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Abstract

Mental lapses or “choking” under pressure are common challenges in competitive tennis. This
study proposes a data science approach combined with cognitive science insights to predict
when a tennis player’s performance might significantly drop after high-pressure moments. A
realistic dataset of tennis performance metrics was simulated, including situational factors
(pressure of the moment, prior errors) and cognitive-physiological factors (fatigue, focus level,
experience). A machine learning model (random forest classifier) was trained to predict
performance drop-offs, achieving around 78—80% accuracy in distinguishing drop-off instances
from normal performance. Key predictive features included focus level and fatigue, underscoring
the role of cognitive and emotional factors alongside situational pressure. The results align with
psychological theories: high pressure and anxiety can impair attention and motor execution, and
accumulated errors can trigger a downward performance spiral. Cognitive frameworks, such as
attentional control theory and emotional regulation strategies, are used to explain these findings.
This hybrid research offers a model for integrating data-driven predictions with cognitive
psychology to not only forecast performance drop-offs but also inform interventions (e.g., mental
resilience training) to help athletes maintain peak performance under pressure.

Introduction

Performance in tennis is not just a product of physical skill and strategy; it is also profoundly
affected by mental factors. Players often experience mental performance drop-offs, sudden
declines in level of play, especially after intense, high-pressure moments in a match. In
colloquial terms, this phenomenon is sometimes referred to as “choking under pressure,” where
an athlete’s performance deteriorates at critical junctures despite a high skill level. For example,
a player who has been serving brilliantly might double-fault or make consecutive unforced errors
when serving for the match. Such drop-offs can swing the outcome of matches and have been
observed even among top professionals. This has spurred interest in predicting and preventing
performance breakdowns, making it a compelling topic for sports science research and a
practical concern for coaches and athletes.

Prior work suggests that performance drop-offs are linked to psychological pressure and anxiety.
When the stakes are high, such as during a tiebreak or match point, players face intense
pressure “to perform well”?'. This pressure often induces anxiety characterized by worry and
heightened arousal’. High anxiety can impair the execution of well-practiced motor skills, a
failure state identified as choking®. Notably, the effect can be self-reinforcing: a mistake made
under pressure can rattle a player’s confidence, leading to further errors, a vicious cycle



Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

sometimes termed a “cold hand” phenomenon, the opposite of the “hot hand”’. Recent
analyses of Grand Slam tennis matches found that the rate of unforced errors is 1.75 times
higher on the highest-pressure points than on low-pressure points®. Moreover, after an error, the
likelihood of another error on the next point increases significantly, especially when pressure
remains high'. These insights illustrate how mental pressure and momentary failures combine to
produce drop-offs in performance.

Given the importance of this issue, this study aims to blend data science techniques with
cognitive psychology theory to predict performance drop-offs in tennis. Data-driven models,
particularly machine learning classifiers, offer the ability to recognize complex patterns and risk
factors leading to a drop-off. If it is possible to accurately predict when a player is likely to falter,
for instance immediately after a nerve-wracking, pivotal point, interventions can be designed to
support the athlete in those moments. However, a purely black-box prediction is not sufficient;
the predictions must also be explained through cognitive science frameworks. By understanding
why the model flags certain moments, such as elevated stress or loss of focus, the
computational approach can be connected to psychological constructs like attention, mental
fatigue, and emotional regulation.

This paper presents a high school-level research project that simulates the data needed to study
this problem and develops a predictive model for mental performance drop-offs in tennis. The
relevant literature on pressure-induced performance changes and cognitive theories of choking
is first outlined. The methodology is then described, including how a dataset of tennis “points” or
scenarios was simulated with features such as pressure, fatigue, and focus, and how these
features were engineered to capture both sport context and mental state. A machine learning
model (random forest) was trained on this data. In the Results section, the model’s accuracy
and the most important predictive features are reported, with visualizations such as feature
importance and pressure-performance trends. The Discussion interprets these findings through
the lens of cognitive science, for example by linking the high importance of “focus” to theories of
attention under pressure®. Emotional regulation skills that might mitigate drop-offs are also
considered. Finally, the limitations of the simulation approach and model are acknowledged,
directions for further research are suggested, and the implications of this interdisciplinary study
for improving tennis performance under pressure are discussed.

