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Abstract 
Mental lapses or “choking” under pressure are common challenges in competitive tennis. This 
study proposes a data science approach combined with cognitive science insights to predict 
when a tennis player’s performance might significantly drop after high-pressure moments. A 
realistic dataset of tennis performance metrics was simulated, including situational factors 
(pressure of the moment, prior errors) and cognitive-physiological factors (fatigue, focus level, 
experience). A machine learning model (random forest classifier) was trained to predict 
performance drop-offs, achieving around 78–80% accuracy in distinguishing drop-off instances 
from normal performance. Key predictive features included focus level and fatigue, underscoring 
the role of cognitive and emotional factors alongside situational pressure. The results align with 
psychological theories: high pressure and anxiety can impair attention and motor execution, and 
accumulated errors can trigger a downward performance spiral. Cognitive frameworks, such as 
attentional control theory and emotional regulation strategies, are used to explain these findings. 
This hybrid research offers a model for integrating data-driven predictions with cognitive 
psychology to not only forecast performance drop-offs but also inform interventions (e.g., mental 
resilience training) to help athletes maintain peak performance under pressure. 
 
 
Introduction 
Performance in tennis is not just a product of physical skill and strategy; it is also profoundly 
affected by mental factors. Players often experience mental performance drop-offs, sudden 
declines in level of play, especially after intense, high-pressure moments in a match. In 
colloquial terms, this phenomenon is sometimes referred to as “choking under pressure,” where 
an athlete’s performance deteriorates at critical junctures despite a high skill level. For example, 
a player who has been serving brilliantly might double-fault or make consecutive unforced errors 
when serving for the match. Such drop-offs can swing the outcome of matches and have been 
observed even among top professionals. This has spurred interest in predicting and preventing 
performance breakdowns, making it a compelling topic for sports science research and a 
practical concern for coaches and athletes. 
 
Prior work suggests that performance drop-offs are linked to psychological pressure and anxiety. 
When the stakes are high, such as during a tiebreak or match point, players face intense 
pressure “to perform well”²¹. This pressure often induces anxiety characterized by worry and 
heightened arousal¹. High anxiety can impair the execution of well-practiced motor skills, a 
failure state identified as choking⁵. Notably, the effect can be self-reinforcing: a mistake made 
under pressure can rattle a player’s confidence, leading to further errors, a vicious cycle 
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sometimes termed a “cold hand” phenomenon, the opposite of the “hot hand”⁶⁷. Recent 
analyses of Grand Slam tennis matches found that the rate of unforced errors is 1.75 times 
higher on the highest-pressure points than on low-pressure points³. Moreover, after an error, the 
likelihood of another error on the next point increases significantly, especially when pressure 
remains high¹. These insights illustrate how mental pressure and momentary failures combine to 
produce drop-offs in performance. 
 
Given the importance of this issue, this study aims to blend data science techniques with 
cognitive psychology theory to predict performance drop-offs in tennis. Data-driven models, 
particularly machine learning classifiers, offer the ability to recognize complex patterns and risk 
factors leading to a drop-off. If it is possible to accurately predict when a player is likely to falter, 
for instance immediately after a nerve-wracking, pivotal point, interventions can be designed to 
support the athlete in those moments. However, a purely black-box prediction is not sufficient; 
the predictions must also be explained through cognitive science frameworks. By understanding 
why the model flags certain moments, such as elevated stress or loss of focus, the 
computational approach can be connected to psychological constructs like attention, mental 
fatigue, and emotional regulation. 
 
