Q Research Archive of

° Rising Scholars (preprint) Where bright minds share their learnings

A-EYE IN THE SKY: Examining Machine Learning-Based Keystroke Reconstruction from
Passive Video Capture

Yong Nathan

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

ABSTRACT

The rapid growth of artificial intelligence (Al) has allowed for unprecedented progress
across disciplines, but has also introduced new cybersecurity threats. Among these are
machine-learning (ML) powered side-channel attacks. In this paper, we explore optical
side-channel attacks, and the role ML plays in this attack vector. We investigate the feasibility of
vision-based keystroke inference as an automated attack vector. Using a publicly available
dataset of typing videos from Hugging Face, we frame the problem as a supervised
classification task and systematically explore a minimal yet effective Neural Network (NN)
pipeline. Our experiments compare five neural network architectures: EfficientNet_BO,
ResNet-8, MobileNetV2_100, ConvNeXt_Tiny, along with a Feed-Forward multilayer perceptron
(MLP). We also explore ten critical hyperparameters and discuss how variations affect
performance. We train 26 models with varying hyperparameters, using Kaggle P100 GPUs. We
evaluate models using F1 score, training loss, validation loss, and validation accuracy. Results
indicate that a pretrained MobileNetV2-100 architecture, trained on min-max normalized,
transformed and generously labeled data without time context, with class balanced training, a
hidden layer, dropout regularization, and a time-based learning-rate schedule, achieves the best
performance with a peak F1 score of 0.542. Our findings demonstrate that effective keystroke
inference can be achieved with relatively modest computational resources and without
sophisticated preprocessing or postprocessing. This suggests that such attacks are within reach
of moderately skilled adversaries and highlights the need for countermeasures to such attack
vectors. We discuss limitations of this work, chiefly dataset frame-label mismatch, and propose
directions for future work such as blind keystroke recognition and inference on mobile devices.

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

CONTENTS PAGE

= R I - X O P ORPR 2
CONTENTS PAGE.......cc oo oiiiiicicccsssns e e s e s e s s s s s s s s s s s s smmmmn s s e e s e e e e eeeeeeeeesssanansssnssnnnnnnn 3
T INTRODUCGTION.......ccoeeeieiieeeieeeei e s s s sss s sssss s s s s e s s e e e s e e e e e e e e e e s s s s s s nsa s s sssssnnsnnmnsnssnnnnnnnnnnnsnnes 6
L R 1 E= 1 C=To BT AY o o OSSR 8
1.1.1 Leveraging Disentangled Representations to Improve Vision-Based Keystroke
Inference Attacks Under Low Data Constraints (Lim et al., 2022) [27]........cccccciirirrirrnnnnn. 9
1.1.2 ClearShot: Eavesdropping on Keyboard Input from Video (Balzarotti et al., 2008)
22] PP PPRPRRRRR 9
1.1.3 Towards a General Video-based Keystroke Inference Attack (Yang et al., 2023) [29]
10
22 O 1N | g @70 o1 (1o U] o] o TP SPPP 10
1.3 HYPOINESIS. ... e e e e e e e e e e e e e e e e e n e e e e e as 10
1.4 Structure of this PAPEr.... ..o e 11
2 METHODOLOGYccciiiiiiisssssnnnmmnnrnrssesssssssssssssssssssssssssssssnssnssssssssssssssssssssssssssssssssssssnnnnnnnes 12
2.1 Standard MethodolOgyooeeiiiiiiicece e 12
J A - = 1 P SPRUR 13
2.2.1 WY it WAS CROSEN......iiiieiei e e e e e e e e e e e eenaaaas 13
2.2.2 Frame-Based analysSiS..........ocouuuiiiiiiiiiie e 14
2.2.3 Limitations of the dataset............cccuuumiiiii e 15
2.3 Data Preparation & Considerations...............oooiiiiiiiiiiiiiiii e 19
2.3.1 Data NOrmaliZation............euuiueeei e s 19
2.3.2 Data Transformation..........cccuueiiiiiiceeeeee e 20
2.3.3 Label and Frame SelecCtion...............uueiiiiiiiiiiiiiiiieeeeee e 23
PG T D 7= = 1 I Y- T [T S 25
FZA |V o To [- SRR 25
2.4.1 EfficientNet_D0 (CNN)......eeiiiiiiiiiee e e e e e e e e e e e 25
2.4.2 RESNETTE (CININ)...ceiiiiiiiiiiiiieeeeee e eeee e e e t e e e e e e e e e e e e e e eeeaeaaeeesaaaaannnnnnes 26
2.4.3 MobileNetV2_100 (CNN)....ooiiiieeee e e e e e 26
2.4.4 CONVNEXE_TINY (CNN)...ouiiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e e e e e aannnnnnes 26
2.4.5 Feed-FOrward (IMLP)...... . 27
2.5 Architecture Hyperparameters............oooi oo 27
2.5, PretraiNed.. .. oo 27
2R I 1o [o [T o = Y=Y R 28
2.5.3 DropouUt Rate........uiiiiieii e 28
2.5.4 Rectified Linear UNit............oooiiiiiiiieeeeee e e e e e eeeas 28
2.6 Training HYPerparameEters.oooooeiiii i e e e e e e e e e eaeees 29
2.6.1 CheCKpOINt SYStEM.......eiiiiieii e e e e e e e e e 29

Research Archive of
Rising Schelars (preprint)

O

2.6.2 Learning Rate SChedUIET...........cooi i 29

2.7 POSE-PrOCESSING. ... ittt ettt ettt e e e e e e e e e e e e e e e e 30
2.8 EVAIUALION. ...t eeaaaaeas 31

P2 < Tt T o B o o] = TP PPERPRPRPPPPPR 31

2.8.2 Other MEIIICS. ..ot e et e e e e e e e e e e e e e e e e e e aaaans 31

3 RESULTS AND ANALYSIS.....ceiiiiiiiieiirrrnanssssss s s s ssssss s s s s s sssss s s s s sssssssmss s s s ssssssnsnssssssnssnnns 33
3.1 Results from dataset hyperparameters............oooooiiiiiiiiiec e 33
3.1.1 Evaluating Normalization..............oooriiiiiiii e 33

3.1.2 Evaluating Data Transformation..............ooooiiiiiiiiii e 34

3.1.3 Evaluating the addition of Time Context...........ccccoeriiii i, 36

3.1.4 Evaluating Generous Labelling..............uuueiiiiiiieeeeeee e 37

3.2 Results from different MOdelS. ... 39
3.3 Results from architecture hyperparameters.............ooovvviiiiiiiiiii e 40
3.3.1 Evaluating Model’'s Pretraining...........ooooooiiiiiiiiiiiiieeeeeeee e 41

3.3.2 Evaluating Class Balanced Training.........cuiuieiiiiiiiiiiiiiiiiieee e 42

3.3.3 Evaluating Hidden Layer...........cooiiiiiii ettt 44

3.3.4 Evaluating Dropout Rate............cooiiiiiiiiiii e 45

3.4 Results from training hyperparameters. ...t 46
3.3.1 Evaluating Learning Rate Scheduler.............ooooiiiiiieeeeeeee e 46

3.5 SUMMArY Of RESUIES.......uiiiiiieiiiiiiiie e 47
3.6 Best combination of hyperparameters worked the best..............cccciccc 47

4 CONCLUSION....... i ssr s ssr e s s s s e e e e s amn e e e s e e s s amnn e e e e e s nnnn e e s e annnnnns 49
o 1 g o] o= o] 1= R EEEPPRSURSTR 49
4.2 Potential COUNEIMEASUIES..........uuuiiiiiiiiiiiii et e e e e e e e e e e e e e e e e e s e 49
G I I o 011 =1 (o o - TP PPPPPPPPPPPRR 50
4.3.1 Further Exploration of Frame-Label mismatch.............ccccoceeiiiiii . 51

4.4 Future Direction Of RESEAICN.........cooiie s 52
4.4.1 Blind Recognition Of KeYStroKES...........cooiiiiiiiiieiee e 52

4.4.2 Keystroke Inference on Mobile Phone Keyboards............cccueeiiiii, 52

5 ACKNOWLEDGEMENT ...ttt snnssr s ssss s smss s s mn e s s e mmnn e e e e s s nnns 53
REFERENCGES........ .t sn e s n e e e e e e e e mmnn e e 54

Where bright minds share their learnings

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

1 INTRODUCTION

Artificial Intelligence (Al) has progressed rapidly in recent years, surpassing prior expert
predictions. Al has been shown to be a transformative force in many fields, with cutting-edge
models being able to outperform humans in many tasks. Use of Al to solve complex problems
has been instrumental for groundbreaking scientific developments in many expert fields. In
biology, Google’s AlphaFold and AlphaFold 2 have been revolutionary in predicting protein
structure [1]. In chemistry, generative Al methods have helped discover millions of specific
chemical structures that were beyond human chemical intuition [2]. In mathematics, recent
advancements showcase Al’s ability to come up with novel syntax, with models being able to
advance the forefront research on advanced mathematical problems [3]. In Physics,
physics-informed Al algorithms have been used to solve computational physics problems [4].
literature presents a mere fraction of Al contributions in cutting-edge science. Outside
academia, commercially available Al tools such as GPT-5 have also been shown to be,
depending on context, superior to the average human’s performance in benchmark tests.
Results from the Theory-of-Mind reasoning benchmark BigToM [5], and the ARC-AGI
benchmark [6], demonstrate that Al's reasoning and comprehension capabilities closely align
with human levels. Other benchmark tests such as GPQA [7] show that these tools already far
surpass the average human in tasks involving solving complex, PhD-level problems in the
domains of biology, physics, and chemistry.

With such advancements, there exist computer security concerns. The field of
cybersecurity has rapidly evolved in importance since the internet’s inception, specifically, the
wide popularization and subsequent adoption of the Internet of Things (loT) technology. It is
defined as the field of protection of “cyberspace and cyberspace-enabled systems from
occurrences that misalign de jure from de facto property rights" [8]. The importance of
cybersecurity has been highlighted on many occasions, from the far-reaching WannaCry
ransomware attack in 2017 [9], to the politically-charged and targeted attack by Russian hackers
of the Ukrainian Power Grid in 2015 [10].

Computer security concerns arising from the fast advancement of Al are well-founded
and justifiable. Al capabilities enable the scanning for vulnerabilities, development of malicious
software, and the ideation of fresh attack vectors, all at a pace previously unattainable by
humans. This indicates a dire future whereby zero-day vulnerabilities and sophisticated
cyberattacks threaten systems globally. Research into the current and potential capabilities of Al
systems indicate that they are more than competent in areas of cyber-attacks, from intelligent
target profiling and vulnerabilities detection, to Al-driven self-learning malware. Al can take over
multiple stages of the “cybersecurity kill chain” [11]. While current Al threats may be more
theoretical than applied, more needs to be done to unearth potential attack vectors.

We posit that this field requires immediate attention because of a series of concerning
factors:

1. Al growth is challenging to model, with studies showing that predicted timelines
independent of expert competence do not correlate with actual growth [12], [13].
Empirical data consistently demonstrate that Al capabilities are advancing at a rapid

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

pace. Given the unpredictability of future development trajectories, it is prudent to
consider scenarios in which this growth persists. Thus, it is paramount that we investigate
the use of Al when it comes to cyberattacks, even if such attacks are presently not being
utilized on a large scale. This ensures that appropriate guardrails and countermeasures
are in place should Al become a significant threat in cyber space.

2. The issue of Al alignment is an important consideration. Alignment is the technical
problem of imbuing Al systems, often black boxes to external observers, with a set of
strict ideals and ethical principles that lead to a set goal. Research shows that as virtuous
alignment improves, this increases the ease with which malicious models can be
misaligned—through model, input, or output tinkering [14]. This presents a catch-22,
whereby as Al models and their alignments improve, the easier it is for malicious actors
to coerce and utilize such models for more sophisticated cyber-attacks.

3. Lastly, the sheer velocity of Al development leads to a widening in the gap of
competencies between cyber-attacks and cybersecurity. This gap reflects a
well-documented asymmetry in cybersecurity, where defensive systems are inherently
reactive and consistently lag behind the rapidly evolving threat landscape. This gap is
steadily widening in the cybersecurity Al arms race, as Al has supercharged the
advancement of attack vectors, allowing malicious actors to overcome defenses and find
undiscovered techniques, bolstering their ability to stay ahead of defensive
developments. A comprehensive study in this area highlights the need for “continuous
innovation and collaboration in the cybersecurity field” for Al-powered defenses to keep
pace with such attacks [15].

In this paper, we shall explore the use of Al, more specifically, vision-based machine
learning, in optical side-channel attacks involving keystroke inference. Machine learning (ML)
techniques used involve artificial neural networks (NNs), defined as “nonlinear statistical data
models that replicate the role of biological NNs” [16]. Vision-based ML refers to computer vision
NN models, which specialize in processing visual data in the form of an image tensor, extracting
information from the image, and generating desired output [17]. We treated the problem
statement as a supervised classification ML problem, which involves training a model on labeled
data, to ideally create a generalized model that can successfully predict discrete categorical
outputs for external data. Side-channel attacks are attacks that exploit information leakage
indirectly by a system during its operation, rather than breaking the system’s intended security
mechanisms directly [18]. Examples include inferring sensitive information like keystrokes
through acoustic emanations [19], through wireless network connections [20], or through power
supply fluctuations [21].

The focus of study was chosen as it comprises another frontier of cybersecurity that must
be sufficiently researched for appropriate defenses to be created to counter future threats. While
the traditional space of cybersecurity will be faced with novel and increasingly sophisticated
attacks, these attacks are limited to within cyberspace. However, side-channel attacks reveal
another dimension of attacks that can be carried out—those outside of cyberspace. Information
extraction from physical leakages of the system is difficult to discover and counter effectively.
Furthermore, side-channel attacks are uniquely positioned to be empowered by increasingly
sophisticated ML algorithms [22]. This is due to these systems' unparalleled ability to analyze,
comprehend, and interpret data that may seem to a human like random and incoherent. ML is

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

able to achieve intelligent human imitation, with NNs able to model the flexibility and ingenuity of
human pattern recognition [23], but with superior processing speeds, higher information storage,
and more efficient information transmission [24]. Al can sift through noise and find patterns at a
rate previously not computationally possible, leading to novel side-channel attacks that are more
effective in capturing sensitive data.

