
 
 
 
 
 
 

 
 

Exploring the Use of Synthetic Data from AI Chatbots for Predicting Alzheimer's 
Disease: Methods for Validation and Barriers to Real-World Implementation 

 
Siddhi Ananya  

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 



 
1.​ Introduction  

1.1 Advancements of AI in Healthcare 
Artificial intelligence has rapidly advanced in the last decade for applications in 

healthcare from diagnostic tools to predictive analytics. Machine learning, a subset of the wide 
range of AI tools undergoing implementation, uses its sophisticated abilities to recognize 
patterns in subsequent data sets to help enable the early detection of chronic illnesses like 
Alzheimer's disease. 
1.2 Alzheimer's Disease and the Need for Early Diagnosis 

 Alzeihemer’s, “a type of dementia that affects memory, thinking and behavior” 
(Alzheimer’s Association, 2025), affects millions worldwide and remains a significant challenge 
in public health. Early diagnosis is vital to allowing opportunities for intervention in the early 
growth activity of the disease, which could slow disease progression and improve patient 
outcomes. However, a tenacious challenge persists in the reliance of real world data, when 
developing machine learning models, raising ethical concerns over privacy, security, and bias. 
1.3 The Role of Synthetic Data and Chatbots 

Synthetic data offers a potential solution by mimicking real-world medical datasets while 
avoiding privacy issues.  Traditional approaches rely on statistical analytics and simulations to 
generate viable data sets, unlike this research, which will be proposing a new source of data 
generation: ChatGPT.  

Chatbots such as ChatGPT utilize conversational AI techniques like natural language 
processing systems to understand user questions and simulate responses to them (IBM, 2025). 
This can provide the edge of the implementations of conversational, contextual, and behavioral 
aspects onto the data generated, making the model increasingly authentic. This study 
investigates the viable use of AI generated synthetic data in effectively training machine learning 
models to predict the future onset of Alzheimer’s disease. It specifically seeks to answer if 
synthetic data from AI chatbots can produce accurate and reliable predictive models with further 
investigation into methods that can validate these models’ effectiveness and barriers that might 
prevent their adoption in real-world healthcare settings.  
1.4 Research Significance and Future Implications 

The desire of advancing this research topic originates from a fascination with AI’s 
potential in predictive analytics within healthcare. Since the public debut of ChatGPT, AI has 
been implemented into various domains with a wide breadth of exploration of its applications, 
including health care. However, chatbots are generally utilized in website management, its true 
potential remaining unexamined. This interest is personally further driven by an aspiration to 
merge computer science and healthcare, through observing the challenges and opportunities 
within the healthcare field through familial connections. 

This research dives into uncharted territory, with the exploration of the intersection of 
natural language processing and predictive machine learning models, leveraging synthetic data 
generated by AI chatbots to train machine learning models for predicting the onset of 
Alzheimer’s disease. This new approach seeks to plug the existing gaps in healthcare 
technology with emphasis on current ethical dilemmas on the usage of patient data. Exploring 
AI-generated synthetic data shows promise for a future in enhanced early diagnostic 
capabilities, and if successful, goes far beyond Alzheimer's. My research shows the possibilities 
of AI in healthcare developments, where it is further magnified for a maximized psychosocial 
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impact, creating a future for technology in which early intervention and better patient care 
becomes a priority. 

2.​ Literature Review  
2.1 Machine Learning in Healthcare 
​ Machine learning is the process of identifying various characteristics and attributes to 
identify complex patterns within data, which can be applied to carry out deeper analysis and 
gain valuable insights (Kaul et al., 2020). This can be greatly useful in areas such as health care 
with its applicability to optimize diagnostic processes, with the potential use of data tailored to 
look very similar to real world data.  
2.2 Definition and Importance of Synthetic Data 

Specifically, synthetic data refers to artificially created datasets that retain statistical 
patterns similar to real data which can participate in model training without endangering patient 
privacy in this study. Other studies have similarly defined it with specifications of being created 
through algorithms, generative models, or simulations (Lui et al., 2024). However, this study will 
focus on its ability to train a machine learning model if it is generated from AI chatbots like 
ChatGPT.  
2.3 AI Chatbots as Data Sources 