This paper presents a high school-level research project that simulates the data needed to study 
this problem and develops a predictive model for mental performance drop-offs in tennis. The 
relevant literature on pressure-induced performance changes and cognitive theories of choking 
is first outlined. The methodology is then described, including how a dataset of tennis “points” or 
scenarios was simulated with features such as pressure, fatigue, and focus, and how these 
features were engineered to capture both sport context and mental state. A machine learning 
model (random forest) was trained on this data. In the Results section, the model’s accuracy 
and the most important predictive features are reported, with visualizations such as feature 
importance and pressure-performance trends. The Discussion interprets these findings through 
the lens of cognitive science, for example by linking the high importance of “focus” to theories of 
attention under pressure⁸. Emotional regulation skills that might mitigate drop-offs are also 
considered. Finally, the limitations of the simulation approach and model are acknowledged, 
directions for further research are suggested, and the implications of this interdisciplinary study 
for improving tennis performance under pressure are discussed. 
 
Data Simulation 
Because comprehensive point-by-point mental performance data for tennis players are not 
publicly available, a dataset was simulated for this study. The simulation was designed to reflect 
realistic patterns reported in the literature while generating sufficient data for model training. 
Each data point in the dataset represents a critical point or moment in a tennis match along with 
the player’s state and subsequent outcome. Particular emphasis was placed on points following 
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high-pressure situations, given the focus on predicting post-pressure performance drop-offs, 
while a range of pressure levels was included for contrast. 
Variables (Features) Simulated: 
Pressure Level (1–5): An ordinal variable indicating the situational pressure of the moment. A 
value of 5 corresponds to extremely high pressure, such as match point, tiebreak, or a crucial 
break point late in a set, while a value of 1 indicates a low-pressure situation, such as an early 
game or low-stakes point. Pressure values were drawn from 1 to 5 with a bias toward moderate 
pressure, since not all points are high pressure. In the simulation, approximately 10 percent of 
instances were classified as level 5. This feature captures the contextual importance of the 
point. 
 
 
Previous Error (0/1): A binary indicator of whether the player made an unforced error or double 
fault on the immediately preceding point. This variable captures momentum, or the lack thereof. 
When a player is coming off a mistake, confidence may be shaken, particularly under pressure. 
In the simulation, approximately 30 percent of instances had a previous error value of 1. This 
probability was made conditional on pressure, such that errors were slightly more likely to occur 
during high-pressure moments, consistent with empirical findings. 
 
 
Fatigue Level (0–100): A percentage estimate of the player’s physical and mental fatigue. A 
value of 0 represents a completely fresh state, while 100 represents extreme exhaustion. 
Fatigue increases over the course of a match, so higher values may correspond to later sets or 
prolonged rallies. Fatigue values were sampled from a normal distribution centered around 50 
with variation, bounded between 0 and 100. This feature reflects cognitive and physical 
overload, as higher fatigue may predispose a player to lapses in focus and technique. In 
real-world settings, fatigue could be estimated using match duration or rally length, but here it 
serves as a simulated proxy. 
 
 
Focus Level (0–100): A subjective indicator of the player’s current mental focus or resilience. 
This variable represents cognitive state, specifically how well the player is concentrating and 
handling pressure. A value of 100 indicates exceptional focus, while lower values suggest 
mental distraction or heightened nerves. Focus was allowed to inversely correlate with fatigue, 
since fatigued players often experience reduced concentration, with randomness introduced to 
avoid deterministic relationships. Focus can also fluctuate with pressure, as some players 
increase focus under pressure while extreme anxiety can reduce effective focus. This 
relationship was captured implicitly through the outcome variable rather than direct correlation. 
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Experience (Years): The number of years the player has competed in organized or competitive 
tennis, serving as a proxy for expertise and potential mental toughness. Experience values were 
capped at 15 years, reflecting a range from junior players with limited experience to seasoned 
professionals. While there is a hypothesis that experienced players may choke less due to 
repeated exposure to pressure situations, research suggests that even highly experienced 
players still experience pressure similarly. This variable was included to assess whether 
experience exerted a protective effect in the model. 
 