Thus, Al poses a large threat to the field of side-channel attacks, and research into the
field is needed.

This paper focuses on one type of side-channel attack: optical keystroke inference
attacks. We examine the use of ML for automated visual hacking, also colloquially known as
“shoulder surfing” or “visual eavesdropping”, where passive video collection of keystrokes is
used for data extraction. This is notably different from typical side-channel attacks, which tend to
be more covert in nature, such as the aforementioned acoustic emanations or power fluctuation
analysis. However, as the system itself does not need to be breached to engage in such an
attack, it still falls under the classification of a side-channel attack. The rationale behind this
choice of attack was twofold.

First, computer vision is an area that is rapidly developing and could grow to pose
significant dangers. The problem of computer vision has intrigued computer scientists for years,
as it entails giving algorithms the subjective ability of vision. However, in recent years there has
been great success in this area, with the shift towards Convolutional Neural Networks (CNNs)
[25] that are better able to extract features from images. However, with ML that is more
accurately able to comprehend images comes a large array of potential cases of misuse. Issues
of surveillance and privacy is one [26], and in this paper, we explore another alternative
malicious use case, that being computer vision analysis of keystrokes. With computer vision,
attack vectors that would have had to be manually conducted, such as human keystroke
inference, can now be automated to be undertaken at far higher speeds and accuracies. What
would have been an unfeasible attack vector due to limited scalability and human error, can now
be a viable strategy for malicious actors.

Second, keystroke inference from passive video capture presents a real-world problem.
Visual inference of keystrokes is an attack vector that can be used by malicious actors in public
areas. This issue is exacerbated by growing trends of sensitive operations being conducted in
public, on personal devices such as laptops and mobile phones. Such behaviors, like online
banking, are now often conducted where passive video data can be easily recovered. For
example, the prevalence of security cameras could potentially provide footage for such attacks.

Since both the method of attack is developing in sophistication and the difficulty of attack
is increasing in ease, we thus chose to investigate this problem.

1.1 Related Work

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

Conducting a literature review, we examined 3 papers that explored a similar threat
space. These papers were chosen to provide a range of different methodologies, conclusions
and focuses.

1.1.1 Leveraging Disentangled Representations to Improve Vision-Based Keystroke
Inference Attacks Under Low Data Constraints (Lim et al., 2022) [27]

This paper explores video domain adaptation by introducing synthetic data into training.
The purpose is to showcase a realistic use case of keystroke inference that does not require an
unrealistic amount of input data. The study was able to achieve 95% accuracy in character
detection with only 100 videos of 300 frames each. This indicates an increased practicality of
such keystroke inference attacks.

In terms of methodology, they utilized 10% of the training set as a validation set. Labels
were limited to 26 letters and 4 additional tokens. They scored the model on character detection
accuracy, and on postprocessing of their output on language models. They utilized Bleu-n,
ROUGE, and METEOR, which are metrics for word coherence and precision.

Their conclusion was that deep learning methods could be used by adversaries to
achieve accurate models with limited data. The authors also argued that, holding all other
hyperparameters constant, an attacker using deep learning methods would outperform one with
a shallow method. This is an observation in other fields of computer vision problems.

1.1.2 ClearShot: Eavesdropping on Keyboard Input from Video (Balzarotti et al., 2008) [28]

This paper presents a, at the time, novel approach to keystroke inference from video,
utilizing motion tracking, sentence reconstruction, and error correction. The researchers
constructed a tool, called ClearShot, that can extract a substantial portion of typed data from
video.

Their methodology involved a frame-by-frame analysis, whereby each frame of data was
the input for the NN, with output being a solution space of possible keystrokes. This was then
input for text analysis, which, utilizing context and language-sensitive error correction, produced
an array of possible words for each word in a reconstructed sentence.

Researchers attempted optical flow analysis, using temporal context via previous frames
to make an informed analysis of a certain frame. However, due to the proposed reasons of noise
and complexity in typing patterns, this proved unsuccessful. Researchers also disregarded
using skin tone analysis as it was seen as inefficient and sensitive to the whole hand placement,
rather than to only movement in the fingertips of video subjects.

They concluded that this was a viable vector of attack with a reasonable recovery rate
near that of other side-channel attacks of the time, and comparable to humans tasked with the
same visual keystroke inference.

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

1.1.3 Towards a General Video-based Keystroke Inference Attack (Yang et al., 2023) [29]

This paper aims to increase the feasibility of keystroke inference attacks by training
models that function in realistic attack scenarios. Researchers created a pipeline for an attack
that assumes no pretraining with training data, no knowledge of keyboard layout nor typing
style, and no external sensors. Using purely video data collected in noisy environments with a
commercially available camera, the study was able to create an accurate keystroke inference
model.

A two-layer self-supervised system was used, where initial hand tracking is used to run
keystroke detection/clustering for the video, which is processed by a language-based model to
recognize keystrokes based on occurrence. This provides the labels for CNN model training,
which took single-frame data as input along with a label assigned from the first layer. This
self-supervised model was able to predict characters with a 92-97% accuracy, depending on the
character, with only about 3000 keystrokes, equivalent to 15 minutes of typing. The model was
able to adapt to different environments, keyboards, and users with different speeds and styles of

typing.

This paper was able to show that a general, vision-based keystroke inference attack
could be a feasible attack vector despite short footage and a lack of pretraining.

1.2 Our Contribution

This paper intends to explore a similar problem space to the three studies mentioned
above. As a synthesis paper, we plan to examine the process of creating a NN to solve this
problem, sharing the considerations that factored into the final model. We will also explore the
permutations of different parameters and how they affected performance. For example, we will
compare various easily accessible vision models, conducting a parallel study to compare how
each model performs.

The pipeline we intend to use is one simpler in nature, with just a CNN without significant
preprocessing nor postprocessing. The goal of this project is to synthesize the fundamentals
of keystroke inference models, and construct a baseline model with a reduction in
complexity, comprising only the most critical components. This was partially a practical
decision due to a lack of expertise in the area, along with the desire to build our pipeline from
the ground up in order to document the entire process. From a significance perspective, this can
provide the scientific community with a grasp on what an amateur can achieve using publicly
available resources, a case study that could be more indicative of what the majority layman
population of malicious actors are capable of.

1.3 Hypothesis

Our hypothesis is that a suitably generalized model can be trained from a limited dataset,
using an unsophisticated model. We define suitably generalized as a model that can perform

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

well with fresh test data, with the metric for this performance being the F1 score. A limited
dataset is defined as a video dataset that has a total length of less than 2 hours. This number
was chosen as it is rather feasible for malicious actors to obtain footage of such length, for
example through security cameras, or via manual filming in a public space such as a work cafe.
Lastly an unsophisticated model refers to one that comprises just the NN, without significant
preprocessing nor a complex pipeline as seen in all 3 of the studies we reviewed in Section 1.2.

1.4 Structure of this paper

This paper will be structured as follows. In the above few sections is the introduction,
where terms are defined and background information provided. A literature review was also
conducted to lay the groundwork for our further research.

The following section is Methodology, where we will discuss the experiments conducted
and the different considerations that went into hyperparameter values. We will first go over our
dataset and its preparation. Next, we will discuss the network itself, providing a comprehensive
explanation as to certain developmental decisions made, with the explicit goal of providing a
well-reasoned, coherent, and easily replicable experiment. We will also explore some of the
additional components we may have chosen to exclude, and the rationale behind these choices.
Then, evaluation criteria will be outlined including our driving motivation behind them.

Next will be the results and analysis section, where we will share the data collected from
these experiments in graphical form. This includes results across different variations of the
model, organized into 10 different experiments. We will analyze each experiment to draw
conclusions about varying hyperparameters.

Lastly, in the Conclusion section, we will discuss the implications of our project, and

address whether our hypothesis is to be accepted. We will also explore certain study-wide
limitations along with avenues for future research.

10

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

2 METHODOLOGY

An overview of our methodology is as follows. We utilized a standard workflow, with our
model framework built on PyTorch, a Python library regularly employed by ML researchers.
PyTorch, developed by Facebook Al Research lab (FAIR) in 2016, provides significant
capabilities such as Graphics Processing Unit (GPU) acceleration through Compute Unified
Device Architecture (CUDA), along with easy integration with existing Python modules, granting
it flexibility and lasting forward compatibility. It rapidly became a reliable tool for researchers,
with the majority of ML research using PyTorch implementations today, as seen from a cursory
exploration of papers on arXiv and in top conferences.

The following sections go into the details regarding the considerations and decisions
made in our data preparation, model training, and model evaluation phases. Our code base can
be found attached in a GitHub Repository at the end of this paper.

2.1 Standard Methodology

To provide background and terms for Sections 2.2-2.8, we will give a brief overview on
standard methodology within the space, from our literature review and expert guidance.

Studies begin with the finding or collection of data. For larger-scale operations, this can
involve collecting data from experiments directly. However, this is resource-intensive due to the
large amount of data required, and is thus often undertaken only by universities, labs, and
for-profit enterprises. For individual researchers, this is often less than feasible, and as such
many empirical studies in ML mainly rely on the data available on code-hosting platforms like
Hugging Face. These provide large, publicly available datasets that can be used for training.

Data preparation is the next step, often taking up most of the actual experimental time.
One study suggests such preparation work comprises 80-90% of the project itself [30]. One
element of preparation is data labelling. Data must be accurately labelled to ensure the model is
being trained on valid information [31]. Otherwise, the common axiom of “Garbage In Garbage
Out” holds true, whereby the quality of output from a NN is only as valid as the data that is fed
in. Data preparation also involves gauging possible issues with the data and solving it
preemptively. An element of this is data normalization, where data is sanitized and standardized.
This is to ensure that the scale of features present the dataset is in the same range, such that
no one feature contributes disproportionately to the model’s output.

Once the data is prepared, we move on to the loading and training phases.

Loading data involves batching and shuffling. Batching is the grouping of samples
together for the model to process concurrently, which improves efficiency and speed of training,
while stabilizing gradient estimates. For this step, the batch size is a variable that can and
should be adjusted through iterative development—smaller batches are better for memory and
generalization, but face longer training times and noisier gradients, and vice versa for larger

11

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

batches. Meanwhile, shuffling is often automated in Python PyTorch, and involves
randomization of samples for training such that models do not overfit to the sequence of data.

Training phase involves a NN that should be designed with the goal in mind. NNs can
take many forms, and for this paper we went with both a CNN and a standard feed-forward NN
to compare the two. Both architectures employed different commercially available models, and
different hyperparameters such as hidden layers and dropout rate. Most of our NNs used a
similar input and output structure, that being an input of one frame and an output of a label
between 38 classes, comprising 26 letters of the alphabet, 10 number characters, space, and a
blank character denoting a frame where no keystrokes are occurring. Lastly, some training
hyperparameters such as epoch count, learning rate, and optimizers are chosen.

When training is run, cycles iteratively tweak each parameter in the NN through training
loss and back propagation. The validation dataset is used to generate validation loss. This is a
good metric for the quality of training, since it is data the model is not trained on. For example,
validation loss increasing while training loss decreases is a standard signal of overfitting.

Lastly, the trained model is evaluated, and the whole cycle is repeated with varying
parameters to conduct a review of different components of the pipeline.

2.2 Dataset

The dataset used in this study was sourced from Hugging Face. This was the
“‘Keystroke-Typing-Videos” dataset published in 2025, by user Andrew Tran
(https://huggingface.co/datasets/andrewt28/keystroke-typing-videos). The dataset comprised
800 videos with a mean video length of about 6.73 seconds, and an average of about 29.5
frames per second, giving a database of 158854 frames and 40862 frames with keystrokes. The
data was also labelled with a keystrokes array, indicating the key pressed and millisecond
timestamp data, along with the full sentence typed.

We separated the dataset into 620 videos for training, and 120 videos for validation and
testing.

2.2.1 Why it was chosen

The dataset was chosen as it was the most appropriate dataset publicly available. The
video data had a consistent user typing, a consistent keyboard, and a consistent camera angle.
Lighting was also largely consistent. Keeping these other factors controlled was imperative to
ensure the prospective NN trained on such a dataset would only generalize based on hand
placement, and not on other features. The author was also meticulous in labelling the
timestamped information of keypresses, thus ensuring that frame-by-frame analysis was
possible, as we could infer the frame labels.

Example images of the dataset are shown below in Figures 1a and 1b.

12

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

Sample Frame 1 Sample Frame 2

uuuuu

3 o & [l Il L] 5 v T

Figures 1a, 2b, respectively: These sample frames of the dataset are two different frames from
different videos, and illustrate how lighting, keyboard position, and user are all kept constant
throughout the videos.

2.2.2 Frame-Based analysis

The choice to conduct analysis on a frame-by-frame basis was one that we decided upon
after extensive research and consideration. Initially, the idea of video input was intriguing to us
as it seemed logical from a task goal perspective: The initial input being a video would allow the
NN to recognize features such as hand movements, giving the NN temporal context to
determine the words being typed. However, when breaking down the problem we found issues
with video-based input.

Video-based feature extraction is a possible route for ML, with studies having been done
in the area. Action recognition is a common field, with the UCF50 [32] being one of the most
famous video datasets comprising over 6000 samples. Models such as MC3_18 are also crafted
for this purpose, being able to take in a large amount of input data, that being a 4-dimensional
tensor with height, width, channels, and a 4th temporal dimension. These models comprise a
3-dimensional CNN.

However, we chose not to due to the following reasons.