Data Simulation

Because comprehensive point-by-point mental performance data for tennis players are not
publicly available, a dataset was simulated for this study. The simulation was designed to reflect
realistic patterns reported in the literature while generating sufficient data for model training.
Each data point in the dataset represents a critical point or moment in a tennis match along with
the player’s state and subsequent outcome. Particular emphasis was placed on points following
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high-pressure situations, given the focus on predicting post-pressure performance drop-offs,
while a range of pressure levels was included for contrast.

Variables (Features) Simulated:

Pressure Level (1-5): An ordinal variable indicating the situational pressure of the moment. A
value of 5 corresponds to extremely high pressure, such as match point, tiebreak, or a crucial
break point late in a set, while a value of 1 indicates a low-pressure situation, such as an early
game or low-stakes point. Pressure values were drawn from 1 to 5 with a bias toward moderate
pressure, since not all points are high pressure. In the simulation, approximately 10 percent of
instances were classified as level 5. This feature captures the contextual importance of the
point.

Previous Error (0/1): A binary indicator of whether the player made an unforced error or double
fault on the immediately preceding point. This variable captures momentum, or the lack thereof.
When a player is coming off a mistake, confidence may be shaken, particularly under pressure.
In the simulation, approximately 30 percent of instances had a previous error value of 1. This
probability was made conditional on pressure, such that errors were slightly more likely to occur
during high-pressure moments, consistent with empirical findings.

Fatigue Level (0—100): A percentage estimate of the player’s physical and mental fatigue. A
value of 0 represents a completely fresh state, while 100 represents extreme exhaustion.
Fatigue increases over the course of a match, so higher values may correspond to later sets or
prolonged rallies. Fatigue values were sampled from a normal distribution centered around 50
with variation, bounded between 0 and 100. This feature reflects cognitive and physical
overload, as higher fatigue may predispose a player to lapses in focus and technique. In
real-world settings, fatigue could be estimated using match duration or rally length, but here it
serves as a simulated proxy.

Focus Level (0—100): A subjective indicator of the player’s current mental focus or resilience.
This variable represents cognitive state, specifically how well the player is concentrating and
handling pressure. A value of 100 indicates exceptional focus, while lower values suggest
mental distraction or heightened nerves. Focus was allowed to inversely correlate with fatigue,
since fatigued players often experience reduced concentration, with randomness introduced to
avoid deterministic relationships. Focus can also fluctuate with pressure, as some players
increase focus under pressure while extreme anxiety can reduce effective focus. This
relationship was captured implicitly through the outcome variable rather than direct correlation.
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Experience (Years): The number of years the player has competed in organized or competitive
tennis, serving as a proxy for expertise and potential mental toughness. Experience values were
capped at 15 years, reflecting a range from junior players with limited experience to seasoned
professionals. While there is a hypothesis that experienced players may choke less due to
repeated exposure to pressure situations, research suggests that even highly experienced
players still experience pressure similarly. This variable was included to assess whether
experience exerted a protective effect in the model.

Performance Drop-Off (Target): The outcome variable indicating whether the player’s
performance significantly declined following the given moment. A performance drop-off was
defined as a noticeable decrease in performance in the subsequent phase of play, such as
losing the next game or committing an unusual cluster of errors, relative to the player’s typical
level. Instances in which the player maintained expected performance, such as holding serve or
sustaining consistency, were labeled as no drop-off. This binary classification serves as a
simplified proxy for choking in a given moment.

To generate binary outcomes, a logistic model incorporating the above features was used.
Based on theoretical expectations, high pressure, a previous error, and elevated fatigue were
modeled to increase the probability of a performance drop-off, while higher focus and greater
experience were modeled to decrease it. Feature weights were informed by existing literature,
with pressure and previous error assigned positive weights to reflect compounding effects, and
focus assigned a strong negative weight due to its role in maintaining execution. The logistic
function produced a probability of drop-off for each simulated instance, which was thresholded
at 0.5 to determine the final classification. The intercept was tuned to yield an overall drop-off
incidence of approximately 25 to 30 percent, reflecting the fact that not every high-pressure
moment results in a collapse.