 
Performance Drop-Off (Target): The outcome variable indicating whether the player’s 
performance significantly declined following the given moment. A performance drop-off was 
defined as a noticeable decrease in performance in the subsequent phase of play, such as 
losing the next game or committing an unusual cluster of errors, relative to the player’s typical 
level. Instances in which the player maintained expected performance, such as holding serve or 
sustaining consistency, were labeled as no drop-off. This binary classification serves as a 
simplified proxy for choking in a given moment. 
 
 
To generate binary outcomes, a logistic model incorporating the above features was used. 
Based on theoretical expectations, high pressure, a previous error, and elevated fatigue were 
modeled to increase the probability of a performance drop-off, while higher focus and greater 
experience were modeled to decrease it. Feature weights were informed by existing literature, 
with pressure and previous error assigned positive weights to reflect compounding effects, and 
focus assigned a strong negative weight due to its role in maintaining execution. The logistic 
function produced a probability of drop-off for each simulated instance, which was thresholded 
at 0.5 to determine the final classification. The intercept was tuned to yield an overall drop-off 
incidence of approximately 25 to 30 percent, reflecting the fact that not every high-pressure 
moment results in a collapse. 
In total, 1,000 instances were simulated, representing individual points or match scenarios. This 
dataset was sufficiently large to train a machine learning model while maintaining realistic 
variability across match conditions. The simulation was evaluated for plausibility by examining 
outcome distributions. For example, the average drop-off rate was substantially higher at 
pressure level 5 than at pressure level 1, and prior errors further increased drop-off probability 
when combined with high pressure. These patterns align with established findings on 
pressure-error interactions. 
 
Feature Engineering 
All features in the dataset were generated but treated as real data features for analysis. No 
complex transformations were required given the straightforward nature of the variables. 
Potential interactions were considered; for example, theory suggests an interaction between 
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pressure and previous error due to compounding effects. Rather than explicitly adding a product 
feature, a sufficiently flexible model, such as a decision tree ensemble, was expected to capture 
this interaction inherently. In a more advanced analysis, a derived feature defined as pressure 
multiplied by previous error could be added to support linear models, but the chosen model was 
capable of handling non-linear interactions without manual feature construction. 
Feature ranges were standardized where relevant for certain algorithms. For example, fatigue 
and focus were measured on a 0–100 scale, while pressure ranged from 1 to 5, which could 
matter for distance-based models. Tree-based models are scale-invariant, but for completeness, 
features were scaled to a 0–1 range in some trials. This scaling did not affect the performance 
of the tree-based model but would be relevant for other algorithms. Experience, measured in 
years, was left unscaled due to its limited range. 
No missing data were present in the simulated dataset, as all cases were generated 
programmatically. In a real-world setting, missing sensor readings or self-reported measures 
would require additional preprocessing and imputation strategies. 
Modeling Approach 
 
A Random Forest Classifier was selected as the primary modeling approach. Random forests 
are ensembles of decision trees well suited for tabular data and capable of modeling non-linear 
relationships and interactions between variables. This method also provides feature importance 
measures, which were useful for interpreting which factors contributed most to predicting 
performance drop-offs. This choice aligns with the interdisciplinary nature of the project, as it is 
widely used in data science while still producing interpretable outputs that can be linked to 
psychological constructs. For example, high importance assigned to focus would reinforce its 
cognitive relevance. 
The dataset was split into training and test sets using an 80/20 split to evaluate performance on 
unseen data. Default hyperparameters were used for simplicity, as the emphasis was on 
demonstrating predictive feasibility rather than optimizing model performance. The model was 
trained to classify performance drop-offs versus normal performance. A logistic regression 
model was also tested for comparison and showed similar trends, with coefficients aligning with 
simulation assumptions. However, the random forest achieved slightly better performance and 
more effectively captured interactions between pressure and prior error without explicit feature 
engineering. 
Evaluation Metrics 
 