First, resource constraints. The heavy compute power required for video-based analysis,
due to sheer size of the data and the required network parameters, was difficult for us to obtain.
Studies show that video-based 3D CNNs can take 27 times the amount of compute compared to
2D CNNs doing frame-by-frame analysis [33], and thus 3D CNNs are inefficient a large portion
of the time. Since this amount of computing resource was not available to us, using video-based
analysis would lead to unfeasibly long training times and thus hinder our ability to conduct
iterative development and experiments into the tweaking of different constraints.

Second, the importance of temporal context was limited and could also lead to more
issues. Pre-frame context could explain why hand placement was different for different keys, for

13

B :
a :‘ie:i:";r;:;ﬁ;':fp?:prim) Where bright minds share their learnings

instance, as seen in Figure 2 where the same letter “b” is typed, but hand placement is different
due to the previous keystroke. However, it could lead to overfitting in the cases where the NN
learned patterns for certain words, for instance that “u” was often pressed after “q”. Without a
way to reliably ensure the NN would be able to distinguish characters, it would leave the NN
competent in sentence analysis while less competent in character analysis. Since the goal of
this experiment would be to simulate an attack vector, the data to be recovered is unlikely to
follow English syntax. Instead it may be a random string of ASCII as seen in many people’s
passwords. As such, each key press should be independent of other keystrokes, something that
would be difficult for video-based analysis to achieve.

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Figure 2: This shows 6 frames from different samples whereby the same letter ‘b’ is typed. This
shows the importance of temporal context as due to hand placement before the frame in
question, some frames show the left hand used to type ‘b’, while other frames show the right
hand being used.

Our literature review further validated this stance, with most studies we found conducting
similar experiments also choosing to utilize each singular frame as input.

It is to be noted that we did attempt at a hybrid method, that being frame-based analysis,
where a set of three sequential frames would be the input, arranged in chronological order. This
was conducted by splitting the dataset into overlapping sets of three frames, with the center
frame being where the keystroke occurred. The theoretical idea was to include a brief amount of
temporal context, which was hypothesized to help the model better generalize out keystrokes as
it could extract information such as the previous and future positions of the fingers to gauge
travel. Results from this method can be found in Section 3.1.3.

2.2.3 Limitations of the dataset

14

ﬁ Research Archive of
«>» Rising Scholars (preprint)

The dataset was far from evenly distributed in terms of keystroke types. This is plotted
out below in Figure 3. The spread between the most common key and least common key is also
rather large at 89210, between 'nothing'=89210 and 'question'=0, suggesting the dataset is far
from evenly weighted.

Keystroke Frequency (Descending Order)

|0000 4

60000

Frequency

&
=]
=
=

20000 4

Figure 3: Shows the number of occurrences for each keystroke label, sorted in descending
order. The distribution is imbalanced, with “nothing” labels and common keys such as space
dominating the dataset, while many other keys appear only rarely or not at all

Furthermore, there is severely low representation of certain keys, such as 'question’,
‘colon’, or 'Q', which have 0, 1 and 1 occurrences respectively. This is very concerning, as with
such low numbers of samples, the model will be unlikely to be able to generalize features for
these keys.

Next, the videos were far larger in terms of storage usage than necessary. Much of each
frame was redundant pixel data that did not contribute to the features needed to discern
keystrokes. As seen in figure 4, a significant portion of the image contains information outside
the keyboard, where little to nothing changes from frame to frame. Including such redundant
information will increase training times, and may even decrease accuracy as it draws model
attention away from the focus area, that being the keyboard.

15

Where bright minds share their learnings

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

Sample Frame

Figure 4: Shows a sample frame. The unnecessary pixel data is highlighted in red. This
information is not important for the keystroke inference and just contributes additional noise.

However, by far the most pressing issue was the presence of seemingly random delays
in the videos. This delay was present between the timestamp indicated on the keystroke event
labels, and the actual frame at which the keystroke occurred, as judged visually by us.
Concerningly, the delay appeared to be random and present in both directions. From manual
inspection, we found instances of the timestamp preceding the keystroke by ~60ms, over 2
frames. In other instances, the timestamp was labeled more than ~50ms after the frame where
the keystroke visually occurred. There was a lack of discernible patterns to these delays: There
were multiple videos where positive offsets were initially observed, but as the frames
progressed, the offsets decreased and became negative. Other videos exhibited the opposite
effect.

This effect is illustrated in the below 5-frame timelines, Figures 5a, 5b, and 5c. Note that
“frame pts” refers to the timestamp in milliseconds as recorded by the camera. At refers to the
difference between “frame pts” and the recorded timestamp of the keypress. The frame
highlighted in red is the frame labelled with the keypress by the closest approximation.

16

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

frame timeline on 'v' keypress frame timeline on 'e' keypress frame timeline on 'o' keypress
YP

frame pts=1366.7 ms frame pts=7300.0 ms frame pts=3966.7 ms
At=-73.3 ms At=-87.0 ms A=-75.3 ms

frame pts=1400.0 ms frame pts=7333.3 ms frame pts=4000.0 ms
At=-40.0 ms At=-53.7 ms At=-42.0 ms

frame pts=1433.3 ms frame pts=7366.7 ms frame pts=4033.3 ms
keytroke tmestamp=1440 ms keytroke tmestamp=7387 ms keytroke timestamp=4042 ms
At=-6.7 ms At=-20.3 ms At=-8.7 ms

frame pts=1466.7 ms frame pts=7400.0 ms frame pts=4066.7 ms
Ar=+26.7 ms At=+13.0ms A=+24.7 ms

frame pts=1500.0 ms frame p1s=7433.2 ms frame pts=4100.0 ms
Ar=+60.0 ms At=+46.3 ms At=4+58.0 ms

Figure 5a: Figure 5b: Figure 5c:
Timeline for a random ‘v’ Timeline for a random ‘e’ Timeline for a random ‘0’
keypress. In this series of keypress. In this series of keypress. In this series of

frames, the actual keypress frames, the actual keypress frames, the actual keypress
occurs at At=+60.0ms, 2 frames occurs at At=-87.0ms, 2 occurs at At=-75.3ms, 2 frames
after the labeled frame. frames before the labeled before the labeled frame.
frame.

17

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

A suspected reason is the method for data collection. The keystrokes recording was likely
conducted on the computer, allowing for little to no delay due to hardware wiring. Conversely,
the image-capture device was likely an external camera, and thus would face delays in
capturing keystrokes if linked wirelessly or with a slower hardware cable. However, this would
explain a fixed delay between label and actual keystroke, but does not adequately explain the
randomness observed. A possible further explanation is that the camera experienced variable
buffering, whereby images were stored before being written to memory. Since this is determined
by the speed of the write operation, it can vary from frame to frame, leading to a certain
randomness, or jitter, in delays.

Another possible reason is Variable Frame Rate (VFR), whereby the presentation
timestamp (PTS) of frames drifts and is corrected. This is a common capture mode, and is the
default on commercial cameras and mobile phones. VFR and PTS are reliable capture methods.
However, PTS is based on the camera's internal clock, which may run at variable speeds to the
keylogger clock. We suspect that small drifts built up, leading to offsets. Some drivers
periodically resync timestamps, producing sudden £1-2 frame shifts. This can explain the
random nature and changing direction of offsets.

Yet another hypothesis is an operating system problem that would have led to inaccurate
labels. Keystroke event timestamping is polled at a dynamic refresh rate. If under load, the
system may buffer event timestamps, delaying them by milliseconds. When the system later
processes them, this can introduce random delays. These delays would likely be going in one
direction, which is the camera capture being frames ahead of the labels. This can explain why,
at times, the keystroke frame occurs before the label.

The superposition of several sources is likely at play in this phenomenon. Do note that
we attempted, with some success, to mitigate this issue via labelling frames within a larger
temporal window, that being £50ms. This means that more frames, around three on average,
would be labelled with a certain label for a given keystroke. This aimed to increase the
generosity of the labelling, and ensure that keystrokes that occurred a temporal distance away
from the attached timestamp would still be captured with the correct label. The results will be
covered in Section 3.1.4

2.3 Data Preparation & Considerations

Below are the core steps of data preparation that we executed. Included also are our
additional considerations that went into this phase.

2.3.1 Data Normalization
Each frame in the dataset was represented by a tensor [C, H, W] of shape [3, 480, 640],

where 3 denotes the RGB color channels, 480 the image height in pixels, and 640 the image
width in pixels.

18

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

Each RGB channel comprised integers from [0-255]. This required normalization, the
research standard for mapping [0-255] values to [0-1] floating representation. We chose to use
min-max normalization, known as rescaling. This involves a quick mathematical operation of
dividing every value by 255.

The rationale behind this normalization is to provide numerical stabilization in
optimization. Numerical stabilization is where the optimization algorithm can maintain accuracy
without amplifying data features. An unstable numerical method, conversely, displays significant
changes in outputs for minor changes in inputs, affecting model generalization [34]. High input
values (>1.0) can cause overflow or underflow issues for optimizers, leading to numerical
instability. This can be explained by common activation functions being designed with a stable
range of [0-1] in mind.

It should be noted that another method of normalization is z-scaling, also termed as
standardization, which we did attempt. This is where each value is rescaled such that the
resulting distribution has mean of zero and a unit variance. We compared the two methods of
normalization and their impact on model performance. Results of this comparison are in Section
3.1.1.

2.3.2 Data Transformation
Some transformation was done on the data.

First, the 3-Channel RGB frame data was flattened into a 1-Channel black and white
sample. This was a complicated process as it also involved changing the use of certain models,
which had to be augmented to accept single-channel data. One reason this was done is that
single-channel analysis helps limit the complexity of the space, thus reducing memory and
compute requirements. Another reason is that single-channel analysis may be better for pattern
recognition, especially for tasks like keystroke inference, where color is unimportant. For such
tasks, color data may dilute the number of features the NN can be attentive to, thus increasing
the unnecessary noise the model must learn to ignore. This is why such data augmentation is
seen in famous datasets such as the Modified National Institute of Standards and Technology
(MNIST) dataset [25]. This transformation is seen below in Figure 6.

19

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

Grayscale Image

Figure 6: Shows a sample frame that has undergone the grayscale transformation.

Second, a contrast boost is applied to the image. This increases the differences in pixel
values, thus amplifying existing trends. The mathematical patterns present will have more
prominent differences, making it easier for the NN to extract relevant features. In this project, a
value of 2.0 was chosen for the contrast factor. The transformation is seen below in Figure 7.

20

B ;
a :‘ie:i:;r;:r::ﬁ;l:fp?:prim) Where bright minds share their learnings

Grayscale and Contrast Boosted Image

Figure 7: Shows a sample frame that has undergone the grayscale transformation and the
subsequent contrast boost.

Third, the image is cropped. This addresses the limitation highlighted in 2.2.3 of
redundant pixel data by cropping out sections of the video that do not contain necessary
information for keystroke inference. The rationale is to reduce the amount of storage used by
the training set, thus speeding up loading and training times. Another rationale would be to
reduce the noise fed into the NN, ensuring it is better able to pick up on actual features such as
changes in hand placement. The crop is illustrated in Figure 8.

21

N, .
6 :ie:iz‘;r;:&ﬁ::fp‘::pr]m) Where bright minds share their learnings

Grayscale, Contrast Boosted, and Cropped Image
= 3

Figure 8: Shows a sample frame that has undergone the grayscale transformation, the
subsequent contrast boost, as well as the crop.

Fourth, downsampling of the video. This was a reduction in the pixel density of the image.
This was largely to decrease the size of the samples to reduce Random Access Memory (RAM)
usage and training times. This was deemed as practical as the initial resolution of the video,
[480, 640], was far higher than required for feature extraction. A scale factor is the size of the
output image as a fraction of the original image. We chose a downsampling scale factor of 0.5
after visually comparing other scales. This comparison is shown below in figures 9a, 9b and 9c.
As such, the final uncropped frame resolution was [240, 320], while the cropped frame
resolution was [150, 280].

22

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

Original Image 0.5 scale Image

Il] 5 v T

0.25 scale Image

2 1 1 - L]

Figures 9a, 9b, 9c, respectively. This set of images illustrate the different downsampling scale
factors, of 1.0, 0.5 and 0.25. As can be observed visually, a scale of 0.5 preserves the core
features without compromising resolution, while 0.25 results in a loss of significant details, such
as keyboard letters. As such, 0.5 scale is the most suitable.

Overall, these transformations reduced the training sample size from 58.31GB to 6.38GB.
This allowed for superior training speeds and accuracy.

2.3.3 Label and Frame Selection

This is to address the limitation highlighted in 2.2.3 of poor distribution of labels. Initially,
the dataset comprised 76 labels, including lower and uppercase alphabets, numbers,
punctuation, and other standard keyboard keys such as "Shift_L".

First, we merged lower-case and upper-case letters. This decision was due to the low
count of certain upper-case letters such as 'Q’, 'Z', and 'X". This was also decided as we felt that
capital letters may confuse the NN, considering it would have to extract the feature of the shift
key being held down when typing capital letters.

23

Q Research Archive of

° Rising Scholars (preprint) Where bright minds share their learnings

Next, we removed all classes involving punctuation, excluding 'Space'. This was because
we wanted to focus on just the alphanumeric characters that were more prominent in the
dataset. Removed labels had their frames relabeled to 'nothing'.

Lastly, 'nothing' frames constituted the majority of the dataset (69.1% of all frames). Thus,
we applied random undersampling to reduce their dominance. We retained one out of every 30
'nothing' frames to preserve representativeness while preventing class imbalance, discarding
the remaining 29. This reduced the number of 'nothing' frames to 2880, resulting in a more
balanced dataset. Without this selection, the model could trivially achieve 69.1% accuracy by
always predicting 'nothing’, without learning to generalize to actual keystrokes. Thus, this step
was required.

These changes led to a better distribution, shown below in Figure 10. We were left with
38 classes.

Keystroke Frequency (Descending Order)

G000 4

5000 4

Frequency

Figure 10: Shows the number of occurrences for each keystroke label, sorted in descending
order. The distribution has been improved from Figure 3.