In total, 1,000 instances were simulated, representing individual points or match scenarios. This
dataset was sufficiently large to train a machine learning model while maintaining realistic
variability across match conditions. The simulation was evaluated for plausibility by examining
outcome distributions. For example, the average drop-off rate was substantially higher at
pressure level 5 than at pressure level 1, and prior errors further increased drop-off probability
when combined with high pressure. These patterns align with established findings on
pressure-error interactions.

Feature Engineering

All features in the dataset were generated but treated as real data features for analysis. No
complex transformations were required given the straightforward nature of the variables.
Potential interactions were considered; for example, theory suggests an interaction between
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pressure and previous error due to compounding effects. Rather than explicitly adding a product
feature, a sufficiently flexible model, such as a decision tree ensemble, was expected to capture
this interaction inherently. In a more advanced analysis, a derived feature defined as pressure
multiplied by previous error could be added to support linear models, but the chosen model was
capable of handling non-linear interactions without manual feature construction.

Feature ranges were standardized where relevant for certain algorithms. For example, fatigue
and focus were measured on a 0—100 scale, while pressure ranged from 1 to 5, which could
matter for distance-based models. Tree-based models are scale-invariant, but for completeness,
features were scaled to a 0—1 range in some trials. This scaling did not affect the performance
of the tree-based model but would be relevant for other algorithms. Experience, measured in
years, was left unscaled due to its limited range.

No missing data were present in the simulated dataset, as all cases were generated
programmatically. In a real-world setting, missing sensor readings or self-reported measures
would require additional preprocessing and imputation strategies.

Modeling Approach

A Random Forest Classifier was selected as the primary modeling approach. Random forests
are ensembles of decision trees well suited for tabular data and capable of modeling non-linear
relationships and interactions between variables. This method also provides feature importance
measures, which were useful for interpreting which factors contributed most to predicting
performance drop-offs. This choice aligns with the interdisciplinary nature of the project, as it is
widely used in data science while still producing interpretable outputs that can be linked to
psychological constructs. For example, high importance assigned to focus would reinforce its
cognitive relevance.

The dataset was split into training and test sets using an 80/20 split to evaluate performance on
unseen data. Default hyperparameters were used for simplicity, as the emphasis was on
demonstrating predictive feasibility rather than optimizing model performance. The model was
trained to classify performance drop-offs versus normal performance. A logistic regression
model was also tested for comparison and showed similar trends, with coefficients aligning with
simulation assumptions. However, the random forest achieved slightly better performance and
more effectively captured interactions between pressure and prior error without explicit feature
engineering.

Evaluation Metrics

Accuracy, defined as the percentage of correctly classified instances, was used as the primary
evaluation metric due to its simplicity and accessibility. It is acknowledged that accuracy can be
misleading when class distributions are imbalanced. In the simulated dataset, performance
drop-offs accounted for approximately 30 percent of instances, resulting in moderate class
imbalance. As a result, baseline accuracy was also considered for context, and confusion
matrices were examined to assess how effectively the model identified drop-offs compared to
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non-drop-offs. Precision and recall were discussed qualitatively where relevant, such as noting
tendencies toward false negatives or false positives, without extensive metric analysis to
maintain clarity.

To enhance interpretability, several visualizations were generated, including a feature
importance chart from the random forest model, a plot showing drop-off probability across
pressure levels, and a comparison of model accuracy against baseline accuracy. These
visualizations help bridge data science outputs with tennis-specific context. All analyses were
conducted in Python using standard libraries such as scikit-learn and matplotlib.

Results

Feature Importance
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Figure 1: Feature importance scores from the random forest model, showing the relative
influence of each input feature on prediction. Focus and fatigue emerge as the most influential
features, each with importance around 0.3 on a 0 to 1 scale, where higher values indicate more
frequent use in decision splits. Pressure also contributes substantially, with an importance of
approximately 0.2, while experience and previous error show lower importance in this model.

These importance values suggest that cognitive state, represented by focus, and physical or
mental state, represented by fatigue, were slightly more pivotal in the model’s decisions than
contextual pressure or recent errors. In other words, the simulation indicates that the model
relied heavily on whether the player was mentally focused and not exhausted. This does not
imply that pressure is unimportant, as it remains the third most influential feature, but rather that
a highly focused, well-rested player was predicted to handle even high-pressure situations more
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effectively. Conversely, a fatigued and unfocused player was at risk of experiencing a
performance drop-off even under moderate pressure.