Accuracy, defined as the percentage of correctly classified instances, was used as the primary 
evaluation metric due to its simplicity and accessibility. It is acknowledged that accuracy can be 
misleading when class distributions are imbalanced. In the simulated dataset, performance 
drop-offs accounted for approximately 30 percent of instances, resulting in moderate class 
imbalance. As a result, baseline accuracy was also considered for context, and confusion 
matrices were examined to assess how effectively the model identified drop-offs compared to 
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non-drop-offs. Precision and recall were discussed qualitatively where relevant, such as noting 
tendencies toward false negatives or false positives, without extensive metric analysis to 
maintain clarity. 
To enhance interpretability, several visualizations were generated, including a feature 
importance chart from the random forest model, a plot showing drop-off probability across 
pressure levels, and a comparison of model accuracy against baseline accuracy. These 
visualizations help bridge data science outputs with tennis-specific context. All analyses were 
conducted in Python using standard libraries such as scikit-learn and matplotlib. 
Results 

 

 
Figure 1: Feature importance scores from the random forest model, showing the relative 
influence of each input feature on prediction. Focus and fatigue emerge as the most influential 
features, each with importance around 0.3 on a 0 to 1 scale, where higher values indicate more 
frequent use in decision splits. Pressure also contributes substantially, with an importance of 
approximately 0.2, while experience and previous error show lower importance in this model. 
 
 
These importance values suggest that cognitive state, represented by focus, and physical or 
mental state, represented by fatigue, were slightly more pivotal in the model’s decisions than 
contextual pressure or recent errors. In other words, the simulation indicates that the model 
relied heavily on whether the player was mentally focused and not exhausted. This does not 
imply that pressure is unimportant, as it remains the third most influential feature, but rather that 
a highly focused, well-rested player was predicted to handle even high-pressure situations more 
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effectively. Conversely, a fatigued and unfocused player was at risk of experiencing a 
performance drop-off even under moderate pressure. 
The relatively low importance assigned to previous error was somewhat unexpected given the 
emphasis on error cascades in the literature. One explanation is that in the simulated data, 
previous errors frequently coincided with high-pressure situations, leading to collinearity and 
causing the model to rely on pressure as a proxy in many cases. Another possibility is that not 
every error leads to a performance drop-off unless other factors, such as mindset and situational 
pressure, are also present. Experience showed moderate importance, suggesting that more 
experienced players in the dataset exhibited slightly fewer performance drop-offs, consistent 
with the idea that experience aids coping under pressure. However, experience was not as 
influential as intra-match state variables such as focus. 
Overall, the feature importance ranking reinforces a central insight: a player’s mental and 
physical state at a given moment, particularly focus and fatigue, is at least as important as 
external pressure and match context. This interpretation aligns with cognitive theories 
emphasizing that internal responses to pressure, such as maintaining attention and avoiding 
stress-related exhaustion, play a critical role in determining performance outcomes under 
pressure. 
 

 
 
Figure 2: Drop-off probability by pressure level, as observed in the simulated dataset. The line 
graph illustrates the proportion of instances that resulted in a performance drop-off at each 
pressure level, ranging from 1 (low pressure) to 5 (very high pressure). Higher pressure levels 
are associated with markedly greater drop-off rates, with over 60 percent at level 5 compared to 
less than 10 percent at level 1. This trend confirms that the simulated data and underlying 
assumptions reflect a well-documented phenomenon: increasing pressure substantially elevates 
the risk of a performance drop-off. 
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The curve in Figure 2 is not linear and becomes steeper at higher pressure levels, suggesting a 
threshold effect in which pressure beyond a certain point leads to disproportionately greater 
performance decline. For example, the increase in drop-off probability from pressure level 4 to 
level 5 is larger than the increase from level 2 to level 3. This pattern is reminiscent of the 
Yerkes–Dodson relationship in psychology, where performance improves with arousal up to an 
optimal point and then deteriorates sharply as arousal continues to rise. In practical terms, a 
pressure level of 5 may correspond to scenarios such as serving to stay in the match. In such 
situations, the model indicates that even typically strong performers face a significantly elevated 
risk of faltering. Pressure level 3, representing moderate pressure, exhibited a drop-off rate of 
approximately one third, indicating that performance declines can occur even outside of the 
most extreme moments, depending on an athlete’s mental state. This pattern highlights the 
importance of developing mental resilience not only for decisive points but across a broad range 
of competitive situations. 