AI chatbots can be defined in this study as conversational AI systems designed to 
simulate human interaction, which is how it is referred to in most publications, with a focus on 
the abilities of ChatGPT. The synthetic data produced from these chatbots will be used to 
produce responses based on medical data patterns, better known as predictive modeling. These 
responses are targeted to forecast health outcomes for chronic illnesses. One such illness that 
will be focused on is Alzheimer’s disease, which is a disorder that impairs memory and function, 
with an inclusion of damage to neurons (Ding et al., 2024). Research generally agrees with 
synthetic data’s potential in safely training models and addresses its potential in early disease 
detection, however there are limited sources addressing its feasibility in healthcare as well as 
the potential of synthetic data produced through chatbots rather than mathematical techniques.  
2.4 Historical Development of AI in Healthcare 
​ The application of Artificial Intelligence in healthcare dates back several decades, with 
the development of AI being very sparse throughout the early years of technology. To 
understand the development of artificial intelligence, however, it is important to understand how 
it can be defined as well as the differences between artificial thinking and natural thinking as 
described by Fetzer (1990). Artificial thinking is the more complex process, which is generally 
undergone by artifacts known as machines. Building on this idea is the application of machines 
in healthcare which is discussed by Kaul in his literature review on the development of AI in 
medicine with a focus on the major applications of AI in gastroenterology and endoscopy (2008). 
He discussed the concepts of the increase in diagnostic accuracy following integration of AI into 
clinical trials, as well as improved efficiency in provider workflow.  
2.5 Existing Methodologies Using Synthetic Data 

Several studies have employed the same methodology as the one I will be using, with a 
specific focus on using synthetic data to train machine learning models. In the 2024 study, Mills 
et al. explore the integration of machine learning techniques in predicting rheumatic disorders 
through models trained with datasets containing over 10,000 records, made through binary 
classification. With the same end goal of disease prediction, Garza-Frias et al. explored this 
methodology in their 2024 study, by using real radiographs rather that synthetic data, passing it 
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through an AI model that obtained information on factors such as cardiac silhouette with the 
goal of then being able to train it to predict which patients were developing heart failure.  
2.6 Bias Considerations in AI-Generated Data and Addressing Gaps  
​ As AI continues to grow in the field of healthcare, with a specification in disease 
prediction, there are growing concerns regarding biases and ethical implications, especially with 
the newfound application of authentic data. Hao et al discuss this topic in their paper bringing in 
points of legal constraints into the argument to support that of ethicalities. Because synthetic 
data is often very closely related to real world data to get accurate results, it can oftentimes 
mimic biases that are inherent in real-world data sources, which generally leads to gender or 
racial biases. Besides the implications around synthetic data, there are also many chatbots with 
concerns arising because of their extreme impact on the job market (Følstad et al., 2021). To 
target these issues many organizations such as Microsoft’s FATE (Fairness, Accountability, 
Transparency, and Ethics in AI) have taken initiatives to mitigate these issues. Without being 
addressed, these issues could lead to models that are less accurate for certain populations, 
particularly for chronic illnesses like Alzheimer’s, where the disease's manifestation can vary 
significantly across different socio-economic groups. These concerns highlight the need for 
careful consideration when developing AI models for healthcare, especially when synthetic data 
is utilized.  
​ Substantial studies have focused on research on utilizing synthetic data to train models 
for early diagnosis health care practices, but the synthetic data is generated using statistical 
techniques rather than AI chatbots. This approach is greatly effective in creating synthetic data 
sets that mimic data patterns in real data sets, making the model more accurate and increasing 
its adaptability rates in real time clinical trials. However, this mathematical approach lacks the 
nuanced conversational and contextual data that AI chatbots can provide to the data sets, 
adding more variability. Because chatbots mimic human interaction, it can add layers of 
behavioral and contextual richness to the data set. Training using these data sets can give the 
model more variability and the ability to account for more situations than just those that occur 
frequently, which is what will be primarily targeted through statistically generated data sets. This 
idea is further supported by Følstad et al. 's literature review in 2021, in which knowledge based 
advancement in fields like management analytics, marketing, communication science, etc can 
be underscored to the implementation of AI chatbots. 

 In summary, the existing research on using synthetic data to train predictive models for 
chronic illnesses highlights challenges and positive breakthroughs. Despite the significant 
positive implications many studies have seen, the significant challenge of privacy concerns and 
limited data availability remains. In addition, challenges of a lack of comprehensiveness in 
synthetic data also prove issues in providing variability to predictive models. This review, thus, 
identifies the gaps around predictive model accuracy if trained on synthetic data and its 
applicability in real clinical settings. Addressing these gaps can help put a lot of these models 
into practice and increase efficiency, advancing their role in chronic illness prediction. 

