

Fractures and Physiology: The Science Behind Healing Bones in Youth and Adulthood Cole Hoffman

Abstract:

The tibia and fibula, the weight-bearing bones in the leg, can sustain many different types of fractures that disrupt mobility and sport participation, with healing and management differing substantially by age. This narrative literature review synthesized peer-reviewed studies identified via PubMed, Google Scholar, and the Katz Library to compare anatomy, epidemiology, healing biology, treatment outcomes, and return to activity in children versus adults. Across the sources, children demonstrated shorter times to union - often 4-12 weeks - depending on fracture pattern (stress, direct, or indirect fracture) and location (distal, proximal, or tibial shaft), and greater remodeling capacity due to open growth plates and a thicker periosteum. This enables children and adolescents to expand their horizon in the field of treatment options, allowing casting to be an effective treatment for them, whereas adults commonly rely on surgical fixation. Adults showed substantially longer healing rates, often between 14-24 weeks with a higher risk of delayed/nonunion, which further complicates the healing process. Incidence patterns varied by site (proximal in older adults, tibial shaft in adolescent males, and distal in young adults). The rate of return to sport was more frequent in children (between 4-6 months; >90% of children) than adults (between 6-9 months; ~75% of adults). These conclusions support age-tailored treatment, differentiating prevention and rehabilitation strategies to optimize healing timelines.

Introduction:

Overview: The tibia is the main weight-bearing bone in the leg, supporting about 90% of the weight from your lower leg (Siddiqui 2022). It forms the knee joint with the femur and the ankle (tibiotalar) joint with the talus but unlike the tibia, the fibula does not articulate with the femur, instead it forms the proximal and distal tibiofibular joints. Since the tibia is the larger and stronger of the two load-bearing bones, the fibula bears a smaller portion of the load. However, it is still essential for lateral ankle stability and serves as an attachment site for peroneal muscles (like the achilles and calf) and the lateral collateral ligament (Kothari 2024). It provides many of the same functions as the knee-to-ankle connection and leg stabilization, but it only bears about 10% of the weight in the lower leg because it is a thin bone prone to fractures. By absorbing impact during walking, running, and jumping, they support body movement and stability.

Importance: Because of the bones' critical role, if they were to become fractured, it would have a significant impact not just on the tibia and fibula themselves, but also on the other muscles around it as well. When these bones fracture, it severely affects daily

life because one is limited to bear all weight for weeks to months, depending on the fracture type, pattern, and arrangement of the bones when fractured. This can take a large toll on one's mental and physical health, especially if one is passionate about physical activity. These fractures can easily happen when participating in physical activity, like soccer and skiing for example (Kothari 2024). This can cause one to have doubts and caution about continuing intense physical activity, causing negative lifelong effects. Prolonged immobility can cause muscles around the tibia and fibula like the quadriceps, hamstring, and calf muscles can all atrophy in strength and size (Kothari 2024). This often reduces motivation for rehabilitation. Joint stiffness may occur at the knee and ankle as well, due to the minimal or toned down usage of the joints after the fracture. After starting treatment plans for a fracture, it can be hard adapting to new mentalities and physical activity.

History: The treatment of tibial and fibular fractures has undergone a remarkable revolution, reflecting advances in medical knowledge, technology, equipment and more. In ancient times, broken bones were treated with the simplest methods of immobilization. Examples of this can be as simple as using wooden splints (often made from sticks with no manufacturing), tight cloth wrappings, or natural materials to try to keep the bone straight and let the body heal on its own. Over many centuries, physicians' knowledge of anatomy has evolved into making more structured approaches to treating. Today, modern medicine offers a broad spectrum of options, ranging from traditional casting to advanced surgical techniques like intramedullary nailing, which can provide faster, safer and better functional outcomes (Kothari 2024). These advances form the basis for comparing healing in children and adults.

This paper examines how tibial fracture healing timelines differ between children and adults and explores the biological and clinical factors underlying these differences. This review has four main aims. First, it will describe the anatomy and epidemiology of tibial and fibular fractures, showing how structural features and population patterns influence common fracture types. Second, it will compare the biological processes and timelines of bone healing in children and adults, with particular focus on the role of growth plates, periosteal activity, and remodeling potential. Third, it will evaluate the effectiveness of different treatment strategies - such as casting, bracing, and surgical fixation - across age groups and fracture patterns, highlighting success rates, complications, and clinical decision-making. Finally, it will identify both intrinsic and extrinsic risk factors that increase fracture risk and outline prevention strategies, rehabilitation considerations, and return-to-sport outcomes. This review asks: How do tibial fracture healing timelines differ between children and adults, and what biological and clinical factors explain these differences?