 
 
Figure 3: Model accuracy versus baseline. The grey bar represents baseline accuracy, 
approximately 74.5 percent, which corresponds to always predicting “no drop-off,” the majority 
class. The green bar shows the random forest model’s accuracy on the test data, approximately 
78.5 percent. The model modestly outperforms the baseline, indicating that it learned patterns 
associated with performance drop-offs. 
 
Overall accuracy was approximately 78 to 79 percent, representing a noticeable improvement 
over the 70 to 75 percent accuracy expected from naive guessing or always assuming no 
drop-off. This indicates that the model captures meaningful signal rather than random noise. 
 
However, the improvement over baseline is limited. In practical terms, out of 100 high-pressure 
instances, the model correctly predicts only a few additional drop-offs beyond what a baseline 
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strategy would achieve. Confusion matrix analysis showed that the model identified a 
substantial portion of true drop-off cases, with recall of approximately 55 percent, but also 
missed some instances and produced false positives. This reflects the inherent difficulty of the 
task, as performance drop-offs are multi-causal and partially stochastic. Nonetheless, achieving 
close to 80 percent accuracy is encouraging for an initial proof of concept. The results suggest 
that monitoring indicators such as player focus, potentially inferred through proxies like heart 
rate variability or eye-tracking, along with contextual match factors, could allow many impending 
lapses to be anticipated. 
 
It is also important to contextualize that an accuracy near 80 percent includes the easier task of 
correctly identifying when a player will not experience a drop-off, which occurs most of the time. 
Precision for predicting drop-offs was lower than overall accuracy. In applied settings, a more 
conservative decision threshold might be appropriate, prioritizing the detection of most potential 
drop-offs at the cost of occasional false warnings. Even with these limitations, the results 
demonstrate that a machine learning model informed by cognitive and situational features can 
discern patterns related to choking under pressure more effectively than chance or baseline 
approaches. The most influential features, including focus, fatigue, and pressure, exhibited 
plausible relationships with the outcome, lending face validity to the model. 
 
In summary, the results indicate three key findings. First, pressure substantially elevates the risk 
of performance drop-off, a relationship clearly captured by the model. Second, cognitive and 
physical state variables, particularly focus and fatigue, emerged as critical predictors, 
underscoring the importance of mental factors. Third, predictive modeling can achieve 
reasonably strong accuracy, in the high seventy-percent range, in forecasting performance 
drop-offs, supporting the idea that these events are not purely random and can be anticipated to 
a meaningful extent. The following section discusses these findings in light of cognitive science 
theories and considers how such a model could be improved or applied in real scenarios. 
 
Discussion 
 
The findings of this study reinforce established psychological insights while also providing a 
quantitative predictive tool for performance drop-offs. High-pressure situations correlate with an 
increased probability of error and performance decline, a pattern consistent with decades of 
sports psychology research on choking. The model’s identification of pressure as a significant 
factor echoes the importance of situational stakes described by Baumeister and others. 
However, the results also indicate that pressure alone does not determine outcomes. Internal 
factors such as focus and fatigue critically mediate whether pressure ultimately leads to a 
performance drop-off. This aligns with the Attentional Control Theory perspective, which posits 
that it is the anxious cognitive response to pressure, rather than pressure itself, that impairs 
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performance. A player who maintains attentional control under pressure can avoid choking, 
whereas one whose attention is overtaken by stress is more likely to struggle. 
 
