessible for all must be taken as well. In February 2025, IQM 
launched a 5-qubit affordable quantum computer primarily for educational and research 
purposes [13], demonstrating that affordable quantum computers are attainable in the near 
future. Quantum computing for industry use is also seeing a shift towards obtainability: 
accessible cloud-based services for a much cheaper price than purchasing specialized 
hardware have the potential to revolutionize the field entirely [30]. 
 
Conclusion: 
For the first time, a quantum classical hybrid algorithm was used to identify candidates for KRAS 
inhibitors, suggesting a promising avenue of future research and development that could greatly 
improve KRAS inhibitor research, cancer research, and drug discovery as a whole. In the short 
term, increases in system size will not enhance the performance of variational algorithms such 
as the one used in the experiment. Such development will only make substantial progress in the 
future, when we reach the MegaQuOP and FTQC eras of quantum computing.  
 
By optimizing the drug design process using quantum computing, more KRAS inhibitors can be 
discovered and developed than previously done before, which could in turn lead to the 
development of different types of cancer remedies at a quicker rate.  
 
There also exist many economic barriers-to-entry with integrating quantum technology in drug 
discovery. Many nations and institutions will not be able to access quantum technologies due to 
their immense costs to maintain, resulting in an uneven distribution of wealth. Furthermore, the 
lack of qualified workers to work the highly specialized jobs associated with quantum technology 
combined with the growing demand of such work presents a significant challenge to the future of 
quantum computing research. 
 
Implications for future research includes further investigation into the mechanisms of actions of 
the two most recently discovered KRAS candidates. Developments towards fully fault-tolerant 
quantum computers so that quantum system size can be increased is a promising avenue of 
future research, and is a considerable step towards establishing conclusive quantum advantage 
in the field of drug discovery. However, we must also strive for lowering costs of maintenance 
and research for quantum computers to make them more accessible and allow for a larger 
population to be able to make advancements in the field. 
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