Background:

Bone structure: Bone is made up of two primary layers: compact (cortical) and cancellous (spongy) bone (Washmuth 2023). The cortical bone is the dense, strong, more rigid, and outer layer of the bone while the cancellous bone is the lighter, inner part of the bone. Cortical bone makes up about eighty percent of the skeleton and provides strength and structure (Washmuth 2023). Compact bone provides structural support, while spongy bone absorbs shock and reduces overall bone weight.

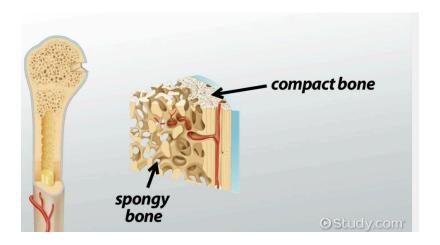


Image 1. (Washmuth 2023) Spongy and Compact Bone Structure

This is a diagram illustrating the difference between compact (dense outer) and spongy (porous inner) bone

Bone layers: Bones contain structural layers that contribute to strength and repair. First of all, on the outermost layer of bones, the periosteum is a thin, but tough layer of membrane that is crucial for bone repair and healing. This outer fibrous layer is composed of blood vessels, lymphatic vessels, and nerves, which protect the bone and serve as attachment sites for tendons and ligaments. The osteogenic layer, which is just behind the outer fibrous layer, contains specialized cells, including osteoblasts which are bone-forming cells. Beneath these layers lies compact bone, forming the hard protective shell. Lastly, the cancellous bone layer is the inner, lighter, and less dense bone tissue, protected by the compact bone layer. Within the cancellous bone layer lies red and yellow bone marrow, and the site of where some diffusion of nutrients occurs, which can spread towards the entire body, including muscles and joints surrounding the tibia and fibula (Washmuth 2023).

Muscle and joint attachment: The tibia and fibula serve as critical anchor points for muscles, tendons, and joints that enable movement of the leg. The tibia connects to the knee joint superiorly and the ankle joint inferiorly, allowing for force transmission from

the thigh to the foot. The tibial tubercle provides an attachment site for the patellar tendon, which connects the quadriceps muscles to the tibia and plays a central role in knee extension. On the medial side, the pes anserinus tendons attach to the tibia and help stabilize the knee. Proximally, the fibular head provides an attachment point for the biceps femoris tendon and the lateral collateral ligament (LCL) of the knee. In addition, the fibula is the origin site for the peroneus longus and peroneus brevis muscles, which are essential for ankle stability and eversion. Distally, the fibula contributes to the lateral ankle mortise, stabilizing the talus during walking and running. Together, the tibia and fibula work together to integrate muscular, ligamentous, and joint structures, ensuring coordinated motion and stability throughout the lower extremity.

Functional differences: The tibia bears weight while the fibula provides balance and stability. Since the tibia is the main weight-bearing bone of the lower leg, it supports the large majority of the body weight when participating in physical activity. The broad upper end forms the tibial plateau which is critical for the knee joint. Unlike the tibia, the fibula is slender - a rod-like shaped bone that only connects to the tibia, not the femur. The tibia transfers the forces generated by the thigh to the foot. Repeated force intake by the tibia is why stress fractures are so common in this bone (Washmuth 2023). The tibia provides a surface for the connection of strong leg muscles. On the other hand, the fibula bears little weight, but provides stability and support. It provides lateral support to the ankle which prevents side-to-side collapse of the ankle. The fibula provides lateral stability, supporting the tibia's connection to surrounding joints and muscles. These two work simultaneously to prevent any awkward movements that could lead to a fracture.

Different fractures based on structure: Different regions of the tibia and fibula are vulnerable to specific fractures: tibial shaft (direct or twisting trauma), tibial plateau (load-bearing stress), distal fibula (ankle rotation). Since the fibula is thin, it is prone to fractures when the ankle is injured because it is directly attached to the side of the ankle. Proximal and distal fractures of these bones also pose unique risks for surrounding structures like joint surfaces and nerves.