From a cognitive science perspective, the high importance assigned to focus underscores the 
central role of attention and working memory. Focus level in the simulation can be interpreted as 
the inverse of distraction or mental overload. Attentional Control Theory would characterize high 
focus as successful maintenance of goal-directed attention on task-relevant cues, such as the 
ball toss and swing mechanics during a serve, even in high-pressure situations. Low focus, by 
contrast, reflects a shift toward stimulus-driven attention, including worry or crowd noise, which 
has been shown to impair performance. The model’s reliance on focus suggests that real-time 
indicators of an athlete’s attentional state could be highly valuable for predicting choke risk. In 
practical terms, techniques designed to improve focus, such as mindfulness training, consistent 
pre-point routines, or thought-stopping strategies, are likely to reduce performance drop-offs. 
The modeling results quantify this effect, showing that, all else equal, a focused player is 
significantly less likely to experience a performance decline, reinforcing the idea that sustained 
concentration is central to effective performance under pressure. 
 
Fatigue also emerged as a prominent predictor, connecting performance drop-offs to cognitive 
load and mental energy. Fatigue can impair the regulation of attention and emotion. When a 
player is physically or mentally tired, executive functions supported by the prefrontal cortex, 
including sustained attention and impulse control, may be compromised, increasing vulnerability 
to errors. Empirical research has shown that mental fatigue slows reaction times and increases 
error rates in racket sports, a pattern reflected in the simulated data and captured by the model. 
From a cognitive standpoint, fatigue reduces available working memory capacity, effectively 
shrinking the mental buffer needed to cope with pressure. This aligns with Processing Efficiency 
Theory, which suggests that anxiety consumes working memory resources. Under these 
conditions, an athlete may lack the cognitive bandwidth required to manage tactical planning, 
opponent monitoring, and internal self-talk simultaneously, leading to performance decline. The 
model’s sensitivity to fatigue supports the importance of conditioning, recovery, and pacing, as 
even well-developed mental strategies may fail when exhaustion sets in. Adequate physical 
preparation and brief recovery periods between points may therefore play an indirect but 
meaningful role in preventing choking. 
 
The relatively weak influence of previous error does not contradict the concept of error cascades 
but instead highlights the importance of context. Prior errors appear to be most detrimental 
when they occur under high pressure and coincide with low focus. In such cases, the model 
may capture the combined effect through pressure and focus rather than through the previous 
error variable alone. This supports a nuanced cognitive interpretation: a single mistake only 
triggers a downward spiral if it is mentally reinforced. When an error is catastrophically 
interpreted, such as through thoughts of inevitable loss, the risk of continued failure increases. 
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Conversely, players who maintain focus or employ strategies associated with “expertise-induced 
amnesia” can prevent one mistake from compounding into many. Reset routines, such as briefly 
disengaging or performing habitual actions, may help inhibit lingering thoughts about the error. 
In cognitive terms, this reflects inhibitory control, the ability to suppress task-irrelevant thoughts 
and refocus on the present point, a function known to be impaired by anxiety. Training designed 
to strengthen mental inhibition, including certain cognitive exercises or structured attentional 
tasks, may therefore help athletes recover more quickly after errors. 
 
From a machine learning perspective, the model’s performance, achieving accuracy near 78 to 
80 percent, is encouraging but leaves room for refinement. One limitation is the presence of 
false positives, instances in which a performance drop-off was predicted but did not occur. 
Psychologically, these cases may represent situations in which all indicators suggested 
vulnerability, such as high pressure and fatigue, yet the athlete managed to recover, possibly 
through heightened focus or effective emotional regulation. This points to an unresolved 
challenge in both modeling and theory: identifying the protective factors that allow some athletes 
to exceed expectations under pressure. While some interpretations define clutch performance 
as simply the absence of choking, others propose distinct characteristics, such as confidence 
profiles or physiological responses, that differentiate clutch moments. The current model did not 
explicitly include variables representing confidence or emotional control, relying instead on focus 
as a partial proxy. Future simulations or real-world datasets could incorporate measures of 
emotional regulation or physiological stress markers to explore whether performance 
enhancement under pressure can be predicted alongside performance decline. 
 