The relatively low importance assigned to previous error was somewhat unexpected given the
emphasis on error cascades in the literature. One explanation is that in the simulated data,
previous errors frequently coincided with high-pressure situations, leading to collinearity and
causing the model to rely on pressure as a proxy in many cases. Another possibility is that not
every error leads to a performance drop-off unless other factors, such as mindset and situational
pressure, are also present. Experience showed moderate importance, suggesting that more
experienced players in the dataset exhibited slightly fewer performance drop-offs, consistent
with the idea that experience aids coping under pressure. However, experience was not as
influential as intra-match state variables such as focus.

Overall, the feature importance ranking reinforces a central insight: a player’s mental and
physical state at a given moment, particularly focus and fatigue, is at least as important as
external pressure and match context. This interpretation aligns with cognitive theories
emphasizing that internal responses to pressure, such as maintaining attention and avoiding
stress-related exhaustion, play a critical role in determining performance outcomes under
pressure.
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Figure 2: Drop-off probability by pressure level, as observed in the simulated dataset. The line
graph illustrates the proportion of instances that resulted in a performance drop-off at each
pressure level, ranging from 1 (low pressure) to 5 (very high pressure). Higher pressure levels
are associated with markedly greater drop-off rates, with over 60 percent at level 5 compared to
less than 10 percent at level 1. This trend confirms that the simulated data and underlying
assumptions reflect a well-documented phenomenon: increasing pressure substantially elevates
the risk of a performance drop-off.
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The curve in Figure 2 is not linear and becomes steeper at higher pressure levels, suggesting a
threshold effect in which pressure beyond a certain point leads to disproportionately greater
performance decline. For example, the increase in drop-off probability from pressure level 4 to
level 5 is larger than the increase from level 2 to level 3. This pattern is reminiscent of the
Yerkes—Dodson relationship in psychology, where performance improves with arousal up to an
optimal point and then deteriorates sharply as arousal continues to rise. In practical terms, a
pressure level of 5 may correspond to scenarios such as serving to stay in the match. In such
situations, the model indicates that even typically strong performers face a significantly elevated
risk of faltering. Pressure level 3, representing moderate pressure, exhibited a drop-off rate of
approximately one third, indicating that performance declines can occur even outside of the
most extreme moments, depending on an athlete’s mental state. This pattern highlights the

importance of developing mental resilience not only for decisive points but across a broad range
of competitive situations.
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Figure 3: Model accuracy versus baseline. The grey bar represents baseline accuracy,
approximately 74.5 percent, which corresponds to always predicting “no drop-off,” the majority
class. The green bar shows the random forest model’s accuracy on the test data, approximately

78.5 percent. The model modestly outperforms the baseline, indicating that it learned patterns
associated with performance drop-offs.

Overall accuracy was approximately 78 to 79 percent, representing a noticeable improvement
over the 70 to 75 percent accuracy expected from naive guessing or always assuming no
drop-off. This indicates that the model captures meaningful signal rather than random noise.

However, the improvement over baseline is limited. In practical terms, out of 100 high-pressure
instances, the model correctly predicts only a few additional drop-offs beyond what a baseline
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strategy would achieve. Confusion matrix analysis showed that the model identified a
substantial portion of true drop-off cases, with recall of approximately 55 percent, but also
missed some instances and produced false positives. This reflects the inherent difficulty of the
task, as performance drop-offs are multi-causal and partially stochastic. Nonetheless, achieving
close to 80 percent accuracy is encouraging for an initial proof of concept. The results suggest
that monitoring indicators such as player focus, potentially inferred through proxies like heart
rate variability or eye-tracking, along with contextual match factors, could allow many impending
lapses to be anticipated.

It is also important to contextualize that an accuracy near 80 percent includes the easier task of
correctly identifying when a player will not experience a drop-off, which occurs most of the time.
Precision for predicting drop-offs was lower than overall accuracy. In applied settings, a more
conservative decision threshold might be appropriate, prioritizing the detection of most potential
drop-offs at the cost of occasional false warnings. Even with these limitations, the results
demonstrate that a machine learning model informed by cognitive and situational features can
discern patterns related to choking under pressure more effectively than chance or baseline
approaches. The most influential features, including focus, fatigue, and pressure, exhibited
plausible relationships with the outcome, lending face validity to the model.