Bone Healing:

Inflammation: The first stage of bone healing, inflammation, begins immediately after the fracture occurs and can continue on for about a week. This stage begins with bleeding, swelling, and formation of a blood clot that forms the foundation for healing. This blood clot releases signaling molecules that attract immune and bone-forming cells to the area. Open fractures carry higher risks of infection and nonunion, often requiring urgent surgical fixation (Patel 2018). Being uncomfortable and having intense pain is highly likely. This is the body's natural inflammatory response as it tries to heal the area.

No matter the age or health status, this process occurs within the first week of the fracture for everyone, and they enter the soft and hard callus phases.

Soft/hard callus: Over the next 1–3 weeks, cartilage begins forming a soft callus bridging the fracture site. During this stage, repair cells begin forming soft, structured tissue cells at the fracture site. Fibroblasts and chondroblasts migrate to the fracture site, producing fibrocartilage and collagen, which form a soft callus which bridges the ends of the broken bone together. The soft callus provides early stabilization but remains more fragile than mature bone. There should only be minimal pain and swelling by the middle of the soft callus phase. The end of the transformation from cartilage to immature bone marks the start of the hard callus phase. The hard callus phase is when the new bone gains sufficient strength to withstand gentle forces and stresses. During the next 3-6 weeks, the hard callus phase provides the fracture with greater stability, without pain and swelling. The hard callus represents preliminary repair; complete recovery requires remodeling.

Remodeling: The remodeling phase is the final and longest phase of bone healing. This phase begins after hard-callus formation and can last several months to years, particularly in older adults or patients with comorbidities. The temporary bone laid down during the hard callus phase is gradually replaced by lamellar bone, which restores the bone's normal strength, structure, and alignment. Osteoclasts resorb excess bone and reshape the fracture site. This follows Wolff's law, in which bone remodels along lines of stress. During this process, the bone regains most of its original biomechanical properties. Even though the fracture may already be stable and functional already, full remodeling ensures that the bone comes as close as possible to its pre-injury durability and efficiency. Children tend to complete this stage quicker than older individuals because of their greater periosteal thickness, open growth plates and higher osteogenic potential.

Causes of Injury:

Direct trauma: Direct trauma is a leading cause of tibial and fibular fractures, often from high-energy impacts such as falls, vehicle accidents, or contact sports (Kothari 2024). Because the tibia lies just behind the skin with minimal soft tissue protection, it is prone to injury when struck directly. Unlike twisting injuries that produce spiral patterns, direct trauma causes clean or comminuted fractures at the point of contact. In severe cases, direct trauma can affect surrounding muscles and joints, which can make treatment more complex. Because of limited soft tissue coverage, direct tibial fractures often require surgical fixation, particularly when displaced or open. These cases generally involve longer recovery times than indirect trauma fractures.

Indirect trauma: Indirect trauma, the opposite of direct trauma, occurs when force is transmitted along the bone rather than applied directly to it, often producing unique fracture patterns like a spiral tibial shaft fracture, one of the common ones. This typically occurs in sports when a planted foot twists, creating torsional stress on the tibia and fibula. Unlike direct trauma where the fracture occurs at the point of contact, indirect trauma fractures usually occur away from the site of impact, reflecting that the stress travels through bone (Kothari 2024). These injuries can be associated with ligament injuries, specifically around the knee and ankle, since twisting forces can cause stress on the bone and other soft tissues.

Stress fractures: Stress fractures are a unique type of tibial and fibular injury that do not come from contact or trauma, but from repetitive stress over a short period of time (Kothari 2024). They are common in athletes, dancers, and military recruits engaged in repetitive high-impact activities. In these cases, the bone is subjected to cyclical loading without sufficient recovery or rest, leading to the development of microscopic cracks. When repetitive stress exceeds the bone's remodeling capacity, microcracks accumulate into a stress fracture. The tibia, more than the fibula, is particularly vulnerable to a stress fracture due to its weight-bearing role. Unlike acute trauma fractures, stress fractures present with gradual, activity-related pain that improves with rest (Patel 2018). These are usually closed fractures, while direct and indirect trauma fractures are more likely to be open fractures. Early diagnosis is essential for stress fractures because then one will know if they should have more rest, while delayed diagnosis can increase the risk of further fractures. Early X-rays may be routine, but MRIs and bone scans can detect stress injuries earlier. These mechanisms illustrate how various forces cause distinct tibial and fibular fracture patterns and recovery timelines.

