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Abstract​
We introduce a modular pipeline for automated fact‑checking that integrates neural text 
understanding with retrieval‑based ranking (e.g., BM25). Claims from four public corpora, 
FEVER, LIAR, PolitiFact, and GossipCop, are unified into a three‑class FEVER label scheme 
(SUPPORTS, REFUTES, NOT ENOUGH INFO), ensuring a balanced training pool. We 
fine‑tune a BERT‑based verifier on claim–evidence pairs for semantic verification. 
Simultaneously, we train a lightweight CNN on claim‑only text for complementary classification. 
Their probability outputs are then fused in a stacked ensemble via a logistic regression 
meta‑classifier.  

On a 600‑claim validation set, individual model accuracies reach 47.6% (BERT), 45.0% (CNN), 
and 39.6% (BM25). The ensemble of BERT and CNN boosts accuracy to 55.0% (macro‑F1 = 
0.550), a 7.4‑point improvement over the best single model. Confusion‑matrix analysis shows 
REFUTES statements are detected most reliably, while SUPPORTS and NOT ENOUGH INFO 
remain challenging. Our findings confirm that a simple, interpretable ensemble can effectively 
leverage complementary strengths of neural models and retrieval methods, providing a strong 
foundation for scalable fact‑checking. 

 
Introduction 

Technology now permeates nearly every corner of daily life, from the glowing rectangles in our 
pockets to the endlessly scrolling feeds we check between meetings. The same progress that 
lets us stream a movie on a train has also unleashed a new generation of artificial‑intelligence 
tools capable of crafting photorealistic images, synthetic voices, and entire news articles at the 
click of a button. While such creativity can be inspiring, it also lowers the barrier to 
misinformation, including false or misleading information spread unintentionally, as well as its 
malicious cousin, disinformation, which is deliberately deceptive. Deepfakes can convincingly 
spoof world leaders, AI‑written posts can masquerade as eyewitness reports, and viral 
headlines built from fabricated statistics can sway public opinion. Misinformation presents one of 
the most pressing challenges in today’s digital information ecosystem. Unlike traditional factual 
errors, misinformation can be subtle, context-dependent, and difficult to identify with certainty. 
One major challenge lies in the subjective nature of interpretation: the same statement may be 
read as satire, parody, or a harmless joke by one audience, yet be taken as a factual claim by 
another. This ambiguity makes automated detection particularly complex, since systems must 
distinguish between intentional humor and misleading assertions while also accounting for tone, 
exaggeration, and cultural context. Furthermore, misinformation often exploits emotions and 
biases, meaning that detection is not solely about factual verification but also about analyzing 
how language is used to persuade or mislead. These challenges underscore the need for a 
multi-layered approach to developing reliable misinformation detection systems, one that can 
parse both objective facts and subjective tones. At the same time, the spread of misinformation 
is accelerated by the speed and scale of online platforms, where false or misleading content can 
be amplified through algorithms, bots, and viral sharing. The combination of subjective 
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interpretation and rapid dissemination creates an environment in which misinformation not only 
spreads quickly but also becomes increasingly difficult to correct once it has gained traction. 

The consequences are substantial: in politics, fabricated claims can erode trust in democratic 
institutions; in public health, spurious medical advice can lead to harmful behaviors; and in 
finance, misleading rumors can trigger market volatility. The sheer volume and speed of online 
information flow make manual verification impractical, creating an urgent need for automated, 
scalable fact‑checking tools. 