3.​ Methodology 
3.1 Research Problem and Data Collection  

Beginning the project after analyzing the research problem was challenging, particularly 
due to the broad scope of the study. To address this, a mixed-methods approach was 
implemented, starting with an analysis of datasets from similar studies and refining the data to 
enhance model accuracy. Data collection was a crucial first step, requiring an examination of 
real-world data and comparable research to define the expected characteristics of the synthetic 
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dataset. To ensure reliability, extensive research was conducted to evaluate the credibility of 
institutions providing relevant datasets. After reviewing multiple sources, the University of 
Southern California’s Image and Data Archive was identified as a trusted resource. A specific 
dataset from this archive was selected as the foundation for the testing dataset, ensuring 
alignment with the study’s objectives. This dataset included various distribution methods, 
depicting data on patient visits and age. While patient visits were less relevant to this research, 
as they indirectly affect the development of Alzheimer's, the age-related data played a crucial 
role in model refinement. 

This graph (as shown below) depicts the most common age of active development 
centering around the range of 70-79, enhancing the correlation between old age and the 
disease. There are also various research groups present in the study, so that they can be 
compared against each other, so that causation can be implied. The primary to be noted include 
EMCI, LMCI, MCI, and CN. EMCI (Early Mild Cognitive Impairment) is an earlier stage of MCI 
with milder symptoms. Late Mild Cognitive Impairment (LMCI) is a more progressed stage of 
MCI, with more pronounced cognitive decline but not yet reaching full dementia. EMCI (326) and 
LMCI (182) combined make up a significant portion of MCI (mild cognitive impairment) cases, 
reflecting a progression model for cognitive decline. CN (cognitively normal) is the group of 
healthy individuals without any diagnosed cognitive impairment, likely used as a control group.  

 

Figure 1: Participant distribution by age and gender in the study. Data is categorized into 
research groups, including AD (Alzheimer’s Disease), MCI (Mild Cognitive Impairment), and CN 

5 



(Cognitively Normal). Source: Alzheimer's Disease Neuroimaging Initiative, USC Stevens 
Neuroimaging and Informatics Institute. 
3.2 Synthetic Data Generation  

The next step was the formation of the synthetic data, a key aspect that set my research 
apart. Unlike traditional methods, the synthetic data generation was conducted using ChatGPT 
rather than relying on standard statistical modeling or pre-existing synthetic datasets. This 
approach allowed for the creation of diverse and dynamic data points that closely mirrored 
real-world patterns. By fine-tuning the prompts and iterating through multiple generations, the 
dataset was refined to ensure it aligned with the characteristics observed in real patient data 
while minimizing biases and inconsistencies. Characteristics specifically focused on included 
adjusting the age distribution to match the patterns of the data set observed, to ensure normality 
and make the data more realistic. Participants were increased in the 70-79 (800 cases) and 
80-89 (500 cases) age ranges since they were the most represented and those under 60 were 
reduced as they were rare in the original graph. The gender balance was also adjusted as the 
original generated data weighed females over males greatly with at least a 3:1 ratio. Whereas 
now there are nearly equal numbers of males and females, preventing gender bias, with an 
exponential increase in the number of participants, with a total of 1600 subjects.  
​ The distribution of diagnoses has also been adjusted to better align with observed trends 
in Alzheimer’s progression (as depicted below). The number of mild cognitive impairment (MCI) 
cases, including both early and late MCI, was increased to reflect real-world patterns, while 
Cognitively normal (CN) individuals still make up the largest group.  

MMSE scores now better correspond to diagnosis, with lower scores (10-21) for AD, 
mid-range scores (22-27) for MCI, and higher scores (24-30) for CN individuals. Hippocampal 
volume was modified accordingly, with AD patients having the lowest volume (2.5-4.5 mL), MCI 
cases showing moderate volume (4.5-5.5 mL), and CN individuals exhibiting the highest volume 
(5.5-6.5 mL). These refinements ensure that the dataset more accurately reflects real-world 
patterns in Alzheimer’s progression and risk factors.  
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Figure 2: Distribution of synthetic data generated for Alzheimer's study. The graph represents 
the number of subjects across different age ranges, with the highest concentration in the 70–79 
age group. This synthetic data was created to model participant demographics in Alzheimer's 
research. 
3.3 Final Dataset variables 