Risk Factors and Prevention:

Intrinsic factors: Intrinsic factors are characteristics of an individual that influence the risk of tibial and fibular fractures. Age is a critical determinant. Children's bones are more flexible and remodel quickly, whereas adults have reduced bone density and heal more slowly, making them more prone to fractures from minor trauma (Raducha 2019). Gender and bone density both influence fracture risk; postmenopausal women are especially vulnerable due to bone loss (Wennergren 2018). Bone density is also a major factor - low bone mass reduces the ability of bones to withstand stress and increases the risk of all types of fractures. Individuals with bone disorders like bone cancer are at a very high risk. A history of prior fractures suggests reduced bone strength and predicts greater future fracture risk. A previous fracture increases risk of subsequent fracture due to bone quality or biomechanical factors. Together, these factors can determine if one has a higher risk of a tibial or fibular fracture.

Extrinsic factors: Extrinsic factors are external factors that can influence the risk of tibial and fibular fractures. These factors are also modifiable through behavior, environment, and available resources. One of the most extreme extrinsic factors is the type of sport or physical activity one participates in. High-impact sports (basketball, football, soccer, gymnastics) place repetitive stress on the lower leg, increasing fracture risk (O'Neill 2023). Footwear and protective gear are also crucial. Correctly fitted shoes with adequate cushioning and ankle support can absorb shock and reduce torsional stress on the bones. Protective pads, braces, and shin guards can help prevent direct trauma to the tibia and fibula. Adequate vitamin D and calcium intake strengthens bones and lower fracture risk. Athletes should gradually ramp up their activity instead of jumping into action quickly and rest immediately after discomfort or pain occurs, as well as take on other simple prevention strategies that can prevent future fractures.

Prevention strategies: Although many risk factors that can lead to the fracture of a tibia or fibula, there are also many ways to prevent this from happening. Consistent intake of vitamin D and calcium supports bone growth and reduces fracture risk. Second, having the proper safety equipment and protectionary measures in place can be a huge help as well, especially while playing sports. Wearing footwear that supports the ankle prevents the ankle from rolling and getting injured, which can sometimes trigger a fracture in the fibula. Similarly, wearing appropriate shin pads in sports like soccer, field hockey, and ice hockey can lower the power of the direct impact to the tibia, leading to a lower chance of a fracture. Early rest and evaluation at the first sign of discomfort can prevent stress fractures from worsening. To prevent the stress fracture from the beginning, one should look to begin graded training plans, so that the intensity of the training does not start at a high volume. Strengthening other muscles and joints in the body like the calf, thigh, hamstring, ankle, knee, and hip can support the tibia and fibula which will help prevent fractures. Using some of these strategies can help tibia and fibula stay safe from both intrinsic and extrinsic risk factors.

Literature Review:

Epidemiology: Epidemiology refers to the study of how often diseases or injuries occur in specific populations over time (Wennergren 2018). It is often expressed as a rate to show the probability of one contracting that disease or injury. A ScienceDirect study of 1,325 tibial fractures found that proximal tibial fractures occurred more frequently in older adults (mean age 54.3 years), with women comprising 58% of cases (Wennergren 2018). Whereas when patients contracted tibial shaft and distal fractures, they had a lower mean age (47.0 years and 48.3 years, respectively) and an abundance of men (59% and 54%, respectively) (Wennergren 2018). Fracture incidence rises with age in both sexes, but more steeply in women. In children, tibial fractures account for about 15% of all pediatric fractures (Wennergren 2018). The peak incidence occurs in boys ages 10-15 due to their

participation in sports and other high-energy activities, causing fractures (Wennergren 2018). In toddlers, the peak incidence age is 1-4 years old (Wennergren 2018). These fractures usually occur due to minor twists or falls. Boys experience tibial fractures at nearly twice the rate of girls, largely due to higher participation in risk-prone activities.