In summary, the results indicate three key findings. First, pressure substantially elevates the risk
of performance drop-off, a relationship clearly captured by the model. Second, cognitive and
physical state variables, particularly focus and fatigue, emerged as critical predictors,
underscoring the importance of mental factors. Third, predictive modeling can achieve
reasonably strong accuracy, in the high seventy-percent range, in forecasting performance
drop-offs, supporting the idea that these events are not purely random and can be anticipated to
a meaningful extent. The following section discusses these findings in light of cognitive science
theories and considers how such a model could be improved or applied in real scenarios.

Discussion

The findings of this study reinforce established psychological insights while also providing a
quantitative predictive tool for performance drop-offs. High-pressure situations correlate with an
increased probability of error and performance decline, a pattern consistent with decades of
sports psychology research on choking. The model’s identification of pressure as a significant
factor echoes the importance of situational stakes described by Baumeister and others.
However, the results also indicate that pressure alone does not determine outcomes. Internal
factors such as focus and fatigue critically mediate whether pressure ultimately leads to a
performance drop-off. This aligns with the Attentional Control Theory perspective, which posits
that it is the anxious cognitive response to pressure, rather than pressure itself, that impairs
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performance. A player who maintains attentional control under pressure can avoid choking,
whereas one whose attention is overtaken by stress is more likely to struggle.

From a cognitive science perspective, the high importance assigned to focus underscores the
central role of attention and working memory. Focus level in the simulation can be interpreted as
the inverse of distraction or mental overload. Attentional Control Theory would characterize high
focus as successful maintenance of goal-directed attention on task-relevant cues, such as the
ball toss and swing mechanics during a serve, even in high-pressure situations. Low focus, by
contrast, reflects a shift toward stimulus-driven attention, including worry or crowd noise, which
has been shown to impair performance. The model’s reliance on focus suggests that real-time
indicators of an athlete’s attentional state could be highly valuable for predicting choke risk. In
practical terms, techniques designed to improve focus, such as mindfulness training, consistent
pre-point routines, or thought-stopping strategies, are likely to reduce performance drop-offs.
The modeling results quantify this effect, showing that, all else equal, a focused player is
significantly less likely to experience a performance decline, reinforcing the idea that sustained
concentration is central to effective performance under pressure.

Fatigue also emerged as a prominent predictor, connecting performance drop-offs to cognitive
load and mental energy. Fatigue can impair the regulation of attention and emotion. When a
player is physically or mentally tired, executive functions supported by the prefrontal cortex,
including sustained attention and impulse control, may be compromised, increasing vulnerability
to errors. Empirical research has shown that mental fatigue slows reaction times and increases
error rates in racket sports, a pattern reflected in the simulated data and captured by the model.
From a cognitive standpoint, fatigue reduces available working memory capacity, effectively
shrinking the mental buffer needed to cope with pressure. This aligns with Processing Efficiency
Theory, which suggests that anxiety consumes working memory resources. Under these
conditions, an athlete may lack the cognitive bandwidth required to manage tactical planning,
opponent monitoring, and internal self-talk simultaneously, leading to performance decline. The
model’s sensitivity to fatigue supports the importance of conditioning, recovery, and pacing, as
even well-developed mental strategies may fail when exhaustion sets in. Adequate physical
preparation and brief recovery periods between points may therefore play an indirect but
meaningful role in preventing choking.

The relatively weak influence of previous error does not contradict the concept of error cascades
but instead highlights the importance of context. Prior errors appear to be most detrimental
when they occur under high pressure and coincide with low focus. In such cases, the model
may capture the combined effect through pressure and focus rather than through the previous
error variable alone. This supports a nuanced cognitive interpretation: a single mistake only
triggers a downward spiral if it is mentally reinforced. When an error is catastrophically
interpreted, such as through thoughts of inevitable loss, the risk of continued failure increases.

10
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Conversely, players who maintain focus or employ strategies associated with “expertise-induced
amnesia” can prevent one mistake from compounding into many. Reset routines, such as briefly
disengaging or performing habitual actions, may help inhibit lingering thoughts about the error.
In cognitive terms, this reflects inhibitory control, the ability to suppress task-irrelevant thoughts
and refocus on the present point, a function known to be impaired by anxiety. Training designed
to strengthen mental inhibition, including certain cognitive exercises or structured attentional
tasks, may therefore help athletes recover more quickly after errors.