The final data set used in this study contains patient information compromising the 
following features as previously mentioned. To provide a clear understanding of its variables and 
the values in the data set, the following table outlines the key attributes recorded for each 
participant. These variables capture essential demographic, cognitive, and genetic factors 
relevant to Alzheimer’s research: 
Variable Description Type 

Patient_ID Unique identifier for each 
patient 

Qualitative 

Age Patient's age in years​  Quantitative 

Gender Patient's biological sex 
(Male/Female)​  

Qualitative 

MMSE_Score​  Mini-Mental State 
Examination score (0-30)​  

Quantitative 

Hippocampal_Volume Brain hippocampus volume 
measured via MRI (mm³)​  

Quantitative 

Family_History​  Whether the patient has a 
family history of Alzheimer’s 
(Yes/No)​  

Qualitative 

APOE4_Present Presence of the APOE4 gene 
variant (Yes/No)​  

Qualitative 

Alzheimers_Diagnosis Diagnosis outcome 
(Positive/Negative)​  

Qualitative 

 
3.4 Machine Learning Approach  

The machine learning approach utilized for predictive analysis in this study is Supervised 
Learning, a category of machine learning where the model can learn from labeled training 
refined data to make predictions on unseen data, enhancing flexibility. In this study’s context, 
the labeled outputs, such as that of the Diagnosis Outcome (yes/no), can allow the model to 
recognize patterns and correlations among patient characteristics. Utilizing this method, the 
model can determine what variables have the most effect towards the development of 
Alzheimer’s for the individuals in the data set provided.  
​ To implement this approach, the Random Forest Classifier machine learning algorithm 
was selected due to its effectiveness in handling nonlinearity, reduction of overfitting, as well as 
the improvement of generalization to a broader population outside this study. As seen by the 
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data set presented and its many variables, Alzheimer’s has many stages and interdependent 
factors that influence its development which can be captured accurately by Random Forest. 
When making machine learning models, single decision trees can be prone to overfitting, which 
means they perform well on the training data set but can find issues adapting to new data. 
Decision trees in machine learning models are a type of supervised algorithm that splits data 
into multiple branches based on specific conditions, making predictions at each step until it 
reaches a final outcome. Each split point is called a node and  represents a decision based on a 
feature. The tree henceforth continues branching until it reaches terminal nodes, or leaves, 
which hold the final classification. Random Forest is beneficial in this sense because it has the 
ability to mitigate potential overfitting by averaging predictions across multiple decision trees 
before coming to a final decision, enhancing model stability and reliability. 
3.5 Model Implementation 
​ 3.5.1 Data Preprocessing​ 
​ To begin implementing the Random Forest Classifier, the dataset was first preprocessed 
to ensure all variables were formatted correctly for the model. This included handling categorical 
variables and normalizing numerical features where necessary. The dataset was loaded onto 
Google colab using the pandas library and the feature variables (X) and target variable (y) were 
defined. Some variables, however, remained qualitative, which was converted into numerical 
values using one-hot coding.  
​ 3.5.2 One-hot coding and splitting the data 

One-hot coding is a method of encoding categorical data into numerical values by 
assigning it the values 1 or 0. Typically the value of 1 is assigned if a specific category is present 
and 0 otherwise. The dataset was then split into 70% training data and 30% testing data to 
evaluate the model’s performance on unseen data. 
3.6 Random Forest Model Configuration 
​ In beginning training for the model, the random forest classifier was initialized with the 
following hyperparameters:  
 
Hyperparameter Description  Value 

N_decisiontrees Number of decision trees​  100 

Random_state​  Ensures reproducibility​  42 

Max_depth No restriction on tree depth
​  

None 

split_limit​  Minimum samples that are 
needed to split a node​  

2 

minimum_leaf_samples Minimum samples per leaf 
node​  

1 

Bootstrap Random subsets of data for 
training​  

True 
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​ The initialized model was trained on the training data set (X_train, y_train), 70% of the 
data set shown, and further tested on the unseen data set (X_test), which was the leftover 30% 
of the original data set.  
3.7 Model Evaluation  
​ 3.7.1 Performance metrics  

Once the random classifier model was trained, its performance was accessed using 
performance metrics. The primary metrics used in this study included precision, recall, F1-score, 
accuracy and a confusion matrix. These metrics provided insight into how well the model 
classified Alzheimer’s diagnoses and how effectively it generalized to unseen data. Accuracy in 
this study is measured to be: 
number of correctly classified cases/all the cases in the input into the model. A crucial area of 
Alzheimer's detection is classification of the number of cognitively normal (CN) cases versus 
fully developed Alzheimer’s Disease (AD) cases, with the most significant information being how 
much more prevalent CN cases are than Alzheimer’s cases. This is why precision, recall, and 
the F1-score had to also be calculated and evaluated with accuracy.  