Table 1. Incidence of Tibial Fractures by Fracture Location

Fracture Location	Incidence (per 100,000/year)	Most affected age group	Typical Mechanism of Injury
Proximal Tibia	~14 per 100,000/year	Older adults (mainly ones who are osteoporotic)	Falls, skiing, valgus load
Tibial Shaft	~21 per 100,000/year	Adolescants, especially males who participate in high-energy activities	Twisting sports injuries, motor vehicle accidents
Distal Tibia	~16 per 100,000/year	Young adults - adolescent. Around age 20	Ankle trauma, sports, inversion injuries

Table 1. Incidence of Tibial Fractures by Location

This table summarizes the incidence of tibial fractures across anatomical sites, with corresponding age groups and common mechanisms of injury. Proximal tibia fractures are most common in older adults, tibial shaft fractures peak in adolescents—especially males involved in high-energy sports—and distal tibia fractures occur more often in young adults, frequently associated with ankle trauma and inversion injuries.

Pediatric vs adult differences: Pediatric and adult fractures differ due to activity patterns and distinct bone biology. Children's tibial fractures usually occur from high energy activities, which can result in stress fractures a lot of the time. Direct trauma is another common cause of fracture for children, but not as much for adults since they don't usually participate in the direct trauma-prone activities that children participate in. Instead, indirect trauma fractures are very common for adults, coming from minor, but dangerous, falls or twists in the tibial shaft, as well as from road accidents. Children and adolescents sustain fewer tibial shaft fractures than adults.

Adults are then at an even further disadvantage due to their remodeling process taking longer than one of a child because of their closed growth plates. Open growth plates allow children's bones to remodel rapidly, often uniting within 10–12 weeks. Adults, by contrast, frequently require surgical fixation with recovery lasting up to a year. On the other hand, toddlers sustain many tibial fractures due to the bones structuring, hardening, getting used to the new range of motion and weight bearing when toddlers begin to walk and participate in more high-energy activities. Since toddlers can easily fall over due to poor balance, depending on how young the toddler/baby is, the bones can be soft and not fully developed yet, leading to an easy way for the tibial/fibular fracture to occur. These fractures can be described and classified through different means of technology like X-rays, CT scans, and MRI scans.

Classification & imaging: Diagnosis begins with imaging to determine the fracture type and severity (Patel 2018). Usually the first step in recognizing the fracture type, is conducting an X-ray, which should happen immediately after the injury occurs. The X-ray will show the initial fracture pattern, location, the displacement, angulation and whether the fracture requires surgery or not, after taking into account all other factors. If the fracture is unclear on X-ray, MRI is used for further evaluation. The MRI shows the fracture more clearly, and it will depict if the fracture involves any open growth plates or joints that need to be treated as well. Treatment is chosen based on fracture type and severity, typically classified as conservative or surgical.

Treatment: Fracture treatment depends on type and severity; management may be conservative or surgical. The severity of the fracture and where the bones are initially located can indicate if the treatment will be conservative or surgical. If the bones are located in a position where they can naturally grow back connected and together, the treatment will likely be casting or bracing (Rakesh 2005) When the bones are displaced, surgery is usually needed to repair the fracture so the bones will be stabilized when the fracture heals. When the patient uses a conservative type of treatment, it usually takes a shorter period of recovery compared to surgical fixation, seen in table 2. Since surgical fixation affects surrounding blood vessels, and soft tissue, it causes more trauma to the surrounding area which causes disruption and a longer healing timeline.

Surgery may be contraindicated in patients with significant health risks or comorbidities. In otherwise healthy patients, both surgical and conservative treatments present distinct advantages and risks. For conservative treatment like casting, some of its pros can be that it is non-invasive and lowers the risk of infection which can cause major problems later in the recovery (Rakesh 2005). For families who are financially unstable, casting can be a good alternative because it is more cost-friendly. Lastly, if the surgery were to go wrong, there is a higher risk of major problems like amputation, disease, etc. Casting may cause skin irritation, discomfort, and delayed return to activity.