From a machine learning perspective, the model’s performance, achieving accuracy near 78 to
80 percent, is encouraging but leaves room for refinement. One limitation is the presence of
false positives, instances in which a performance drop-off was predicted but did not occur.
Psychologically, these cases may represent situations in which all indicators suggested
vulnerability, such as high pressure and fatigue, yet the athlete managed to recover, possibly
through heightened focus or effective emotional regulation. This points to an unresolved
challenge in both modeling and theory: identifying the protective factors that allow some athletes
to exceed expectations under pressure. While some interpretations define clutch performance
as simply the absence of choking, others propose distinct characteristics, such as confidence
profiles or physiological responses, that differentiate clutch moments. The current model did not
explicitly include variables representing confidence or emotional control, relying instead on focus
as a partial proxy. Future simulations or real-world datasets could incorporate measures of
emotional regulation or physiological stress markers to explore whether performance
enhancement under pressure can be predicted alongside performance decline.

The practical implications of this work are relevant for coaches and athletes. In a real-world
implementation, pressure could be computed directly from match context, prior errors could be
tracked point by point, fatigue could be estimated using movement data or rally duration, and
focus might be inferred from indicators such as eye-tracking or neural measures during training.
With these inputs, a predictive system could generate a dynamic estimate of choke risk.
Coaches could intervene strategically, and athletes could be trained to recognize internal
warning signs and deploy coping strategies proactively. In training environments, simulated
pressure scenarios paired with feedback could function as a form of biofeedback, reinforcing the
link between mental state and performance outcomes.

Cognitive frameworks related to emotional regulation further clarify these findings. The results
suggest that players with higher effective focus, potentially supported by emotion regulation
strategies, manage pressure more successfully. Techniques such as cognitive reappraisal or
arousal control through breathing likely help sustain focus by preventing emotional escalation.
Athletes who regulate emotions effectively tend to perform more consistently, while those who
react strongly to setbacks may experience rapid declines in focus and subsequent performance.
In this way, the model’s abstract focus variable can be mapped onto the concrete skill of

11
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emotional self-regulation during competition. The findings therefore support the value of mental
skills training, including imagery, self-talk, and relaxation, as these interventions target the same
factors that the model identifies as central to preventing performance drop-offs.

In summary, the discussion demonstrates that the predictive model operates in alignment with
established psychological principles while offering a concrete framework for integrating cognitive
theory with data-driven analysis. Performance drop-offs emerge as the result of interacting
physiological, cognitive, and emotional processes rather than isolated events. By linking model
features to mental constructs such as attention, fatigue, and coping, the study illustrates the
value of a hybrid approach. This integration opens pathways for future research and practical
applications aimed at helping athletes maintain performance under pressure through both
technological and psychological interventions.

Limitations

While the study offers valuable insights, several limitations must be acknowledged, many of
which stem from the fact that this was a simulated, high school-level project. First, the data
simulation may not capture all real-world nuances. Distributions and relationships were assigned
based on theory and limited empirical evidence, but real player data could reveal different or
more complex correlations. For example, focus and fatigue were treated as separate variables,
whereas in reality they may be tightly coupled, with mental fatigue contributing directly to
reduced focus in non-linear ways. Additionally, pressure in real matches has a temporal and
individual component. The same scoreline may be perceived differently by different players or at
different phases of a match, yet all simulated players responded to pressure in a broadly similar
manner aside from variations captured through focus and experience. In reality, individual
differences are substantial, with some athletes being more clutch-prone and others more
susceptible to choking. The model did not explicitly include traits such as baseline anxiety or
mental toughness beyond the coarse proxy of experience. More advanced approaches could
incorporate player-specific traits or clustering methods to personalize predictions.