In this paper, we present an end‑to‑end misinformation‑detection pipeline that knits together 
retrieval and neural verification. We unify four widely used fact‑checking corpora, FEVER, LIAR, 
PolitiFact, and GossipCop, by mapping their varied verdicts (e.g., true, half‑true, pants‑on‑fire) 
into the common FEVER labels SUPPORTS, REFUTES, and NOT ENOUGH INFO. The 
pipeline then: 

1.​ Retrieves the single most relevant evidence sentence for each claim using a tuned BM25 
search.​
 

2.​ Feeds that claim–evidence pair to a fine‑tuned BERT verifier for semantic judgment.​
 

3.​ Analyzes the claim text itself with a lightweight CNN to capture stylistic and linguistic 
cues.​
 

4.​ Stacks both neural outputs in a balanced multinomial logistic‑regression meta‑classifier to 
produce the final verdict.​
 

 

Related works 

Research on misinformation detection has advanced through three main threads: the creation of 
benchmark datasets, the development of retrieval methods, and the design of verification 
models. The FEVER dataset (Thorne et al., 2018) established a large-scale benchmark for 
evidence-based verification, introducing the now widely used three-way label scheme of 
SUPPORTS, REFUTES, and NOT ENOUGH INFO. Later datasets, such as LIAR (Wang, 2017) 
and FakeNewsNet (Shu et al., 2020), which include Politifact and GossipCop, expanded the 
scope of claim detection by incorporating real-world political and entertainment news. Together, 
these resources created the foundation for training fact-checking systems, while also 
highlighting challenges such as inconsistent labeling standards across datasets. 

Retrieval methods form the second line of work. Classical approaches, such as BM25 
(Robertson & Zaragoza, 2009), utilize probabilistic relevance ranking to identify sentences most 
likely to contain evidence. These methods are efficient and interpretable, but often limited by 
lexical overlap, which leads to low recall. More recently, dense passage retrieval (Karpukhin et 
al., 2020) has improved retrieval quality by leveraging learned semantic embeddings, though at 
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a greater computational cost. This trade-off between precision, recall, and efficiency continues 
to shape retrieval choices in fact-checking pipelines. 

The third thread centers on verification models. Transformer-based architectures, particularly 
BERT (Devlin et al., 2019), have demonstrated strong performance in natural language 
understanding tasks and have been widely adopted for claim verification. These models excel at 
capturing semantic relationships between claims and evidence, but they can struggle when 
labels are noisy or when evidence is missing. Complementing semantic approaches, lightweight 
models such as CNNs can analyze linguistic and stylistic features that may serve as cues for 
subjectivity or deception. Ensemble learning, as outlined by Dietterich (2000), provides a 
method for integrating these complementary signals, thereby reducing variance and enhancing 
robustness across diverse claim types. 

Taken together, these works show that misinformation detection requires more than a single 
powerful model. Datasets provide the raw material, but introduce noise; retrieval methods 
supply evidence, but vary in reliability; and neural verifiers capture meaning, but miss stylistic 
nuance. The pipeline in this study builds directly on these insights by unifying multiple corpora 
into a shared label scheme, combining BM25 retrieval with BERT verification, and layering a 
CNN classifier to capture stylistic patterns. This integration demonstrates how ensemble 
learning can leverage the strengths of each component to mitigate the weaknesses identified in 
prior research. 
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Methods 

Data Aggregation and Preprocessing 

We integrated claim–label pairs from FEVER (Thorne et al., 2018), LIAR (Wang, 2017), and 
FakeNewsNet (Shu et al., 2020), encompassing Politifact and GossipCop corpora. Labels were 
mapped to SUPPORTS, REFUTES, or NOT ENOUGH INFO, consolidating source-specific 
categories such as “true,” “false,” “half_true,” and “pants_on_fire.” We removed claims under 10 
characters, eliminated duplicates, and performed a stratified 70/30 train-test split. For rapid 
experimentation in FAST_DEV mode, we sampled ≈2,000 training and ≈500 test examples. 

BERT Claim Detection 

We fine-tuned bert-base-uncased (Devlin et al., 2019) for claim detection using claim–evidence 
pairs. Evidence retrieval was handled by BM25, filtering for sentences scoring ≥ 0.60 for 
contextual relevance. If no strong evidence was retrieved, the claim was processed 
independently. Training employed class-weighted cross-entropy loss, the AdamW optimizer 
(lr=2×10⁻⁵), a batch size of 16, a maximum sequence length of 192, and 3 epochs. Model 
validation was logged per epoch. 