While distribution was improved, it is evident that it is still far from perfectly balanced. We
did not want any further data manipulation out of concern that it could impact training outcomes.
As such, we did attempt weighted training, also called class balanced training, which will be
reviewed in Section 3. Class balanced training is where loss contribution of each sample is
scaled by a weight inversely proportional to its class frequency. This prevents the model from
minimizing loss by favoring majority classes, incentivizing the model to generalize for rare
classes. This approach balances the loss so that each class contributes approximately equally
to the gradient update, regardless of its prevalence.

24

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

class weights = [len(train samples) / (num classes *
d[i]) for 1 in range (num classes)]

weights tensor = torch.tensor(class weights,
dtype=torch.float) .to(device)

weights tensor = torch.clamp(weights tensor,
max=10.0, min=1.0)

We implemented this with the code snippet above. We used a basic inverse function to
compute inverse-frequency weights for all classes. We then convert this into a tensor for
PyTorch and clamp the weights to prevent destabilization due to extreme weights.

2.3.4 Data Loading

We chose a batch size of 16 for data loading. This was empirically determined as the
largest size that could be accommodated within the available GPU memory while maintaining
stable training dynamics. This is a smaller batch size, which helps introduce beneficial noise into
gradient descent. This allows for more changes in gradient per epoch, something important for
datasets of limited scale such as ours to achieve generalization.

2.4 Models

We evaluated multiple convolutional neural network (CNN) model architectures. Each
model had a different design paradigm, which would yield varying results on the keystroke
inference task. By benchmarking across a range of models, we sought to compare performance
and identify the most appropriate architecture. In this section, we will give a brief overview of the
models we chose to use, along with their features. For definition purposes, Floating Point
Operations (FLOPs) refers to a mathematical operation conducted on a floating-point number.
The total required FLOPs for a model's inference refers to the total number of operations the
model conducts to evaluate an input and produce an output, and is thus a measure of model
efficiency.

In addition to convolutional backbones, a feed-forward NN was implemented as a
baseline. This architecture is also called a Multi-Layer Perceptron (MLP).

We report parameters and total FLOPs at 224x224 resolution with 3-Channels for all
models (CNNs and MLP) to ensure fair comparability.

2.4.1 EfficientNet_b0 (CNN)
EfficientNet was introduced by Tan and Le (2019) [35] as a family of CNNs derived

through Neural Architecture Search (NAS), an automated process for designing highly optimized
architectures. This allowed for innovative optimization improvements; one example is

25

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

depth-wise convolutions, where features are extracted on a per-channel basis, before later
being merged to capture information on the whole image, thus reducing compute used.
EfficientNet-BO is the baseline model.

EfficientNet-B0O achieves competitive ImageNet accuracy with substantially fewer
parameters and FLOPs compared to earlier CNNs. It is a strong base model and is often use in
vision problems as an initial baseline. Its emphasis on parameter efficiency also reduces the risk
of overfitting on small datasets.

EfficientNet-BO has approximately 5.3 million parameters and requires 0.39 billion FLOPs
for inference at standard 224x224 resolution with 3-Channels [36].

2.4.2 ResNet18 (CNN)

ResNet, introduced in Kaiming He et al. in 2015 [37], was the first major architecture to
popularize the concept of residual learning through skip connections. This is where input layer
features are combined with features of the output layer, allowing for the “skipping over” of layers
in between. Thus, ResNet is easier to optimize, and benefits from less gradient degradation with
increased depth. ResNet-18 is a standard variant in the ResNet family, with 18 layers.

ResNet-18 is also widely used in research. Its architecture enables efficient training and
strong convergence even without sophisticated scaling.

ResNet-18 has approximately 11.7 million parameters and requires 1.8 billion FLOPs at
224x224 resolution with 3-Channels [38], [39].

2.4.3 MobileNetV2_100 (CNN)

MobileNetV2, introduced by Sandler et al. in 2018 [40], is a CNN designed for efficient
deployment on mobile and other resource-constrained devices. This architecture takes an
inverse approach to ResNet, introducing inverted residuals and linear bottlenecks, where input
and output layers are limited in size while intermediate layers are allowed to increase
dimensionality. Intermediate layers are processed with depth-wise convolutions, similar to
MobileNetV1 and EfficientNet. This significantly reduces computation while maintaining
representational capacity. The “100” variant denotes the default width multiplier.

MobileNetV2-100 is a lightweight and powerful model, with fewer parameters than
ResNet-18 or EfficientNet. It has been widely used in medical imaging analysis. This model was
used to test the feasibility of keystroke inference being deployed on resource-constrained
devices. We hypothesize this to be the main vector of future attacks, given the more covert
nature of utilizing a mobile phone or a laptop to conduct the inference.

MobileNetV2-100 has approximately 3.5 million parameters and requires 0.3 billion
FLOPs at 224x224 resolution with 3-Channels [41].

26

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

2.4.4 ConvNeXt_Tiny (CNN)

ConvNeXt, developed by Liu et al [42]. in 2022, is a CNN architecture inspired by design
elements of Vision Transformers (ViTs), a recent alternative to CNNs. Researches updated
traditional CNN structures with modern architecture choices. For example, the model uses large,
7x7 kernels so CNNs can capture broader context, similar to the global attention present in ViTs.
The Tiny variant is the smallest model in the ConvNeXt family.

ConvNeXt-Tiny achieves high accuracy with improved representational power. It thus
provides performance on par with the superior ViTs, while retaining the inductive bias and
efficiency of CNNs.

ConvNeXt-Tiny has approximately 28.0 million parameters and requires 4.47 billion
FLOPs at 224x224 resolution with 3-Channels [43].

2.4.5 Feed-Forward (MLP)

MLPs are the earliest form of artificial NNs, originating from a 1958 paper by F.
Rosenblatt [44]. They are more basic than modern architectures. In vision problems,
feed-forward is often seen as inferior to CNNs, as they are unable to evaluate features spatially.
This architecture consists solely of fully connected layers applied to flattened image tensors,
without the use of convolutional techniques to extract features. However, this does make MLPs
less computationally expensive. An example is how CNNs have sliding window analysis which
substantially increases the number of operations for a given image input size.

MLPs learn direct mappings from raw pixels to class labels. This means that every output
label in the output layer is directly connected to every pixel through a chain of dense weights.
This makes pattern recognition difficult as there is no explicit notion of locality.

Its inclusion served as a control to evaluate the extent to which spatial feature extraction
is necessary for keystroke classification. While computationally efficient and straightforward to
train, the model is hypothesized to underperform CNNs.

Parameter and FLOPs count can be calculated easily for a MLP. A 224x224 resolution
image tensor with 3-Channels can be flattened into a 150528 dimensional vector, and passed
through a stack of dense layers. Assuming one hidden layer, as we have implemented, this
would contain 77.4 million parameters, requiring around 0.15 billion FLOPs per forward pass.

2.5 Architecture Hyperparameters
Model hyperparameters refer to the initial configuration of the architecture that is set prior

to training. This section outlines the principal hyperparameters chosen in this study and their
rationale.

27

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

2.5.1 Pretrained

We attempted using both pretrained (for CNN models) and non-pretrained
hyperparameters for the architectures used. We hypothesized that pretrained models were
lacking in accuracy. This was due to our reasoning that many commercial models are trained on
very large and varied datasets, and are not suited for a task requiring only a specific
classification ability. For instance, the reputable ImageNet-1k that was used to train EfficientNet
comprises 1000 object classes and 1281167 training images [45]. Many features learned within
the pretrained EfficientNet are likely not helpful for this study, and only further confuse the
model.

We considered layer freezing with pretrained models. This involves freezing the lower
layers within the CNN. Theoretically, this can capture low-level feature recognition that trained
CNNs have already mastered, while allowing the model to adjust later parameters
corresponding to higher-level features to extract finer details from samples. However, we
hypothesized that this would be unhelpful in this problem. This was due to the complex nature of
the task, where existing parameters likely had to be completely retuned to be used in such a
specific domain. We hypothesized that keystroke recognition requires significant retuning across
the network, as even low-level pretrained filters would not be sufficiently aligned with the visual
patterns in this dataset.

Non-pretrained architectures were used for the majority of experiments. We did run
experiments to compare pretrained architectures with pretrained architectures trained with
freezing, along with non-pretrained architectures. Results will be reported in Section 3.

2.5.2 Hidden Layer

A hidden fully connected layer of size 512 units was introduced in the classifier head.
This was to account for more complex feature extraction, and is often a standard design choice
for vision problems. Performance with the hidden layer was better than without, and these
results will again be shared in Section 3.

2.5.3 Dropout Rate

Dropout is a regularization technique, often used in vision problems and the wider ML
space. During training, a random selection of neurons are set to zero, the proportion of which is
determined by the dropout rate. This does not carry on to validation nor testing phases. This
encourages generalization and prevents overfitting, as it prevents the NN from relying on certain
specific pathways.

A dropout factor of 0.4 was chosen. This is rather aggressive but was chosen due to the
observed tendency to overfit and the small dataset size.

2.5.4 Rectified Linear Unit

28

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

Rectified Linear Unit (ReLU) is a widely-used activation function in vision problems.
Defined as f(x) = max(0, x), it was utilized to introduce non-linearity into feature extraction. It
involves shutting off neurons whose parameters are negative. This enables the network to
model complex, non-linear relationships in the data that would not be possible with purely linear
functions. This helps increase the ability of the CNN to learn complex features.

2.6 Training Hyperparameters

Training was conducted on Kaggle hardware, a NVIDIA Tesla P100 GPU with 16 GB
VRAM, and 8 vCPUs.

criterion nn.CrossEntropyLoss (label smoothing=0.1)
optimizer = torch.optim.Adam (
filter(lambda p: p.requires grad,
model .parameters()),
lr=1e-3
)

The model was trained using cross-entropy loss with label smoothing as the objective
function. Cross-entropy loss is the standard for classification problems. This function penalizes
divergence between the predicted probability distribution and the ground truth label. Label
smoothing, set at a factor of 0.1, was incorporated to prevent the model from becoming
overconfident. Label smoothing functions by distributing a fraction of probability mass across
incorrect classes, promoting generalization. This is important for our project, where classes may
be visually similar. For example, the difference in frames between keystrokes adjacent on the
keyboard may prove difficult to discern for NNs.

Optimization was performed with the Adam optimizer. Adam combines the benefits of
Adaptive Gradient Algorithm and Root Mean Square Propagation [46]. Adam maintains
per-parameter learning rates that adapt based on both the mean and variance of past gradients.
This makes it especially effective for problems with sparse or noisy gradients, and suitable for
training models from scratch on limited data. Compared to optimizers such as stochastic
gradient descent (SGD), Adam typically converges faster and requires less manual learning rate
tuning.

A learning rate of 1x107® was used as the initial value.
2.6.1 Checkpoint system
A checkpoint system was introduced into the training loop. This was in response to

empirical trends of overfitting, whereby after a certain number of epochs the validation loss was
observed to increase rapidly while training loss continued to decrease.

29

ﬁ Research Archive of
«>» Rising Scholars (preprint)

Where bright minds share their learnings

The system would choose to save the model when a new highest F1 score was attained.
Capturing the best model produced by training when improvements cease ensured that training
could run for a fixed number of epochs without risking degradation in generalization.

2.6.2 Learning Rate Scheduler

scheduler =
optimizer,
step size=10,
gamma=0.5

torch.optim.lr scheduler.StepLR (

Initially, we chose to use the basic time interval stepping for learning rate, shown above.
his schedule decays the learning rate by a factor of 0.5 every 10 epochs. However, we wanted

to try other learning rate schedulers as well.

scheduler =

optimizer,

mode="min"',

patience=5,

factor=0.5
)

scheduler.step(val loss)

torch.optim.lr scheduler.ReduceLROnPlateau (

#in training loop

We then attempted to implement progress-based intervals for stepping the learning rate.
This is seen in the snippet above, where the scheduler is set to ReduceLROnPlateau, and
scheduler.step is called every epoch to ensure learning rate is stepped proportional to validation
loss. When validation loss plateaued for five consecutive epochs, the learning rate was halved.
This was hypothesized to create a more effective training regime and is a common practice to

prevent overfitting.

Results comparing the two different methods are examined in Section 3.

2.7 Post-Processing

Post-processing is commonly employed in related work to improve the accuracy of NN
inference. For instance, some studies (see Section 1.1.2) incorporate text analysis algorithms as
an error-correction layer, leveraging linguistic patterns and contextual dependencies to correct

misclassified keystroke inferences.

30

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

However, similar to our decision as to the inessential need for temporal context, we
chose not to include a post-processing step. Our main intention in this project is to target
keystroke inference of sensitive data, in particular inputs such as passwords. These are not
context nor language dependent. Text-analysis algorithms assume, and are constructed for, the
analysis of linguistically structured input. As such, these post-processing steps do not align with
our study’s goals.

2.8 Evaluation
2.8.1 F1 Score

The F1 score was chosen as our primary evaluation metric. It is typically used for
imbalanced datasets as a standard accuracy metric could potentially be misleading. This
combines precision and recall into a single score, with the final value being their harmonic
mean. The F1 score of a class is calculated using precision, the percentage of correct
classifications, and recall, the percentage of that class in the whole dataset that was identified.
These scores for each class are then combined using a weighted average to give a single
score. The score is from 0 to 1, with a higher score indicating better model performance. The
derivation of the F1 Score can be seen below in.

f= TP
1 TP +(FP + FN)

(TP = True Positive, FP = False Positive, FN = False Negative)

This was chosen due to dataset imbalance, seen in Figure 3. The accuracy metric, used
in multiple similar studies, is insufficient in this case. Accuracy can be misleading when majority
classes dominate, as it only reflects percentage of total correct inferences. F1 scores reflect a
model’s ability to correctly distinguish minority classes and thus are a more sophisticated
indicator of generalization, even under imbalance.

2.8.2 Other metrics

In evaluating training, we also employed 3 additional metrics to illustrate other
components of the training process. This was training loss, validation loss, and validation
accuracy.