Age Group	Treatment Type	Success rate (% union)	Complications Reported	Average Recovery Time
Children	Casting	Almost always union (where the bone comes together). Nonunion (when the bone never fully reconnects) occurs less than 2% of the time. (Rakesh 2005)	Cast complications include skin irritation and pressure sores. It can also cause a loss of alignment. Specifically for children, there can be larger physiological impacts with no mental strategies to overcome it	The average time until walking (at least in a walking boot) is ~ 10 weeks
Children	Surgical Fixation	Almost always union. Nonunion occurs less than 3% of the time.	Risk of infection is high. Realignment of bones can be difficult because in some cases, bones are not close to being fully developed.	Recovery time is usually at least 2 weeks longer than casting in children. Anywhere from 12-14 weeks until walking is normal.
Adults	Casting	Much lower success of union rate, which is about 90% when casting adults (due to bones not being able to regrow at all/as quickly naturally). About 10% rate of nonunion.	This type of treatment for adults is much harder to go through due to the very high, initial risk of it non union (Rakesh 2005).	When used appropriately (stable fractures), union can occur over multiple months: but less favored for even moderate cases, definitely not in complex patterns.
Adults	Surgical Fixation	Around 93%. This is significantly lower than the rate of a child getting surgical fixation.	Sometimes, adults need to get multiple procedures done because these surgeries are very complex. A lot of the time, nonunion, delayed union and infection happens due to the higher unpredictability (Rakesh 2005).	The total recovery time can be anywhere from 12-18 months. Surgical stabilization can be quicker than casting with adults because it allows earlier weight bearing.

Table 2. Treatment Type vs Success Rate by Age Group

This table outlines the effectiveness of conservative (casting) versus surgical fixation for tibial fractures in children and adults. Children demonstrate high union rates with both casting and surgery, with shorter recovery timelines and fewer complications. Adults show limited success with casting and greater reliance on surgical fixation, which carries higher risks of nonunion, delayed union, and infection, leading to prolonged recovery times.

Outcomes & return to sport: Even after physical recovery, patients often experience psychological effects related to their injury. These people tend to be really cautious about the activities they participate in. Many people who sustain these injuries, depending on the age and gender, will not return back to the sport they played or got injured doing due to fear of re-injury (Wennergren 2018). Adults are less likely to return to the sport they played - some because they physically cannot return back to the sport, and some because recovery takes so long for adults that they lose interest in that sport. For children and some adolescents, it much more likely they return to their sport because they have less fear than adults do about re-injury. Also, children and adolescents usually return to sports because they medically and physically will be able to (O'Neill 2023). Even if one were to return to sport, they usually do not participate or play at as high of a level as they did before.

Table 3. Return to Activity / Sport After Fracture

Age Group	% Returning to Sport	Average Time to Return (months)	Psychological Barriers Reported
Children	~91% for surgically treated fractures (Kothari 2024) ~about 95% for conservatively treated fractures	~about 4-6 months until full physical eligibility in sports	Fear of reinjury minimal
Adults	~about 75% of people who play sports semi-competitively ~Less if the sport is not very competitive.	~typically ranges between 6-9 months	Fear of reinjury common

Table 3. Return to Activity or Sport After Tibial Fracture

This table compares return-to-sport rates, timelines, and psychological barriers between children and adults following tibial fracture. Children demonstrate higher return rates and shorter recovery periods, while adults are more likely to experience delayed recovery and psychological barriers such as fear of reinjury.

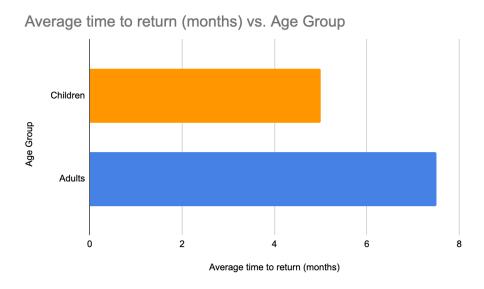


Figure 1. Average time to return to sport after tibial fracture by age group

This bar graph compares the average time required to return to sport for children and adults following tibial fractures. Children typically return in about 5 months, while adults typically are closer to 7–8 months, reflecting slower healing and longer rehabilitation timelines with age.

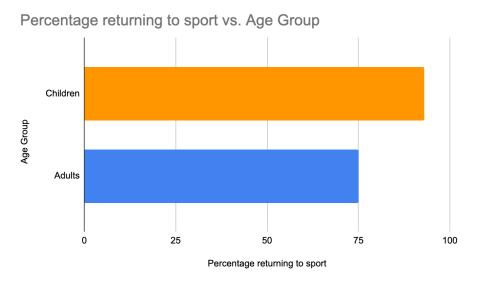


Figure 2. Percentage of patients returning to sport after tibial fracture by age group

This bar graph illustrates return-to-sport rates between children and adults. Children show higher return rates (>90%) compared to adults (~75%), highlighting both biological healing advantages in younger patients and psychological barriers that often limit adult return to previous activity levels.