Second, model evaluation results, though showing accuracy near 78 percent, are optimistic
because the data were generated using the same assumptions embedded in the model
structure. As a result, the predictive task was less challenging than it would be when applied to
noisy real-world data. Actual matches contain unpredictable factors such as crowd disruptions
or minor injuries that can trigger performance declines but were not represented in the simulated
feature set. The model was also not evaluated on scenarios fully independent of its underlying
assumptions, making its performance somewhat idealized. Applying this approach to real match
data, using proxy measures for focus and fatigue, would likely reduce accuracy. This limitation
reflects the common challenge of transferring models from simulated environments to real-world

12
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contexts and underscores the need for retraining on real labeled examples, which are difficult to
obtain and inherently subjective.

Another limitation is the focus on immediate performance drop-offs following high-pressure
moments. Longer-term momentum shifts were not modeled. In tennis, losing a tight set may
result in an extended slump, while in other cases players recover quickly after brief lapses. The
binary outcome variable does not distinguish between minor declines and severe collapses,
such as losing an entire set after holding a strong lead. A more detailed analysis could model
the magnitude of performance change using continuous outcomes, such as changes in win
probability or sequences of points lost, to capture these gradations more accurately.

Measurement of psychological variables also presents a challenge. Focus and fatigue were
introduced as conceptual constructs, yet both are difficult to measure directly in live competition.
Focus must be inferred indirectly through behavioral or physiological indicators, such as
adherence to routines or neural measurements, while fatigue can be approximated using match
duration or physical biomarkers. Mental fatigue, in particular, may require cognitive assessment.
Any real-time implementation of the model would therefore need to contend with noisy or
incomplete measurements of internal cognitive states, which could degrade predictive
performance.

Finally, the study does not incorporate all potentially relevant factors. Opponent pressure was
not explicitly modeled, nor were contextual influences such as crowd support or home versus
away environments. These factors could meaningfully alter pressure perception and
performance outcomes and represent opportunities for future feature expansion. Additionally,
the modeling approach was limited to a small set of algorithms for interpretability. Alternative
methods, such as neural networks or more advanced probabilistic models, could be explored if
sufficient real-world data were available.

In summary, while the observed trends are grounded in established theory, the numerical results
should not be over-generalized. The model serves primarily as a demonstration of feasibility.
The replication of known psychological patterns using simulated data suggests that predictive
modeling of choking is plausible, but substantial work remains to address individual variability,
real-world data collection, and model robustness in competitive environments.

Conclusion
This project explored whether mental performance drop-offs in tennis can be predicted using a
combination of data science and cognitive modeling. By simulating a dataset that integrates

situational match factors with indicators of an athlete’s internal mental state, a machine learning
model was trained to identify moments in which performance decline was likely to occur

13
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following high-pressure situations. The model’s performance, achieving approximately 78
percent accuracy and identifying focus, fatigue, and pressure as key predictors, demonstrates
that performance drop-offs are not random events but have identifiable precursors.

The findings reinforce the view that mental performance reflects a dynamic interaction between
external pressure and internal cognitive-emotional states. High-pressure situations substantially
elevate the risk of performance decline, but the outcome depends on factors such as attentional
control, fatigue, and coping capacity. This supports cognitive theories asserting that anxiety
impairs performance by diverting attentional resources. The modeling results provide
quantitative support for this perspective, showing that focused and well-rested players are
considerably less likely to experience performance drops, even under pressure.

From an applied standpoint, the work highlights several practical implications. Monitoring
psychological and physiological indicators, such as breathing patterns, heart rate, or
self-reported focus, could enable earlier detection of vulnerability to performance decline.
Training interventions including mindfulness practice, pressure simulation, and endurance
conditioning may improve the same underlying variables identified by the model. In the future,
real-time predictive systems could potentially offer feedback on choke risk, provided such tools
are implemented carefully to avoid becoming distractions themselves. Beyond prediction, the
value of data science lies in its ability to validate which mental training strategies meaningfully
reduce performance risk by tracking changes in model inputs over time.

For student researchers and practitioners alike, this project illustrates the power of
interdisciplinary approaches. Athletic performance was treated not merely as a collection of
statistics nor solely as a psychological phenomenon, but as an integrated mind—body system.
This holistic perspective is increasingly central to modern sports science. While no model can
fully capture human behavior, even modest predictive capability can be valuable if it helps
athletes recognize and manage critical moments more effectively. By combining data-driven
insights with cognitive theory, this work moves toward training athletes who not only perform
better physically, but also think and regulate more effectively under pressure.

14
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