Training Loss quantifies the error between model predictions and actual labels when
training. Decreasing loss is indicative of a model that is learning. Training loss is expected to
converge to a mostly steady value, with the speed of convergence being indicative of speed of
learning, while the value towards which training loss converges is indicative of depth of learning.
Higher speed of convergence to a lower loss value indicates faster learning and greater depth of
learning.

31

o, .
o7~ Research Archive ‘?f g Where bright minds share their learnings
<> Rising Scholars (preprint)

Validation Loss quantifies how the model performs when labelling data not included in the
training dataset. This is used primarily as an indicator of overfitting—the phenomenon where the
model fails to generalize, instead adapting to recognize the training data and the specific noise
associated with each training set. This allows the model to perform exceptionally when
classifying training data, but poorly when attempting to classify data it was not trained on.
Validation loss is used in studies as a metric for overfitting, with increases in validation loss
mathematically indicating poorer accuracy in labelling validation data and thus implying
overfitting.

Lastly, Validation Accuracy was used. This refers to the proportion of keystrokes the
model correctly labelled in the validation dataset. A higher score is preferred as it indicates the
model is better at recognizing patterns and is generalizing. However, note that there is a weight
bias nature of validation accuracy, as common classes are given higher weightage due to the
presence of more instances of the class within the dataset. As such, the model may achieve a
higher validation accuracy by generalizing just a few common classes and thus fail to generalize
for less common classes. As such this metric, while useful, is not the main metric used to
determine performance.

32

A Research Archive of
.o Rising Scholars (preprint)

3 RESULTS AND ANALYSIS

Where bright minds share their learnings

The general results of our experiments was a model that produced satisfactory results
indicative of a generalized solution.

We conducted a total of 26 successful training cycles of 60-100 epochs, producing 26
models with differing hyperparameters and results. In total, we spent 75 hours training models,
with each model taking between 2 to 13 hours to train due to varying hyperparameters.

The training cycles have been grouped into 10 different experiments, which each
compare two or more models. Each experiment in the following sections is used to deduce the
importance of certain hyperparameters, as well as analyze the implications of interesting results.

We evaluated the below results using F1 score, outlined in Section 2.8.1, as well as
epoch-based graphs of Training Loss, Validation Loss, and Validation Accuracy, outlined in

Section 2.8.2.

3.1 Results from dataset hyperparameters

3.1.1 Evaluating Normalization

0.50 4

0,30 -

Nnrmalizatinn: F1 Score over epochs

Normalization: Training Loss over epochs

A —— Min-Max

j L Y }a W\ V\[\/\’\,\ Toi "'\/\/“vv'\f \JPr:\J::

ﬂfu W

ul = - - —
20 40 60 ao 100

Epoch

Training Loss

i
i
=

v
s
]

B
=1
a

£
o

in
=1

T
e
i

o
S

=
o
v

—— Min-Max
i-Score

L] —
40 60 g0 100
Epoch

Validation Accuracy

o
o
)

o
B
o

=
w
)

0.36

Normalization: Validation Accuracy over epochs

Normalization: Validation Loss over epochs

£ —— Min-Max
]t’ 2-Seore

\ﬂuﬁ v mxﬂ'{\m-ﬂ\,\r\’wh’\“‘.ﬁ WY

ul il L1 — —
20 40 60 a0 100

Epoch

Validation Loss

-—\hM\

"k'\ ek uwv\ﬂ'\'“-u\\-,f”*-'vﬁ“;’

L] - - - 1l —
4] 20 40 (] B0 100

Epoch

Figure 11a, 11b, 11c, 11d, respectively

33

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

This experiment considered two models. The first model was trained with data prepared
using Min-Max normalization, and the second model was trained with data prepared using
z-scoring. These have been defined in Section 2.3.1. The aim of this experiment was to
evaluate the two normalization techniques.

Results show that training loss was nearly identical, seen in Figure 11b. Validation loss in
Figure 11d also indicated similar trends, that being overfitting beginning around epoch 10 for
both models. Figure 11c shows that validation accuracy remained closely linked together, with
z-scoring yielding a slightly higher accuracy of 0.453 compared to 0.452. When we consider F1
score in Figure 11a, we see that although trends diverge slightly as the models overfit, the initial
few epochs illustrate a growth closely tied to each other. Both models achieve the same peak F1
score of 0.498.

As such, we can consider that in this experiment, the use of Min-Max normalization
versus z-scoring normalization has no significant impact on model performance. We can
potentially infer this means that the footage had a significant and rather even spread in pixel
brightness values, such that both forms of normalization yielded similar datasets. Another
possible conclusion could be that our model is able to extract patterns regardless of
normalization method, which could be due to the sharp contrast between hand skin tone and
keyboard, which was present regardless of normalization.

34

ﬁ Research Archive of
«>» Rising Scholars (preprint)

3.1.2 Evaluating Data Transformation

Data Transformation: F1 Score over epochs] Data Transformation: Training Loss over epochs

0.5

—— With data transformation

JII’.\"\[_\,_\ 33 Without data transformation
/‘ e e e e e e N

0.4 / 10

/

03] |

=
[¥]
Training Loss
n
E=]

'y 15 \
= Wit data transforoation =
0.0 - Witheout data tr =
= T - —_— - . e - 1l -
i 20 40 60 &0 100 0 20 40 60 80 100
Epoch Epoch
Data Transformation: Validation Accuracy over epochs Data Transformation: Validation Loss over epochs
0.45 —— With data trans| n a —— With data transformation
Without data tr ation Without data transformation
g s S U v e
IIJ 7
=035 !
g
g 2.8
Z 030 3
= =
= 25
5 025 2
2 =
= 020 £ 4
Z
015
3
0.10 mo RS
Py
T, WO
- o 1 ,, — il s - - |
0 20 40 60 8 100 o 20 40 60 80 100
Epoch Epoch

Figure 12a, 12b, 12c, 12d, respectively

This experiment considered two models. The first model was trained with data
transformed as outlined in Section 2.3.2, while the second model was trained on data that was
not transformed. The aim of this experiment was to evaluate the usefulness of engaging in data
transformation in the preparation phase.

Results show large differences. In training loss, data transformation allowed for faster
convergence and convergence to a lower loss level, seen in Figure 12b. Validation loss in
Figure 12d, however, indicated that both models began overfitting at the same epoch, around
epoch 13 for both models. Figure 12c and 12a shows a large discrepancy in validation accuracy
and F1 score. The model trained on transformed data has a F1 score and validation accuracy
greater than the other model, with a peak F1 score of 0.453 compared to 0.217 for the model
trained without transformed data.

As such, we can consider that this experiment showcases the importance of data
transformation on model performance. This indicates that our hypothesis when executing data
transformation, that it would improve performance as it allows the model to better focus on
extracting essential patterns, can likely be accepted. It is also worth noting that the reduction in
file time from data transformation led to faster training times, from 8.7 minutes per epoch to 1.4

35

Where bright minds share their learnings

A Research Archive of

° Rising Scholars (preprint) Where bright minds share their learnings

minutes per epoch. This is another point of consideration for the importance of data
transformation.

3.1.3 Evaluating the addition of Time Context

Time Context: F1 Score over epochs] Time Context: Training Loss over epochs

Q.50

0.45 -

0.40

F1 Score
Training Loss

0354

0.30 4

a 10 20 30 40 50 80 a 10 20 30 40 50 50
Epoch Epoch

Time Context: Validation Accuracy over epcch:] Time Context: Validation Loss over epochs

\ —
Mv_/_,—h._,.—.._.-,__w

Validation Accuracy
Validation Loss
i 5
w

—— No time cantext - ResNet {not pretrainad)
’1 o time context - ResNet (not prefrained)

0 10 20 30 40 50 80 0 10 20 30 40
Epoch Epoch

Figure 13a, 13b, 13c, 13d, respectively

Note that the addition of time context was accomplished via the methodology outlined in
Section 2.2.2, and in brief involves each data sample consisting of a series of three sequential
greyscaled images, stacked together as one tensor creating a 3-Channel sample attached to
one label.

This experiment considered four models, that being a non-pretrained ResNet model
trained on the regular dataset, a pretrained ResNet model trained on the regular dataset, a
non-pretrained ResNet model trained on a time context included dataset, and a non-pretrained
ResNet model trained on a time context included dataset. The intention was to have two sets of
comparisons between models with and without time context.

When considering Figure 13b, we see that time context allows for faster convergence to
a lower training loss value, which could indicate better learning. However, when we look at
figure 11d, we see that time context informed models, regardless of pretraining, begin overfitting
at earlier epochs, starting around epoch 9, while without time context models only start
overfitting around epoch 13. This could explain the lower training loss, as with time context

36

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

overfitting occurs faster. F1 score in Figure 13a shows a clear trend, that time context informed
models perform worse than their non time informed counterpart models. The peak F1 score is
attained by the pretrained ResNet without time context, a value of 0.521. Interestingly, Figure
13c illustrates that time context seems to increase validation accuracy, seen by how both
pretrained and non-pretrained models improved in validation accuracy by a decent margin when
time context was introduced.

Thus, we can conclude that time context has a complicated effect on model performance.
We suggest that time context informed models have improved ability to learn common patterns,
but an inferior ability to generalize for classes with lower representation. This was inferred from
the lower F1 score but higher validation accuracy. We hypothesize this could be because time
context informed training requires larger quantities of data, and thus only performed well for
classes with larger representation within the dataset. Overall, as per F1 score, models without
time context perform better in this experiment.

37

ﬁ Research Archive of
«>» Rising Scholars (preprint)

3.1.4 Evaluating Generous Labelling

Labelling: F1 Score over epochs Labelling: Training Loss over epochs
/v\ j\f N f \ _/A/\/‘/\"V\/\/\-—f\f\;\v A '|
[2.25

0.45 \ \ , . \r \ }
200

— Generous labels

Mot generous labels

0.50 1 250

2 X
@ 3 \
a 17! \
& 040 | “E’: \
— =
= F 1.50 1
| &
0.35 1 1.25 { .\-
| 1.00 { \
0.30 1 —— Generous labels >
Mot genarous labels 0.75 4 e —
! il - = —| : i Il il 1.
0 20 40 60 0 100 0 20 40 60 0 100
Epoch Epoch
Labelling: Validation Accuracy over epochs Labelling: Validation Loss over epochs
0.48 ﬂl — 26
"\ |
0.46 —XA 243
W N
PR AJ\MMA_JWM P S
[) 24 MNVVAJ\JW\"\,/_,A’\WVN\
0.44 S
'y 23 /
!

Validation Accuracy
= =] ;
i iy I
[=] ¥
Validation Loss

=1
L
-]
~
o
—
ey

Generous |abels

=]
w
o

i

o

q:'r

Not genarons labels

A il + o — i | - i} = J
0 20 40 60 80 100 o 20 40 60 B0 100
Epoch Epoch

Figure 14a, 14b, 14c, 14d, respectively

This experiment considered two models. The first model was trained with the standard
dataset as outlined in the methodology. The second model was trained on a dataset where there
was a larger temporal window, that being £50ms instead of £30ms. The rationale and method
were outlined in section 2.2.3 and involves labelling multiple frames the same label for a given
keystroke. This is termed by us as “generous” labelling and was our attempt at mitigating the
issue outlined in 2.2.3 of random delay between frame and keystroke timestamps.

In training loss, generous labels allowed for faster convergence, while converging to
approximately a similar loss level as the model trained on non-generous labels, seen in Figure
14b. Validation loss in Figure 14d indicates that models trained on generous labels begin
overfitting earlier, around epoch 6 versus epoch 11. However, models trained on generous
labels overfit to a lesser degree, seen by how the steady state of validation loss was lower for
these models than those trained without generous labels. Both Figure 14c and 14a illustrate that
models trained on generous labels perform better, both in terms of validation accuracy and F1
score. The model trained on generous labels has a peak F1 score of 0.483 compared to 0.453
for the model trained on data not generously labelled.

38

Where bright minds share their learnings

A Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

As such, we can surmise that this experiment illustrates how generous labels are able to
improve model performance, and this is likely due to it achieving our intended purpose of
mitigating the random delays, thus allowing for more accurate labelling.

3.2 Results from different models

Models: F1 Score over epochs

05)'IJ‘M'\J\
A \.n

0.4

Models: Training Loss over epochs

— EfficlentNet-B0 [CNN)
Reshet18 [CNN)
MobileNetVZ_100 {CNN)

— Cor iy (CNN)

— Feed-Forward (MLP]

Training Loss

—— EfficientNet-B0 (LN}
Reset18 [CNN)

—— MuobileNerV2_100 {CNN} 1.0

—— ConvNeXs-Tiny (CNN)

—— Feed-Forward (MLP]

0.1

L il = — L] L L
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Maodels: Validation Accuracy over epochs

Models: Validation Loss over epochs

' P e i
cas] Ao AT g T
4 C_ \\ 2.8
T e O ar it _ﬁ.,— AN N e
0,40 s 2 e E"EA_’ = e AN 4" e Y
= .
= o 28
E E —— Effici B0 (CNN)
E SN O N E] d :
= 0.35 = Re: i
= = — Mo 2 100 (CNN)
g = 2.4 — Cor Iy (CNN)
d = o i
= 030 = —— Fewdl-Forward (MLP)
= =
= 22
0.25
e ————
2.0
azo4 !
i il 11 — - il - —
0 20 40 60 a0 100 0 20 40 60 80 100

Epoch Epoch

Figure 15a, 15b, 15¢c, 15d, respectively

This experiment considered five models. These are the models as outlined in Section 2.4,
and in brief they consist of EfficientNet_b0, ResNet18, MobileNetV2_ 100, ConvNeXt_Tiny, and
a Feed-Forward (MLP) architecture. It is worth noting that ConvNeXt_Tiny was the heaviest
model of these five, with the highest parameter and FLOPs as observed in Section 2.4, and this
led to prohibitively long training times. We stopped after 87 epochs as the Kaggle System timed
out due to an overrunning of 12 hours of training time. We chose not to resume training, since at
epoch 87 the trends were already largely clear, with improvement in the last 13 epochs deemed
unlikely and not worth the additional cost of time and compute.