Precision measured the percentage of correctly predicted Alzheimer’s cases out of all 
predicted Alzheimer’s cases. A high precision value indicates that the model minimizes false 
positives, which is crucial in preventing misdiagnosis. A low precision value therefore indicates 
possible presence of false positives and leads into potential cases of encouraged misdiagnosis. 
Recall assessed how well the model identified actual Alzheimer’s cases, ensuring that true 
positives were captured effectively. F1-score is the mean of precision and recall, and balances 
them both to ensure that the model had high success rates, whilst also maintaining 
generalizability.  

3.7.2 Confusion Matrix 
The confusion matrix depicts how often the model accurately or inaccurately predicts a 

scenario, in this paper’s case, how often the model accurately predicts the presence of 
Alzheimer's compared to the training data it was trained on. In this study the confusion matrix 
was generated to examine the classification results in more detail. It displayed the number of 
true positives (correctly classified Alzheimer’s cases), true negatives (correctly classified 
non-Alzheimer's cases), false positives (healthy individuals incorrectly classified as having 
Alzheimer’s), and false negatives (Alzheimer’s patients incorrectly classified as healthy 
subjects). Analyzing this matrix helped determine if the model had any bias toward a particular 
class and whether adjustments were necessary. 

3.7.3 Feature Importance Analysis  
After the random forest model was completely trained, feature importance values were 

calculated and extracted to provide an understanding of what features contributed most to the 
model's predictions. This also plays a part in determining whether the model tailored itself to 
look at a specific feature over others based on high feature importance values from the training 
data. Because this model is disease prediction based, it was predicted that age would hold one 
of the largest scores, as it is the strongest known predictor of Alzheimer’s onset. Another high 
importance value predicted before running the model was that of Cognitive Test Scores, for 
example MMSE (Mini-Mental State Examination) or MoCA (Montreal Cognitive Assessment), as 
they can be key indicators of cognitive decline. These feature importance values provided 
critical insights into the biological and clinical factors driving model predictions.  
3.8 User input 
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​ To allow real time functionality and usability, a predict_alzheimer’s function was built in 
which all the user is prompted to enter all the key clinical data included in the training data set. 
The user’s input is then processed and prepared to match the format used in training the model. 
Categorical variables such as gender are converted into binary values and any missing features 
are handled by setting default values, ensuring the input data aligns with the model’s expected 
input. 
​ Once the data has been processed, it uses the trained Random forest model to make a 
prediction, outputting whether the individual is likely to have Alzheimer's disease. 

4.​ Discussion/Analysis: 
4.1 Data Analysis  
​ The model’s validity was evaluated using the metrics of accuracy, classification report, 
confusion matrix, and feature importance as previously mentioned.  
​ 4.1.1 Accuracy  
​ The model received an accuracy score of 1.00, indicating that there is 100% accuracy 
and that it correctly diagnosed each patient in the data set based on the designated variable 
values. While this perfect accuracy is an impressive result, it suggests that the model may be 
overfitting, meaning it could perform well on the current dataset but may not generalize to 
unseen data. Overfitting generally occurs when the model learns beyond just the patterns of the 
training data set, but also its noise and details specific to only that data set. In the case of this 
study, this could mean that the dataset is not diverse enough or is too small. This also does 
indicate that there may be biases present in the training data set. Bias could have been 
introduced if the data set wasn’t representative of the broader population, making it hard to 
generalize the results.  
​ This high accuracy rate could also be because of the simplicity of the data set. As the 
MMSE Score and Hippocampal Volume are the values most closely related to Alzheimer's 
disease prediction, they might dominate the prediction, leading the model to primarily look at 
those values when performing future analyses.  
​ 4.1.2 Classification Report 
​ The classification report provides details about the model’s performance through 
descriptions of precision, recall, and f1-score for both classes (0 = no Alzheimer's, 1 = 
Alzheimer's). Both classes have values of 1.00 for each statistical output, indicating that there 
were no false positives in precision, recall, or f1-score, which averages precision and recall.  
​ 4.1.3 Confusion Matrix  
​ The confusion matrix further depicts the model accuracy and its perfect performance, 
once again encouraging signs of overfitting. It indicates there are 214 true negatives (TN) and 
266 true positives (TP). There are no false positives (FP) or false negatives (FN). The high true 
negatives and true positive values compared to no false positives or negatives introduce the 
possibility of the model having memorized the data and not learned generalizable patterns, 
which is a type of overfitting and would mean there were would be high performance rates, but 
low accuracy rates when introduced to new data sets.  
​ 4.1.4 Feature Importances  
​ The feature importance values provide insight on what variables held the most effect on 
the model’s outputs and predictions. This model’s feature importance values are represented 
below: 
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Feature Feature Importance value  