Methods of research:

"This study is a narrative literature review of peer-reviewed journal articles examining tibial and fibular fractures. Databases searched included PubMed, Google Scholar, and the Katz Library system. Search terms included 'tibial shaft fracture children vs adults,' 'fibula fracture healing,' 'pediatric fracture outcomes.' Sources were screened for relevance and reliability, with preference given to articles published within the last 20 years. All sources have been tracked on Noodletools and checked for accuracy and precision before creating the bibliography, also made through Noodletools." In summary, this review set out to examine how tibial and fibular fractures are shaped by anatomy and epidemiology, how healing differs between children and adults, how treatment strategies compare across age groups, and how risk factors and rehabilitation influence recovery and return to activity.

Analysis of the Data:

Healing Timelines - Children versus Adults: The data demonstrate clear differences in healing rates between pediatric and adult populations. There are many reasons for this though. One of the main differences being the open growth plates in children compared to the closed growth plates in adults. The periosteum - the outer layer of the bone - is thicker and more biologically active which allows for faster callus formation and remodeling. Children and their bones are still growing, so naturally the bones need to keep shaping which allows for faster healing time. The bones' natural growth also allows for correction even if the bone healing is slightly crooked. This flexibility explains why casting is often preferred for children, yielding shorter healing times than surgery. On the other hand, as adult growth plates are closed, the periosteum is thinner and less biologically active. This limits natural remodeling potential, making alignment during treatment more critical (Patel 2018). Surgical fixation provides accuracy but generally requires longer healing. In children, osteoblasts are more active, leading to quicker formation of callus and bone union. Since osteoblast activity declines with age, it prolongs the time it takes for union (Wennergren 2018). As children's bones are not fully developed, their bones are less dense but more flexible which can absorb the impact better and reduces the risk of complex fracture patterns which take significant time to heal. Adults, who have more dense and brittle bones, are prone to more severe fractures and slower healing.

Table 4. Average Healing Timelines of Tibial Fractures in Children vs Adults

Age Group	Average Time to Union (weeks)	Range (weeks)	Notes (complications, remodeling potential)
Children	~ 4-8 weeks (Rakesh 2005)	~ 8-12 weeks (Kothari 2024)	Faster remodeling, thick periosteum, lower rates of non-union. Since this takes into account children aged through 16 years old, this can vary if it is a toddler's fracture, which can unify in about 4-6 weeks.
Adults	~ 14-18 weeks (Rakesh 2005)	~ 20-24 weeks (Kothari 2024)	Slower healing, higher risk of nonunion. Infection and disease rates are higher (because of the use of surgical fixation) which can slow down the healing process

Table 4. Average Healing Timelines of Tibial Fractures in Children vs Adults

This table compares the healing durations of tibial fractures in children and adults. Children demonstrate faster union and remodeling due to open growth plates, thick periosteum, and higher osteogenic potential. In contrast, adults show longer healing times and higher risks of nonunion and infection, particularly when surgical fixation is required.

Treatment implications: Surgical fixation is commonly required for adults but less frequently for children. This is because children's bones have a higher chance of realigning over time due to open growth plates and thick periosteum. Minor displacement can naturally correct itself without surgical intervention a lot of the time. Avoiding surgery can also mean limiting trauma and infection, which can deeply affect children at their young age. Avoiding surgery also prevents disruption of growth plates, a significant concern unique to pediatric patients. Adults rarely realign fractures naturally due to reduced osteoblast activity. This results in surgery not becoming optional when it comes to adults, it is necessary. In addition, adults are more likely to sustain multi-fragmented fractures which cannot be stabilized by casting alone.

Research Limitations: Though this research has been conducted thoroughly, there are still limitations to this study. Because this review relies on previously published studies, potential errors or inconsistencies in those data may influence results. As this article has not conducted its own experiment on the healing times of tibial fractures between adults and children, there is no way to know of any faults or publication bias throughout other articles. Faults through the data collected can lead to varying results, as

well as if the article has a bias towards one side of the experiment, which can be labeled as publication bias.