Figure 15b illustrates training loss, where we can observe that EfficientNet converges the
fastest while Feed-Forward struggles to converge. Looking at level of loss convergence occurs
at, we can deduce that EfficientNet and ConvNeXt reach a deeper level of learning compared to
MobileNet and ResNet, while Feed-Forward converges far above the other models, indicating
difficulty in learning.

39

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

Validation loss in Figure 15d indicates that EfficientNet began overfitting the first, with the
other CNN models following in the subsequent epochs. This could explain why EfficientNet has
such a fast training loss descent—that being it is overfitting very quickly. Interestingly,
Feed-Forward validation loss does not display signs of overfitting. When we consider Figure
15b, we conclude this is likely indicative of underfitting, where the feed-forward model is
struggling to extract patterns.

Figure 14c illustrates that MobileNet produces the best accuracy of all CNN models, with
ConvNeXt struggling the most. Feed-Forward produces results that are far better than
hypothesized, coming in the most accurate model by a thin margin. However, when we consider
F1 score in Figure 15a, we can observe that MobileNet is the best performer with a peak F1
score of 0.510, with Feed-Forward only having a peak F1 score of 0.466.

We hypothesize that this discrepancy between Feed-Forward validation accuracy and F1
score performance is due to the Feed-Forward model likely learning to “cheat” by guessing the
majority classes that dominated the dataset. This can be inferred as the low peak F1 score
indicates it was not generalizing well to less frequent classes. Thus, we can say that
Feed-Forward architecture struggled with this problem.

As such, we can conclude that this experiment showcases MobileNetV2 (100%) as the
best architecture overall for this problem. The feed-forward model’s underperformance was
predicted in Section 2.4.5, and thus likely indicates that spatial feature extraction is needed for
this problem. Convolutional architecture, and MobileNetV2 in particular, are more usable for this
case of vision-based classification.

40

A Research Archive of
.o Rising Scholars (preprint)

3.3 Results from architecture hyperparameters

3.3.1 Evaluating Model’s Pretraining

Where bright minds share their learnings

Pretraining Status: F1 Score over epochs

Pretraining Status: Training Loss over epochs

Epoch

!\' — HesNet - Pretrained — HesNet - Pretrained
0.50 [ReaNet - Pretr ed + Freezing ReaNet - Pretrained + Freezing
= ResNet - Not pretrained 5 ResNet - Not pretrained
| J" % 251
IL[\,-f\ ¢
~
045 [\ \."“ AL AR DRSO A
f
| 0=
o 0.40 & 20
o |
= [B
w £
: 0.35 5
{ Z 15
| E
0.30 |
0.25 1
— 1t - . — L -
20 40 60 an 100] 20 40 &0 B0 oo

Epoch

I-’r'etr'lining Status: Validation Accuracy over epochs

Pretraining Status: Validation Loss over epochs

0,475 +
—— ResNet - Pretrained —— ResKet - Pretralned
. 3.0 4 Heshet - Pretr, !
0.450) J\k : RiesNet - Not
|
0,425 - },'I,I' \/\M\/\Mﬁw /\'\Wﬂmw__ -
= | |L/ e,
g AP A A A .
£ g.aoo (f V< Vs a /
= | ——
g If =26 B AN EYNS vy SN e e S
< 4375 | = -~
= 037 | =
= ;.T: '
= | = 24/
= 0.350 =
= s \
= |
0.325 224 1\
1\
; \
0.300 4 J ‘.\ /f,
2.0 \'-\,n
0.275 e
EEh) T — s & L — o - L3 . - 1l e
o 20 a0 80 80 100 0 20 40 &0 B0 100

Epoch

Epoch

Figure 16a, 16b, 16c, 16d, respectively

As outlined in Section 2.5.1, we wanted to investigate model pretraining and its effects on
results, as well as considering the hybrid case where pretrained models were trained with a
layer freezing method.

This experiment consisted of 3 models, one pretrained before training, one pretrained
and trained with layer freezing, and the last a non-pretrained model. To keep other factors
consistent, they were all training on the same dataset and were all ResNet architectures.

When considering Figure 16b depicting training loss, we see that the pretrained ResNet
converges faster and to a lower level of loss compared to the non-pretrained one. This indicates
that pretraining aids with learning. Interestingly, the model trained with layer freezing lags
behind. For the model trained with layer freezing, we observe “steps” in the training loss. We
suspect this could indicate freezing was successful, with each sudden increase in descent
possibly indicating a fresh layer being unfrozen. However, this method seems to worsen
learning speed, seen by the slower convergence, although the model does converge to a lower
loss value than non-pretrained ResNet.

41

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

Figure 16d shows that regardless of pretraining, the models begin to overfit around
epoch 10. However, the pretrained model with layer freezing displays overfitting only at a later
epoch, around epoch 20. It is worth noting that this is unlikely to be an intended benefit of layer
freezing, and is likely caused by the slow convergence making it difficult to overfit in earlier
epochs.

Figure 16a and 16¢ show that pretrained ResNet outperforms non-pretrained ResNet in
both validation accuracy and F1 score, with the pretrained model attaining a peak F1 score of
0.521 compared to 0.499. In both figures, pretrained ResNet with layer freezing underperformed
significantly.

As such, this experiment illustrates that counter to our hypothesis, pretrained models
outperform non-pretrained models in this problem. Interestingly, the pretrained model with layer
freezing was vastly outperformed, which does align with our hypothesis. As such it can be
inferred that pretraining is useful in this problem, as patterns learned from general vision
problems likely aid with feature extraction like hand placement detection. Layer freezing likely
restricts the learning dynamics of the model, thus leading to the large discrepancy between
performance of layer freezing trained pretrained models and the pretrained model.

42

ﬁ Research Archive of
«>» Rising Scholars (preprint)

3.3.2 Evaluating Class Balanced Training

Where bright minds share their learnings

F1 Score

0.50

=]

0.45

0.40

0.35

0.30 4

Weighted Learning: F1 Score over epochs

Weighted Learning: Training Loss over epochs

—— With welghted learning

Without weighted learning

\/\r

whed- - \ -
LV\I-...\A_ v
A e AL

Fv'ﬂfﬁpwf‘

ul il | —
20 40 60 ao 100

Epoch

Training Loss

—— With welghted learning
Without weighted learning

L - il il 11
20 40 &0 80 100
Epoch

Weighted Learning: Validation Accuracy over epochs

Weighted Learning: Validation Loss over epochs

—— Withweighted learning 3,75 e e e
048 ,\ Without weighted learning o~
bij! \ .50 ,
0.44 4 ,I'[f \ ,f'/
Z /'U(\ szsl | r
bl w
£ A @ \
= A 2 >
0.42 5
g A I = 300 M
z ¥ MAWRMA/ : 2
= | s A A / 2
3 040 (W, '..-—'\P\/\/—W 35 27
= S
3 2.50
0.38 1 |
| 2.25
0.36 y f —— With weighted learning
2.00 Withont weighted learning
| " I A — ! il Ll = 34
[+] 20 40 60 an 100 o 20 40 60 an 100

Epoch Epoch

Figure 17a, 17b, 17c, 17d, respectively

This experiment compared two models, one trained with loss weights for class balancing
and one trained on unbalanced data. Our methodology for class balanced training was outlined
in Section 2.3.3, and it is hypothesized that class balanced training will help mitigate the issue of
imbalance dataset.

Figure 17b shows that independent of the presence of class balancing, speed of
convergence and thus speed of learning is roughly the same. However, class balanced training
does increase the loss value that the model converges too, which could be a concerning
indication of poorer depth of learning. When considering Figure 17d, we observe that overfitting
occurs around the same epoch, epoch 12, regardless of class balancing. Validation loss for
class balanced training remains consistently higher than without class balanced training, which
could be concerning as it indicates the model is not performing well and is often getting blind
predictions wrong. However, this is also likely due to how class balanced training has a different
calculation of loss, that being a weighted calculation. The high training and validation loss could
be a reflection of the unbalanced dataset: both models are likely struggling with rarer classes,
but for class balanced training this is penalized more with a greater loss than for unweighted
training. This is further supported by considering Figures 17a and 17c, where the class balanced
trained model outperforms the unbalanced one, with a higher F1 score and validation accuracy.

43

ﬁ Research Archive of
«>» Rising Scholars (preprint)

The class balanced trained model achieves a peak F1 score of 0.513, versus 0.499 for the
unbalanced model.

This experiment indicates that our hypothesis holds true—that class balanced training
helps improve model performance as it likely partially counters the unbalanced dataset.

3.3.3 Evaluating Hidden Layer

Hidden Layer: F1 Score over epochs Hidden Layer: Training Loss over epochs
0.50 4 & —— With hidden layer —— With hidden layer
b‘\;\ Withaut hidden layer 2.50 A Without hidden layer
) { \ A A \ P WAV =
\ Vi ™en A ! 2.25
0.45 [N / LM =S~ A s .
W 200 %
= \
o { 4 A
=) | i | N
2 0.40 sp L7 \
= E .
R = 150 \
1354 125 A
b
N
1.00 |
0.30 i -
a.7 e
L il il L LI L Il Ll J I
o 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch
Hidden Layer: Validation Accuracy over epochs Hidden Layer: Validation Loss over epochs
N —— With hic ayes 16 y r -
-'. 4 "v-ll Withaut hideden layer pn FW'»‘ \"\"'\“. WV“NW_
0,44 | fll arn %
/ 25 1
& 042 @2 24 [
= | \ \ o
g b LAA 1 ,/\ A s
= / R AT LY =IO A e =
< ,’l / P oy A0/ J\A'.,f \J Z23] | [
S 040 = | /
= ' = |
= Z22{ |)
= os f
| 21 \ f
0.36 | : |l~ / -"J —— With hidden layer
201 Lo Without hidden layer
L il il il I L L l] = =1
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 18a, 18b, 18c, 18d, respectively

The hidden layer, as outlined in Section 2.5.2, aims to add complexity to the feature
extraction ability of the network. We ran an experiment to evaluate our hypothesis that adding
an hidden layer boosted performance, seen in the above figures where we compare a model
with and a model without a hidden layer.

Figure 18b shows that the hidden layer has little impact on training, with the addition of a
hidden layer not significantly affecting speed of convergence nor the level of loss convergence
occurs at. Figure 18d shows that the hidden layer has a minor impact on overfitting, with
overfitting occurring around 2 epochs later when a hidden layer, and validation loss rising to a
higher value during overfitting. This can be likely explained as the model with a hidden layer
overfitting to a larger degree due to the increased complexity, allowing it to better fully adapt to
the training dataset. When we consider figures 18a and 18c, as hypothesized, the hidden layer
seems to boost performance. The model with a hidden layer has a higher peak F1 score of

44

Where bright minds share their learnings

ﬁ Research Archive of
«>» Rising Scholars (preprint)

Where bright minds share their learnings

0.499, versus 0.487 for the model without a hidden layer. This increased performance is

similarly seen in validation accuracy.

As such, this experiment likely validates our claim about the hidden layer, and showcases
how the addition of a hidden layer in an architecture can help boost performance.

3.3.4 Evaluating Dropout Rate

Dropout Rate: F1 Score over epochs

Dropout Rate: Training Loss over epochs

Epoch

0.50 A A
1AM A p A A
0.45 } i M U e e e W VT
& |
8 0.40 A I
wI
i
j< 3
0.35 ’
¥
I
|
0.30 4 |
0 20 40 60

Training Loss

fek
in
=]

[
A
()

s

~
i

in
=1

v

o
S

=
-
v

—— With dropout rate
Without drapout rate

LI J —
40 60 g0 100
Epoch

Dropout Rate: Validation Accuracy over epochs

Dropout Rate: Validation Loss over epochs

\

W

| i \ " o
J L/I'\'ﬂ/\f\‘f’\uu."\

J\r
0.44 I(. k-

o
=
g

Validation Accuracy
=] o
" B
(=] o

0.36

L il Ll
0 20 40 60
Epoch

—— With dropout rate

R AAASRAS

Validation Loss

ANV

afh

—— With dropout rate
Without dropout rate
- - - —
40 &0 B0 100
Epoch

Figure 19a, 19b, 19c, 19d, respectively

Dropout rate, as outlined in Section 2.5.3, aims to improve regularization. This is
hypothesized to improve generalization and slow overfitting. We evaluate its usefulness in this
experiment, where we consider two models, one with a dropout rate of 0.4, and one without a

dropout rate.

Figure 19b shows that the dropout rate had little impact on training, with only a slightly
slower convergence to the same level of loss. Figure 19d shows that dropout rate does help
slow overfitting, albeit to a small degree. Overfitting occurs only about 3 epochs for the model
with a dropout rate. Figures 19a and 19c illustrate a performance improvement with the addition

of dropout rate, with a F1 score of 0.499 compared to 0.482.

As such, this experiment corroborates with our hypothesis that dropout rate improves

generalization and thus performance.

45

ﬁ Research Archive of
«>» Rising Scholars (preprint)

3.4 Results from training hyperparameters

3.3.1 Evaluating Learning Rate Scheduler

Learning Rate Scheduler: F1 Score over epochs Learning Rate Scheduler: Training Loss over epochs
LI

—— Time:
1 Progress-based LI 250 \ Progress-hased LI

0.50 - |':IJhI
f/j V\'(_.\W\f’“‘"‘r“/\'&%ﬂﬂww w7\

045 / 2,00 \
N 3

=
e
@ vand |
=
=

ed LIt —— Time-|

Training Loss
-~
L
—

} 1.50 \|

l : \\
0.35 125 \

1.00 \\
"~

o0 0.75 TR —

L1 ul il : L L il Il il I

0 20 40 60 80 100 o 20 40 60 80 100

Epoch Epoch
Learning Rate Scheduler: Validation Accuracy over epochs Learning Rate Scheduler: Validation Loss over epochs

{‘ "rog L'I' L 6 NN-MJ\M»J\NV“H‘ N
0.46 1 }_ i Y\\ | /-/J\r
VA 25

A A
[\ M WA AW A Ay,

=
.
o

e
s
=

0.42 4 |

0,40 }

1 | z..l: k /

Validation Accuracy
Validation Loss
w
(]
—

X
[
—

=
i
=]

—— Time-based LK
Progress-hased LR

5

L il + - — A L - —_ = == |
0 20 40 60 80 100 0 20 40 60 B0 100
Epoch Epoch

Figure 20a, 20b, 20c, 20d, respectively

This experiment examines two different learning rate schedulers. The methodology was
explored in Section 2.6.2. This experiment compares two models, one trained with a time-based
learning rate, and the other with a progress-based learning rate. As stated previously, it is
hypothesized that progress-based learning rate scheduler will improve training.