MMSE_Score 0.500641 

Hippocampal_Volume 0.437367 

Patient_ID 0.025364 

Age 0.022071 

APOE4_Present 0.013380 

Family_History 0.000626 

Gender 0.000552 
 
​ MMSE Score and Hippocampal Volume have the highest scores indicating the most 
impact towards the model predictions. This suggests that cognitive decline, as measured by the 
MMSE score, and hippocampal volume, which is known to be affected by Alzheimer's, were key 
indicators in predicting Alzheimer's diagnosis. Other variables contain lower scores such as age 
and gender, indicating that they also had a contribution, but not nearly as much as the variables 
with higher scores.  

The Patient_ID feature is a unique identification number differentiating patents from one 
another, and should hold no effect on model performance. However, it has a higher score than 
age, which is likely an anomaly, indicating further issues with the training data set. This issue 
likely arised, because when preprocessing the data, the Patient_ID variable was set as a 
feature, letting the model memorize the patterns and create correlations between them and 
diagnoses.  
4.2 Future Scope  
​ 4.2.1 Evaluation Metrics for future testing  
​ A Receiver Operating Characteristic (ROC) curve relative to this study would be a 
mathematical technique to assess how well your model discriminates between the two classes: 
Alzheimer's diagnosis (positive) and no Alzheimer's diagnosis (negative). The area under the 
curve (AUC) value is a quantitative measure of distinction. If the ROC curve shows that the 
model has a very high AUC (close to 1), it means the model is doing an excellent job at 
distinguishing between the two classes at various thresholds, and future testers can undergo 
model refinement until the AUC is a higher value than before. This model would likely have a 
lower AUC value as there are many signs of overfitting.  
​ K Fold cross validation techniques could also be employed. Cross validation is used to 
assess how well your model generalizes to unseen data, especially beneficial in cases like this 
study with such high accuracy scores. To incorporate this technique, the data would likely be 
split into several subsets for which the model would be trained on different combinations of. If 
the performance is still high, the data set likely lacks variability. However, if the accuracy rate 
decreases, there may still be overfitting in the data set.  
​ 4.2.2 Future of Alzheimer’s and machine learning disease prediction 
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​ Advancements in machine learning indicate a strong presence of it in predictive 
diagnosing in the future of Alzheimer's. Machine learning models could identify individuals at 
higher risk for developing Alzheimer’s, enabling early intervention and more personalized 
treatment options. This integration of multi-modal data could revolutionize how we diagnose and 
manage the disease, with the potential for tailored treatments and better patient outcomes. 
​ Along with early detection, machine learning allows for acceleration of drug discovery and 
clinical trials, encouraging efficiency and precision However, for these advancements to be 
effective, it’s essential to ensure that AI models are built with fairness, transparency, and ethical 
considerations in mind, ensuring that technology enhances human decision-making rather than 
replacing it. 

5.​ Conclusion  
The use of machine learning in Alzheimer's disease prediction holds great promise for 

the future of early diagnosis. Through applications of machine learning models, such as the 
random forest classifier, and evaluation metrics, diagnostic accuracy can undergo great 
improvement and encourage early identification of individuals at risk.   

However, challenges like overfitting, biases in training data, and the need for robust 
evaluation metrics remain, highlighting the importance of refining models and ensuring they 
generalize well. With continued advancements and ethical considerations, AI has the potential 
to transform Alzheimer's care, from early detection to personalized interventions and improved 
patient outcomes. 
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