Conclusion:

Learning Outcomes: In summary, tibial and fibular fractures demonstrate clear differences in healing rates between children and adults, with pediatric patients achieving faster union and presenting greater remodeling potential. The thick periosteum and open growth plates play a large role in this, as these features are not possessed in adults. In adults, these features often necessitate surgical intervention, which prolongs healing. Through surgery there is also a higher risk of infection which can delay the process of recovery even more. These distinctions emphasize that different treatment strategies must be tailored to patients, depending on their age, overall health, and fracture pattern. Treatment options must be weighed, usually considering conservative options like casting in children, and surgical intervention with adults. Orthopedic decisions should be individualized to optimize healing outcomes for each age group.

Rehabilitation and Prevention in the Future: Similar to the differentiating treatment and speed of remodeling in children and adults, they can have contrasting rehab strategies, as well as the time to return to physical activity. Advances in technology and targeted research continue to refine fracture rehabilitation. Emerging research supports both traditional prevention (e.g., adequate nutrition) and innovative approaches, including advanced protective gear. Recent advances—such as improved imaging, biologic grafts, and bone-stimulating therapies—are shaping future rehabilitation. Beyond orthopaedics, these improvements ripple out into public health, reducing return to activity time, and lowering healthcare costs worldwide. As scientists continue to cut down the time that one's tibial injury prevents them from working, this will benefit the global economy due to the increase in work which can help create more job opportunities. In conclusion, future research in biotech, biomechanics and improved rehab strategies has the potential to not only improve outcomes for fracture patients, but also to serve as a model for how science and technology can reshape recovery and resilience across medicine as a whole, leading to benefits worldwide.

Bibliography

- Kothari, Varun, Chang Park, Alison Hulme, and Stephen Ng Man Sun. "Classification and management of tibial tubercle avulsion fractures in children." British Journal of Hospital Medicine. Last modified July 18, 2024. Accessed October 29, 2025. https://www.magonlinelibrary.com/doi/full/10.12968/hmed.2023.0380.
- Mashru, Rakesh P., Martin J. Herman, and Peter D. Pizzutillo. "Tibial Shaft Fractures in Children and Adolescents." Journal of the American Academy of Orthopaedic Surgeons. Last modified September 2005. Accessed October 27, 2025. https://journals.lww.com/jaaos/abstract/2005/09000/tibial_shaft_fractures_in_children_and_adolescents.8.aspx.
- O'Neill, Dillon C., Eleanor H. Sato, and Justin M. Haller. "Return to Skiing After Tibial Plateau Fracture." Sage Journals: Orthopaedic Journal of Sports Medicine. Last modified October 18, 2023. Accessed October 29, 2025. https://journals.sagepub.com/doi/10.1177/23259671231205925.
- Patel, Nirav K., Joanna Horstman, Victoria Kuester, Senthil Sambandam, and Varatharaj Mounasamy. "Pediatric Tibial Shaft Fractures." Indian Journal of Orthopaedics. Last modified October 1, 2018. Accessed October 28, 2025. https://link.springer.com/article/10.4103/ortho_IJOrtho_486_17.
- Raducha, Jeremy E., Ishaan Swarup, Jonathan M. Schachne, Aristides I. Cruz, and Peter D. Fabricant. "Tibial Shaft Fractures in Children and Adolescents." The Journal of Bone and Joint Surgery. Last modified February 2019. Accessed October 28, 2025. https://journals.lww.com/jbjsreviews/abstract/2019/02000/tibial_shaft_fractures_in_childre n_and_adolescents.4.aspx.
- Siddiqui, Muhammad Mubashir. "Pathological Distal Tibial and Fibular Fracture in a Paediatric Patient: A Case Report." Cureus. Last modified October 12, 2022. Accessed October 29, 2025. https://www.cureus.com/articles/108210-pathological-distal-tibial-and-fibular-fracture-in-a-paediatric-patient-a-case-report#!/.
- Washmuth, Dan. "Compact Bone | Function, Structure & Location." Study.com. Last modified November 21, 2023. Accessed October 29, 2025. https://study.com/academy/lesson/compact-bone-definition-structure-function.html.
- Wennergren, David, Carl Bergdahl, Jan Ekelund, Hans Juto, Mikael Sundfeldt, and Michael Möller. "Epidemiology and incidence of tibia fractures in the Swedish Fracture Register." ScienceDirect. Last modified November 2018. Accessed October 28, 2025. https://www.sciencedirect.com/science/article/pii/S0020138318304893.