Figure 20b shows that a time-based learning rate scheduler allowed for marginally faster
convergence to a lower loss level, indicating improved training. Figure 20d shows that
independent of learning rate scheduler, overfitting occurred around epoch 10. However, with a
time-based learning rate scheduler, there was a higher steady validation loss level reached,
which could be indicative of more severe overfitting. Figures 20a and 20c illustrate that
time-based learning rate scheduler seems to perform better than a progress-based one, with a
F1 score of 0.515 compared to 0.499.

As such, this experiment seemingly contradicts our initial hypothesis. It can be observed
from the results that the time-based learning rate scheduler is superior when it comes to model
performance. This may be explained by how the progressed-based learning rate scheduler was
suboptimally tuned for this experiment. Another possible explanation could be the smooth and

46

Where bright minds share their learnings

ﬁ Research Archive of
o Rising Schelars (preprint)

where bright minds share their learnings

deterministic nature of time-based learning rate decay. This thus avoids reliance on noisy
validation loss signals and provides a gradual convergence. The progress-based learning rate
scheduler could have been susceptive to validation loss fluctuations, leading to suboptimal

reductions in learning rate and thus poorer convergence.

3.5 Summary Of Results

The below Figure 21 summarizes the results from all 10 experiments run. Best condition

was judged based on F1 score, as outlined in the methodology.

| Hyperparameter Best Condition

1 i Normalization [unclear]

2 : Data Transformation Data Transformed

3 i Time Context No Time Context

4 : Generous Labelling Generous Labels

5 i Architecture MobileNetV2_100

6 | Pretraining Pretrained Model

7 i Class Balanced Training Class Balanced Training
Present

8 i Hidden Layer Hidden Layer Present

9 : Dropout Rate Dropout Rate Present

10 | Learning Rate Scheduler Time-Based Scheduler

Figure 21

3.6 Best combination of hyperparameters worked the best

Using the results of the 10 experiments, we constructed one final experiment with the
best model using a combination of the above hyperparameters. This entails a model trained on
a dataset that was min-max normalized, transformed, lacked time context, and was generously
labelled. The architecture used was a pretrained MobileNetV2_ 100, with class balanced
training, a hidden layer, a dropout rate of 0.4, using a time-based scheduler. Below are the

results, shown in Figures 22a, 22b, 22c and 22d.

47

Q Research Archive of
&> Rising Scholars (preprint)

Where bright minds share their learnings

Synthesis Experiment: F1 Score over epochs Synthesis Experiment: Training Loss over epochs
0.549 4 — syutl el] — syutly el
A 32{ |
I
052 10 K
: AJ« !
A N \ 2.8
o 0.50 ﬂ\'\/ \’\ M L\/""I §
= -]
E o 26
o 0.48 =24
= £
=
224
0,46 -
2.0 &
044 | il K.x____
o 20 a0 80 &0 100 0 20 40 &0 80 100
Epoch Epoch
Synthesis Experiment: Validation Accuracy over epochs ~ Synthesis Experiment: Validation Loss over epochs
X = syuthesis meodel 3.6 — synthesis madel A
0.48 ‘\'\/\/\ MW V.
3.5 J
.48 /
= r
g 047 . /
= w
g 533,
= 046 p
= WA g [
3 045 V‘}\ﬂ g 32 /
Z ANNSA [[]5])
F 044 11
Z 0w \A
0.43 3.0 \\/
0429 | 19
o 20 a0 80 &0 100 0 20 40 &0 80 100
Epoch Epoch

Figure 22a, 22b, 22c, 22d, respectively

This experiment showcases the synthesis model. Model performance is superior to all
other training runs conducted, with a peak F1 score of 0.542 and a peak validation accuracy of
0.495, both exceeding all other 26 models. Thus, we can conclude that this combination of the
10 hyperparameters examined produces the most optimal results for this problem and dataset.

48

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

4 CONCLUSION

Overall, we were able to accomplish the goal we set for this paper of being able to
synthesize the fundamentals of keystroke inference models and construct a baseline model with
a reduction in complexity, comprising only the most critical components.

Using only a simple Neural Network, without preprocessing or postprocessing, we were
able to produce a suitably generalized model despite training on a limited and flawed dataset.
We explored 10 different hyperparameters through 26 experimental training runs, to create a
proficient model with a configuration of hyperparameters that were optimized to some extent.
Overall, we were able to attain a model with a peak F1 score of 0.542, and a peak validation
accuracy of 0.495.

4.1 Implications

These results support our initial hypothesis and demonstrate that keystroke inference
remains a viable and replicable attack vector. Importantly, our findings suggest that such attacks
could be mounted even by adversaries with limited resources or expertise, underscoring the
need for further research into countermeasures and privacy-preserving defenses.

4.2 Potential Countermeasures

We engaged in a cursory review of literature surrounding countermeasures against such
attack vectors. We will share them in brief in this section. Several approaches have been
proposed [47], with one systemic review collating 55 studies on the matter. In brief, these
broadly centered on novel input methods and enhanced authentication interfaces designed to
resist observation or recording.

Regarding authentication methods, multiple papers suggested a Graphical Authentication
system. This involves incorporating a multi-layer security mechanism, comprising visual
elements along with traditional password verification. These visual elements could be color and
pattern matching, seen in one paper [48]. Another paper proposed a novel system, PassMatrix
[49], which utilized one-time login indicators and dynamically shifting input bars. These systems
prevent attackers from keystroke inference even after repeated observations.

Input methods were suggested, such as EyePassword [50] which utilized an on-screen
keyboard with input tied to eye pupil movement rather than a physical keyboard. This would thus
prevent deduction from passive video capture of physical keyboards. However, we suspect that
such a method may be susceptible to a similar attack, that being using passive video capture of
the person’s eye movements instead of hand movements.

Overall, while effective to some degree, these countermeasures have not been found to

be effective substitutes for traditional password entry. A suggested reason is the inconvenience
caused by some of these methods, such as password input from eye-tracking technology which

49

N, .
3 :?:i;;r;:}:::f::l:fp?:prin*r) Where bright minds share their learnings

would be foreign to many users. Another impediment is the increased error rates from such
password entry or graphical authentication, which can lead to frustration and customer
dissatisfaction. There is thus urgent need to research more current and effective methods to
counter this form of attack that can and will be rapidly adopted by online services, so as to
reduce the feasibility of this attack vector.

4.3 Limitations

Overall, while the results obtained were satisfactory, it is evident that we are unable to
reproduce the impressive results seen in other papers in this literature space. We hypothesize
this is due, largely, to the major limitation of frame-label mismatch present in our dataset.

The frame-label mismatch caused by the random time delays outlined in Section 2.2.3
are rather severe. The issue led to frames being mislabeled, and we suspect this was the main
reason for the model struggling. This is because with mislabeled data, patterns become harder
to extract and discern, which greatly affects generalization capabilities.

We did try to address this problem with generous labels, seen in Section 3.1.4. This did
improve the model slightly, as more frames where keystrokes actually occurred were captured
and labeled. However, this led to the additional problem of increased number mislabeled
frames. This can be observed in Figure 23a and 23b below, which illustrates this impact.

Timeline on 'i' (keystroke @ 1529 ms)

Figure 23a: This showcases a timeline on an i’ keystroke, with timestamp of 15629ms. The first
timeline shows normal labelling, while the second shows generous labelling. The red circle
shows where, by visual judgment, the actual keystroke occurs.

Figure 23a showcases that generous labelling can correctly label the frame where the
actual keystroke occurs, due to the generous temporal window considered. This is compared to
normal labelling which mislabels both the center frame, as well as the actual keystroke frame.
However, when we consider that generous labelling labels the third and fourth frame as
containing keystrokes when they do not, we see that generous labelling also results in two
mislabellings. Thus, in this example, generous labelling results in three correct labels and two

50

Q Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

incorrect labels (counting ‘nothing’ frames), while normal labelling results in three correct labels
and two incorrect labels as well. Thus, there is no discernible improvement.

Timeline on 'u' (keystroke @ 9731 ms)

pts=9700.0 ms At=-31.0 ms pts=Y9766.7 ms At=+35.7 ms
ahel: nothing label: nothi

prE=0B00.0 ms At=+69.0 ms
thing lahal: nothing

MNormal labelling

t5=3666.T ms At=-64.3 ms
£ o

labds: nothing

Generous labelling (£50 ms)

Figure 23b: This showcases a timeline on an ‘u’ keystroke, with timestamp of 9731ms. The first
timeline shows normal labelling, while the second shows generous labelling. The red circles
show where, by visual judgment, the actual keystroke could have occurred.

Figure 23b shows a similar issue. Here, generous labelling is also able to correctly label a
frame where the actual keystroke occurs. However, when we consider total correct and incorrect
labels, we see that generous labelling results in two correct labels and three incorrect labels,
while normal labelling results in two correct labels and three incorrect labels as well. Thus, there
is also no discernible improvement.

As such, this is a likely reason why generous labels was not a complete solution to the
problem. This is thus a possible explanation for why the performance improvement obtained
from generous labelling was also not on par with the >95% benchmark set by existing literature.

Furthermore, this raises the concern that the performance boost noticed could also not
be due to improved generalization, but instead looser validation criteria as the validation dataset
is also generously labelled. This means that if the model guesses the label paired with a
mislabeled frame, it will receive a lower loss score despite the label being in fact false. This thus
complicates the validity of the F1 score and validation accuracy of generous labelling.

In conclusion, this method to combat this limitation is, itself, severely limited. We could
not produce alternative methods, other than a manual relabeling of the dataset which we lacked
the time and manpower to conduct.

4.3.1 Further Exploration of Frame-Label mismatch
This limitation does present an interesting point for further analysis, as it could be a
common issue that malicious actors will also face when executing such an attack vector. The

proposed reasons for this limitation—outlined in Section 2.2.3—likely also apply to any other
attack vector involving commercial cameras, unless there is a solution that can be implemented

51

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

when capturing video. Furthermore, bad actors are unlikely to be able to obtain perfectly
frame-label pairs from covert passive video collection.

While other literature likely works around this limitation by having preprocessing, we can
assume the average malicious actor lacks such expertise and resources. As such, it is possible
that this limitation we faced will also impede their ability to conduct such an attack. If this is the
case, it could render this attack vector less feasible.

4.4 Future Direction of Research

We propose two future directions that research can be taken. These were decided upon
based on potential future adaptations of this attack vector.

4.4.1 Blind Recognition of Keystrokes

Blind recognition of keystrokes refers to the inference of keystrokes from video of just
hand placement. This was something accomplished by some papers mentioned in the literature
review, but we would like to revisit the problem with a similar synthesis and minimalist approach
as outlined in this paper.

The intention behind such research would be to improve feasibility of the attack vector.
Blind keystroke recognition allows for inference without a clear, or any, image of the keyboard.
This is more similar to a realistic attack scenario, where capturing a clean overhead shot of the
keyboard with keycap labels is unlikely.

If this research is successful, then countermeasures such as obscuring the keyboard
from view would become obsolete. This is thus an important future extension of our research.

4.4.2 Keystroke Inference on Mobile Phone Keyboards

Keystroke inference on mobile phone keyboards, while also achieved in current literature
[51], is another area that we can apply a similar simplistic methodology to, in order to gain a
better understanding of the attack vector as well as what the average malicious actor can
achieve.

With the rise of mobile banking, as well as the prevalence of sensitive operations
conducted on mobile phones in public, it is worth considering that such keystroke inference may
be utilized to attack mobile phone keyboards.

Such a project would also act as a proof of concept for future, more threatening studies.
For example, with keystroke inference of mobile keyboards, and the addition of blind inference
as mentioned in Section 4.3.1, current privacy methods such as polarized screen filters could be
rendered easily bypassable. Such an attack vector would be able to generalize keystrokes
based on finger movements alone, leaving mobile phone activity completely vulnerable to such
attacks.

52

ﬁ Research Archive of

o Rising Scholars (preprint) Where bright minds share their learnings

5 ACKNOWLEDGEMENT

We, the authors, would like to express sincere gratitude towards Leonard G. for their
valuable guidance and constructive feedback throughout this project. We also wish to thank our
peers for their insightful discussions, which helped shape the direction of this research.

This work made extensive use of open-source tools, including PyTorch and Hugging
Face Datasets, without which this study would not have been possible. We are also grateful to
Google’s Kaggle platform for providing computational resources that enabled the training and
evaluation of our models.

We would like to acknowledge that portions of this work benefited from the use of
ChatGPT (OpenAl) for code debugging assistance. All research activities, experimental designs,
conceptual contributions, analyses, and final decisions were made solely by the authors.

53

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

REFERENCES

[1] J. Jumper et al., “Highly accurate protein structure prediction with AlphaFold,” Nature, vol.
596, no. 7873, pp. 583-589, Aug. 2021, doi: 10.1038/s41586-021-03819-2.

[2] A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon, and E. D. Cubuk,
“Scaling deep learning for materials discovery,” Nature, vol. 624, no. 7990, pp. 80-85, Dec.
2023, doi: 10.1038/s41586-023-06735-9.

[3] A. Shehper et al., “What makes math problems hard for reinforcement learning: a case
study,” Feb. 11, 2025, arXiv: arXiv:2408.15332. doi: 10.48550/arXiv.2408.15332.