The practical implications of this work are relevant for coaches and athletes. In a real-world 
implementation, pressure could be computed directly from match context, prior errors could be 
tracked point by point, fatigue could be estimated using movement data or rally duration, and 
focus might be inferred from indicators such as eye-tracking or neural measures during training. 
With these inputs, a predictive system could generate a dynamic estimate of choke risk. 
Coaches could intervene strategically, and athletes could be trained to recognize internal 
warning signs and deploy coping strategies proactively. In training environments, simulated 
pressure scenarios paired with feedback could function as a form of biofeedback, reinforcing the 
link between mental state and performance outcomes. 
 
Cognitive frameworks related to emotional regulation further clarify these findings. The results 
suggest that players with higher effective focus, potentially supported by emotion regulation 
strategies, manage pressure more successfully. Techniques such as cognitive reappraisal or 
arousal control through breathing likely help sustain focus by preventing emotional escalation. 
Athletes who regulate emotions effectively tend to perform more consistently, while those who 
react strongly to setbacks may experience rapid declines in focus and subsequent performance. 
In this way, the model’s abstract focus variable can be mapped onto the concrete skill of 
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emotional self-regulation during competition. The findings therefore support the value of mental 
skills training, including imagery, self-talk, and relaxation, as these interventions target the same 
factors that the model identifies as central to preventing performance drop-offs. 
 
In summary, the discussion demonstrates that the predictive model operates in alignment with 
established psychological principles while offering a concrete framework for integrating cognitive 
theory with data-driven analysis. Performance drop-offs emerge as the result of interacting 
physiological, cognitive, and emotional processes rather than isolated events. By linking model 
features to mental constructs such as attention, fatigue, and coping, the study illustrates the 
value of a hybrid approach. This integration opens pathways for future research and practical 
applications aimed at helping athletes maintain performance under pressure through both 
technological and psychological interventions. 
 
Limitations 
 
While the study offers valuable insights, several limitations must be acknowledged, many of 
which stem from the fact that this was a simulated, high school-level project. First, the data 
simulation may not capture all real-world nuances. Distributions and relationships were assigned 
based on theory and limited empirical evidence, but real player data could reveal different or 
more complex correlations. For example, focus and fatigue were treated as separate variables, 
whereas in reality they may be tightly coupled, with mental fatigue contributing directly to 
reduced focus in non-linear ways. Additionally, pressure in real matches has a temporal and 
individual component. The same scoreline may be perceived differently by different players or at 
different phases of a match, yet all simulated players responded to pressure in a broadly similar 
manner aside from variations captured through focus and experience. In reality, individual 
differences are substantial, with some athletes being more clutch-prone and others more 
susceptible to choking. The model did not explicitly include traits such as baseline anxiety or 
mental toughness beyond the coarse proxy of experience. More advanced approaches could 
incorporate player-specific traits or clustering methods to personalize predictions. 
 
Second, model evaluation results, though showing accuracy near 78 percent, are optimistic 
because the data were generated using the same assumptions embedded in the model 
structure. As a result, the predictive task was less challenging than it would be when applied to 
noisy real-world data. Actual matches contain unpredictable factors such as crowd disruptions 
or minor injuries that can trigger performance declines but were not represented in the simulated 
feature set. The model was also not evaluated on scenarios fully independent of its underlying 
assumptions, making its performance somewhat idealized. Applying this approach to real match 
data, using proxy measures for focus and fatigue, would likely reduce accuracy. This limitation 
reflects the common challenge of transferring models from simulated environments to real-world 
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contexts and underscores the need for retraining on real labeled examples, which are difficult to 
obtain and inherently subjective. 
 