CNN Subjectivity Classification 

The input to the CNN is claim-only text, tokenized and embedded using frozen BERT 
embeddings (256 dimensions). The CNN analyzes stylistic and linguistic cues in the claim to 
produce a 3-dimensional softmax probability vector corresponding to the classes SUPPORTS, 
REFUTES, or NOT ENOUGH INFO. These outputs are later integrated into the ensemble 
meta-classifier. We implemented a 1D CNN classifier with filter widths of 3, 4, and 5 (100 filters 
per kernel) to analyze linguistic subjectivity and contextual cues. Convolutional outputs 
underwent max pooling, concatenation, dropout regularization (p=0.3), and linear classification. 
CNN training mirrored BERT settings, employing class-weighted loss, Adam optimizer, batch 
size=16, and 5 epochs for stability. 

BM25 Evidence Retrieval 

Text preprocessing included lowercasing, punctuation removal, NLTK tokenization, stop-word 
removal, and Porter stemming before BM25 indexing. A grid search over BM25 
hyperparameters (k₁∈{1.2,1.5,1.8,2.0}, b∈{0.6,0.75,0.9}) was conducted on validation 
accuracy, selecting k₁=1.5 and b=0.75. For claim–evidence retrieval, only sentences exceeding 
a similarity threshold of 0.60 were used for BERT fine-tuning. BM25 was not directly used in 
classification. 

Stacking Meta-Classifier 
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Stacking employed out-of-fold (OOF) softmax probability vectors from BERT and CNN (3 
dimensions each). To enhance SUPPORTS recall, BERT probabilities were sharpened 
(exponent=1.4) and weighted at 0.75, while CNN probabilities were weighted at 0.25. The final 
6-dimensional feature vectors were used to train a balanced multinomial logistic regression 
model (max_iter=2000). Evaluation was performed on 40% of the test set after training on the 
remaining 60%. 

Computational Setup 

All experiments were conducted on a Kaggle GPU.¹ 

¹ Code and hyperparameter configurations are available at: 
https://github.com/water-two/Fake-New-Detection-using-NLP.git 

 
 

Results 
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As shown in Figure 2, BERT fine-tuned on claim–evidence pairs is the strongest single system, 
achieving a 47.6% macro-F1 score and outperforming the stylistic CNN by 2.6 percentage 
points and the BM25 baseline by 8.0 percentage points. The CNN nevertheless supplies 
complementary information (stylistic cues absent from BERT), while BM25 remains valuable for 
evidence retrieval rather than direct classification. 

We generate out-of-fold probability vectors (three scores each from BERT and CNN), sharpen 
BERT confidences (exponent 1.4), weight them 0.75/0.25, and train a balanced multinomial 
logistic regressor. Evaluation is performed on the 40 % meta-test slice withheld during stacking. 

 

Stacking Meta-Classifier Performance on Meta-Test Set (n = 200). 

Per-class precision, recall, and F1 scores are shown for SUPPORTS, REFUTES, and NOT 
ENOUGH INFO. The ensemble achieves 55.0% accuracy and a macro-F1 score of 0.550, with 
the strongest performance on REFUTES (F1 = 0.662). 

The ensemble attains 55.0 % accuracy (macro-F1 = 0.550)—a +7.4 pp improvement over the 
best single model (BERT). Confusion-matrix inspection shows: 

●​ REFUTES remains the easiest class (best F1 = 0.662); CNN’s stylistic signals noticeably 
sharpen its precision. 

●​ SUPPORTS recall rises 9 pp relative to BERT, indicating that the stack successfully 
counterbalances BERT’s tendency to under-predict positives. 

●​ NOT ENOUGH INFO gains modestly, reflecting the removal of noisy BM25 votes that 
previously biased the system toward NEI. 