[4] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686—707, Feb. 2019, doi:
10.1016/j.jcp.2018.10.045.

[5] K. Gandhi, J.-P. Franken, T. Gerstenberg, and N. D. Goodman, “Understanding Social
Reasoning in Language Models with Language Models,” Dec. 04, 2023, arXiv:
arXiv:2306.15448. doi: 10.48550/arXiv.2306.15448.

[6] “‘ARC Prize - What is ARC-AGI?,” ARC Prize. Accessed: Sept. 16, 2025. [Online].
Available: https://arcprize.org/arc-agi

[7] D. Rein et al., “GPQA: A Graduate-Level Google-Proof Q&A Benchmark,” Nov. 20, 2023,
arXiv: arXiv:2311.12022. doi: 10.48550/arXiv.2311.12022.

[8] D. Craigen, N. Diakun-Thibault, and R. Purse, “Defining Cybersecurity,” Technology
Innovation Management Review, vol. 4, no. 10, pp. 13-21, 2014.

9] Q. Chen and R. A. Bridges, “Automated Behavioral Analysis of Malware: A Case Study of
WannaCry Ransomware,” in 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA), Dec. 2017, pp. 454—-460. doi: 10.1109/ICMLA.2017.0-119.

[10] M. Pollard, “A Case Study of Russian Cyber-Attacks on the Ukrainian Power Grid:
Implications and Best Practices for the United States”.

[11] B. Guembe, A. Azeta, S. Misra, V. C. Osamor, L. Fernandez-Sanz, and V. Pospelova,
“The Emerging Threat of Ai-driven Cyber Attacks: A Review,” Applied Artificial Intelligence, vol.
36, no. 1, p. 2037254, Dec. 2022, doi: 10.1080/08839514.2022.2037254.

[12] S. Armstrong, K. Sotala, and S. S. O hEigeartaigh, “The errors, insights and lessons of
famous Al predictions — and what they mean for the future,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 26, no. 3, pp. 317-342, July 2014, doi:
10.1080/0952813X.2014.895105.

[13] S. Armstrong and K. Sotala, “How We’re Predicting Al — or Failing to,” in Beyond Atrtificial
Intelligence, vol. 9, J. Romportl, E. Zackova, and J. Kelemen, Eds., in Topics in Intelligent
Engineering and Informatics, vol. 9. , Cham: Springer International Publishing, 2015, pp. 11-29.
doi: 10.1007/978-3-319-09668-1_2.

[14] R.Westand R. Aydin, “The Al Alignment Paradox,” Nov. 22, 2024, arXiv:
arXiv:2405.20806. doi: 10.48550/arXiv.2405.20806.

[15] G. Waizel, “Bridging the Al divide: The evolving arms race between Al- driven cyber
attacks and Al-powered cybersecurity defenses,” International Conference on Machine
Intelligence & Security for Smart Cities (TRUST) Proceedings, vol. 1, pp. 141-156, July 2024.
[16] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: a tutorial,” Computer,
vol. 29, no. 3, pp. 31-44, Mar. 1996, doi: 10.1109/2.485891.

[17] R. Szeliski, Computer Vision: Algorithms and Applications. Springer Nature, 2022.

54

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

[18] F.-X. Standaert, “Introduction to Side-Channel Attacks,” in Secure Integrated Circuits and
Systems, I. M. R. Verbauwhede, Ed., in Integrated Circuits and Systems. , Boston, MA: Springer
US, 2010, pp. 27—-42. doi: 10.1007/978-0-387-71829-3 2.

[19] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revisited,” ACM
Trans. Inf. Syst. Secur., vol. 13, no. 1, p. 3:1-3:26, Nov. 2009, doi: 10.1145/1609956.1609959.
[20] M. Li et al., “When CSI Meets Public WiFi: Inferring Your Mobile Phone Password via
WiFi Signals,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, in CCS ’16. New York, NY, USA: Association for Computing
Machinery, Oct. 2016, pp. 1068—1079. doi: 10.1145/2976749.2978397.

[21] S. Saab, A. Leiserson, and M. Tunstall, “Key Extraction from the Primary Side of a
Switched-Mode Power Supply,” 2015, 2015/512. Accessed: Sept. 16, 2025. [Online]. Available:
https://eprint.iacr.org/2015/512

[22] A. Amrouche, L. Boubchir, and S. Yahiaoui, “Side Channel Attack using Machine
Learning,” in 2022 Ninth International Conference on Software Defined Systems (SDS), Dec.
2022, pp. 1-5. doi: 10.1109/SDS57574.2022.10062906.

[23] O.I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to
Pattern Recognition,” IEEE Access, vol. 7, pp. 158820-158846, 2019, doi:
10.1109/ACCESS.2019.2945545.

[24] O. Eluyode, “Scholars Research Library Comparative study of biological and artificial
neural networks”, Accessed: Sept. 16, 2025. [Online]. Available:
https://www.academia.edu/7938549/Scholars_Research_Library Comparative_study of biologi
cal_and_artificial_neural_networks

[25] “Gradient-based learning applied to document recognition | IEEE Journals & Magazine |
IEEE Xplore.” Accessed: Sept. 16, 2025. [Online]. Available:
https://ieeexplore.ieee.org/document/726791

[26] “d41586-025-01965-5,” Nature, no. 634, pp. 839, 840, June 2025.

[27] J.Lim, J.-M. Frahm, and F. Monrose, “Leveraging Disentangled Representations to
Improve Vision-Based Keystroke Inference Attacks Under Low Data,” Apr. 05, 2022, arXiv:
arXiv:2204.02494. doi: 10.48550/arXiv.2204.02494.

[28] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on Keyboard Input from
Video,” in 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA: IEEE,
May 2008, pp. 170-183. doi: 10.1109/SP.2008.28.

[29] Z.Yang,Y. Chen, Z. Sarwar, and H. Schwartz, “Towards a General Video-based
Keystroke Inference Attack”.

[30] S.E.Whang and J.-G. Lee, “Data collection and quality challenges for deep learning,”
Proc. VLDB Endow., vol. 13, no. 12, pp. 3429-3432, Aug. 2020, doi:
10.14778/3415478.3415562.

[31] S.E.Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection and quality challenges in
deep learning: a data-centric Al perspective,” The VLDB Journal, vol. 32, no. 4, pp. 791-813,
July 2023, doi: 10.1007/s00778-022-00775-9.

[32] “Recognizing 50 human action categories of web videos | Request PDF,” ResearchGate,
Aug. 2025, doi: 10.1007/s00138-012-0450-4.

[33] H. Hajimolahoseini, W. Ahmed, A. Wen, and Y. Liu, “Is 3D Convolution with 5D Tensors
Really Necessary for Video Analysis?,” July 23, 2024, arXiv: arXiv:2407.16514. doi:
10.48550/arXiv.2407.16514.

55

ﬁ Research Archive of

: Rising Scholars (preprint) Where bright minds share their learnings

[34] E. Kloberdanz, K. G. Kloberdanz, and W. Le, “DeepStability: a study of unstable
numerical methods and their solutions in deep learning,” in Proceedings of the 44th International
Conference on Software Engineering, Pittsburgh Pennsylvania: ACM, May 2022, pp. 586-597.
doi: 10.1145/3510003.3510095.

[35] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks,” Sept. 11, 2020, arXiv: arXiv:1905.11946. doi: 10.48550/arXiv.1905.11946.

[36] H. Ali, N. Shifa, R. Benlamri, A. A. Farooque, and R. Yaqub, “A fine tuned EfficientNet-BO
convolutional neural network for accurate and efficient classification of apple leaf diseases,” Sci
Rep, vol. 15, no. 1, p. 25732, July 2025, doi: 10.1038/s41598-025-04479-2.

[37] K.He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
Dec. 10, 2015, arXiv: arXiv:1512.03385. doi: 10.48550/arXiv.1512.03385.

[38] T.-B. Xu, P. Yang, X.-Y. Zhang, and C.-L. Liu, “LightweightNet: Toward fast and
lightweight convolutional neural networks via architecture distillation,” Pattern Recognition, vol.
88, pp. 272-284, Apr. 2019, doi: 10.1016/j.patcog.2018.10.029.

[39] “resnet18 — Torchvision main documentation.” Accessed: Sept. 16, 2025. [Online].
Available:
https://docs.pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html?utm_s
ource=chatgpt.com

[40] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted
Residuals and Linear Bottlenecks,” Mar. 21, 2019, arXiv: arXiv:1801.04381. doi:
10.48550/arXiv.1801.04381.

[41] C. Luo, X. He, J. Zhan, L. Wang, W. Gao, and J. Dai, “Comparison and Benchmarking of
Al Models and Frameworks on Mobile Devices,” May 07, 2020, arXiv: arXiv:2005.05085. doi:
10.48550/arXiv.2005.05085.

[42] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the
2020s,” Mar. 02, 2022, arXiv: arXiv:2201.03545. doi: 10.48550/arXiv.2201.03545.

[43] F. Wang et al., “E-ConvNeXt: A Lightweight and Efficient ConvNeXt Variant with
Cross-Stage Partial Connections,” Aug. 28, 2025, arXiv: arXiv:2508.20955. doi:
10.48550/arXiv.2508.20955.

[44] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” Psychological Review, vol. 65, no. 6, pp. 386—408, 1958, doi:
10.1037/h0042519.

[45] “ImageNet.” Accessed: Sept. 16, 2025. [Online]. Available:
https://www.image-net.org/download.php

[46] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 30, 2017,
arXiv: arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980.

[47] F. Binbeshr, M. L. Mat Kiah, L. Y. Por, and A. A. Zaidan, “A systematic review of PIN-entry
methods resistant to shoulder-surfing attacks,” Computers & Security, vol. 101, p. 102116, Feb.
2021, doi: 10.1016/j.cose.2020.102116.

48] J.I.D,R.V, T.K. P, A. lyer,and N. M. S, “Resisting Visual Hacking: A Novel Graphical
Password Authentication System,” in 2023 3rd International Conference on Pervasive
Computing and Social Networking (ICPCSN), June 2023, pp. 910-915. doi:
10.1109/ICPCSN58827.2023.00155.

[49] H.-M. Sun, S.-T. Chen, J.-H. Yeh, and C.-Y. Cheng, “A Shoulder Surfing Resistant
Graphical Authentication System,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 2, pp. 180-193, Mar. 2018, doi: 10.1109/TDSC.2016.2539942.

56

A .
6 gggeurch Arehiveof Where bright minds share their learnings
ising Scholars (preprint)

[50] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd, “Reducing shoulder-surfing by using
gaze-based password entry,” in Proceedings of the 3rd symposium on Usable privacy and
security, Pittsburgh Pennsylvania USA: ACM, July 2007, pp. 13—-19. doi:
10.1145/1280680.1280683.

[51] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind Recognition of Touched Keys
on Mobile Devices,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale Arizona USA: ACM, Nov. 2014, pp. 1403-1414. doi:
10.1145/2660267.2660288.

57

	ABSTRACT
	CONTENTS PAGE
	
	1 INTRODUCTION
	1.1 Related Work
	1.1.1 Leveraging Disentangled Representations to Improve Vision-Based Keystroke Inference Attacks Under Low Data Constraints (Lim et al., 2022) [27]
	1.1.2 ClearShot: Eavesdropping on Keyboard Input from Video (Balzarotti et al., 2008) [28]
	1.1.3 Towards a General Video-based Keystroke Inference Attack (Yang et al., 2023) [29]

	
	1.2 Our Contribution
	1.3 Hypothesis
	1.4 Structure of this paper

	
	2 METHODOLOGY
	
	2.1 Standard Methodology
	
	2.2 Dataset
	
	2.2.1 Why it was chosen
	2.2.2 Frame-Based analysis
	
	2.2.3 Limitations of the dataset

	
	2.3 Data Preparation & Considerations
	2.3.1 Data Normalization
	2.3.2 Data Transformation
	2.3.3 Label and Frame Selection
	2.3.4 Data Loading

	2.4 Models
	2.4.1 EfficientNet_b0 (CNN)
	2.4.2 ResNet18 (CNN)
	
	2.4.3 MobileNetV2_100 (CNN)
	
	2.4.4 ConvNeXt_Tiny (CNN)
	2.4.5 Feed-Forward (MLP)

	2.5 Architecture Hyperparameters
	2.5.1 Pretrained
	2.5.2 Hidden Layer
	2.5.3 Dropout Rate
	2.5.4 Rectified Linear Unit

	2.6 Training Hyperparameters
	2.6.1 Checkpoint system
	2.6.2 Learning Rate Scheduler

	2.7 Post-Processing
	
	2.8 Evaluation
	2.8.1 F1 Score
	2.8.2 Other metrics

	
	3 RESULTS AND ANALYSIS
	3.1 Results from dataset hyperparameters
	3.1.1 Evaluating Normalization
	
	
	3.1.2 Evaluating Data Transformation
	
	3.1.3 Evaluating the addition of Time Context
	
	3.1.4 Evaluating Generous Labelling

	3.2 Results from different models
	
	

	3.3 Results from architecture hyperparameters
	3.3.1 Evaluating Model’s Pretraining
	
	
	
	
	
	
	
	
	3.3.2 Evaluating Class Balanced Training
	3.3.3 Evaluating Hidden Layer
	3.3.4 Evaluating Dropout Rate

	3.4 Results from training hyperparameters
	3.3.1 Evaluating Learning Rate Scheduler

	3.5 Summary Of Results
	
	3.6 Best combination of hyperparameters worked the best

	
	4 CONCLUSION
	4.1 Implications
	4.2 Potential Countermeasures
	
	4.3 Limitations
	4.3.1 Further Exploration of Frame-Label mismatch

	
	4.4 Future Direction of Research
	4.4.1 Blind Recognition of Keystrokes
	4.4.2 Keystroke Inference on Mobile Phone Keyboards

	5 ACKNOWLEDGEMENT
	
	REFERENCES