Another limitation is the focus on immediate performance drop-offs following high-pressure 
moments. Longer-term momentum shifts were not modeled. In tennis, losing a tight set may 
result in an extended slump, while in other cases players recover quickly after brief lapses. The 
binary outcome variable does not distinguish between minor declines and severe collapses, 
such as losing an entire set after holding a strong lead. A more detailed analysis could model 
the magnitude of performance change using continuous outcomes, such as changes in win 
probability or sequences of points lost, to capture these gradations more accurately. 
 
Measurement of psychological variables also presents a challenge. Focus and fatigue were 
introduced as conceptual constructs, yet both are difficult to measure directly in live competition. 
Focus must be inferred indirectly through behavioral or physiological indicators, such as 
adherence to routines or neural measurements, while fatigue can be approximated using match 
duration or physical biomarkers. Mental fatigue, in particular, may require cognitive assessment. 
Any real-time implementation of the model would therefore need to contend with noisy or 
incomplete measurements of internal cognitive states, which could degrade predictive 
performance. 
 
Finally, the study does not incorporate all potentially relevant factors. Opponent pressure was 
not explicitly modeled, nor were contextual influences such as crowd support or home versus 
away environments. These factors could meaningfully alter pressure perception and 
performance outcomes and represent opportunities for future feature expansion. Additionally, 
the modeling approach was limited to a small set of algorithms for interpretability. Alternative 
methods, such as neural networks or more advanced probabilistic models, could be explored if 
sufficient real-world data were available. 
 
In summary, while the observed trends are grounded in established theory, the numerical results 
should not be over-generalized. The model serves primarily as a demonstration of feasibility. 
The replication of known psychological patterns using simulated data suggests that predictive 
modeling of choking is plausible, but substantial work remains to address individual variability, 
real-world data collection, and model robustness in competitive environments. 
 
Conclusion 
 
This project explored whether mental performance drop-offs in tennis can be predicted using a 
combination of data science and cognitive modeling. By simulating a dataset that integrates 
situational match factors with indicators of an athlete’s internal mental state, a machine learning 
model was trained to identify moments in which performance decline was likely to occur 
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following high-pressure situations. The model’s performance, achieving approximately 78 
percent accuracy and identifying focus, fatigue, and pressure as key predictors, demonstrates 
that performance drop-offs are not random events but have identifiable precursors. 
 
The findings reinforce the view that mental performance reflects a dynamic interaction between 
external pressure and internal cognitive-emotional states. High-pressure situations substantially 
elevate the risk of performance decline, but the outcome depends on factors such as attentional 
control, fatigue, and coping capacity. This supports cognitive theories asserting that anxiety 
impairs performance by diverting attentional resources. The modeling results provide 
quantitative support for this perspective, showing that focused and well-rested players are 
considerably less likely to experience performance drops, even under pressure. 
 
From an applied standpoint, the work highlights several practical implications. Monitoring 
psychological and physiological indicators, such as breathing patterns, heart rate, or 
self-reported focus, could enable earlier detection of vulnerability to performance decline. 
Training interventions including mindfulness practice, pressure simulation, and endurance 
conditioning may improve the same underlying variables identified by the model. In the future, 
real-time predictive systems could potentially offer feedback on choke risk, provided such tools 
are implemented carefully to avoid becoming distractions themselves. Beyond prediction, the 
value of data science lies in its ability to validate which mental training strategies meaningfully 
reduce performance risk by tracking changes in model inputs over time. 
 
For student researchers and practitioners alike, this project illustrates the power of 
interdisciplinary approaches. Athletic performance was treated not merely as a collection of 
statistics nor solely as a psychological phenomenon, but as an integrated mind–body system. 
This holistic perspective is increasingly central to modern sports science. While no model can 
fully capture human behavior, even modest predictive capability can be valuable if it helps 
athletes recognize and manage critical moments more effectively. By combining data-driven 
insights with cognitive theory, this work moves toward training athletes who not only perform 
better physically, but also think and regulate more effectively under pressure. 
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