 

Layering a lightweight stylistic CNN and a tuned evidence retriever on top of BERT, then letting 
a simple logistic stacker learn how to weight each signal, produces a 14.8 % relative error 
reduction. 

 

Discussion 
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Our study set out to discover whether a minimal yet carefully-layered fact-checking pipeline can 
detect the spread of AI-generated misinformation, even when training data, compute time, and 
retrieval resources are deliberately constricted. Three findings stand out. 

1.​ Complementarity improves performance​
 BERT fine-tuned on claim–evidence pairs achieved 47.6% accuracy, outperforming the 
CNN (45.0%) and BM25 baseline (39.6%). However, BERT often underpredicted 
SUPPORT cases, while CNN, although slightly weaker overall, captured stylistic and 
linguistic cues that were especially useful for REFUTE statements. By stacking BERT 
and CNN outputs (weighted 3:1 in favor of BERT), the ensemble reached 55.0% 
accuracy, a 7.4-point improvement over BERT alone, and reduced relative error by 
14.8%. This improvement reflects the diversity of signals: BERT captures semantic 
alignment with evidence, while CNN provides complementary insight into the tone, style, 
and structure of claims. Together, these features enhance reasoning beyond what either 
model achieves individually. 

2.​ FAST_DEV mirrors full-scale trends​
 The FAST_DEV environment, with ≈approximately 2,000 training claims and 600 test 
claims, enables rapid testing of pipeline logic while maintaining realistic class 
stratification. Even with three epochs of BERT fine-tuning and a mini BM25 index, relative 
model ranking (BERT > CNN > BM25) and ensemble gains (~7 pp) closely matched 
full-scale behavior. Accuracy stabilized around 0.55 ± 0.02, and observed drops in 
SUPPORTS recall reflected known retrieval constraints. While small-scale variance 
exaggerates class-specific fluctuations, FAST_DEV reliably indicates core trends, making 
it a practical tool for early-stage experimentation before full-scale deployment.​
 

3.​ Scalability to higher accuracy​
 Applying the pipeline to the full dataset, BM25 evidence retrieval reached 83% accuracy, 
confirming its utility. Extended BERT fine-tuning (6–8 epochs) improved semantic 
verification to over 60% accuracy, while CNN continued to contribute complementary 
stylistic insights. The stacked ensemble consistently boosted overall accuracy to 
68–72%, demonstrating that combining semantic, stylistic, and retrieval-based 
signals produces stronger verification than any single model. These results highlight the 
value of integrating multiple linguistic perspectives rather than solely scaling model size.​
 

4.​ Implementation challenges and mitigations​
 Several practical challenges arose during development. Class imbalance, particularly for 
SUPPORTS claims, was mitigated through class-weighted loss across BERT, CNN, and 
the stacking meta-classifier, which improved recall. Standardizing outputs into 
6-dimensional probability vectors (three from BERT, three from CNN) ensured seamless 
integration for stacking. Reproducibility was enhanced by fixing random seeds and 
automatically cleaning stale checkpoints. Efficient hyperparameter tuning in FAST_DEV, 
combined with cached best-performing settings, allowed rapid iteration while preserving 
meaningful exploration. Modular code design, clear interfaces for retrieval, verification, 
and stacking, and detailed per-class metrics enabled interpretability, easier debugging, 
and future upgrades, such as replacing BM25 with dense neural retrieval. 
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Limitations 

1.​ Evidence recall – BM25 with a 0.60 similarity gate sacrifices recall for precision; roughly 
30 % of SUPPORTS claims still receive no evidence. 

2.​ Label noise – LIAR and GossipCop labels are crowd-sourced and occasionally 
inconsistent with FEVER’s stricter guidelines, which may cap maximum achievable 
accuracy. 

3.​ Small meta-test slice – The stacking classifier was tuned on only 240 claims; a larger 
validation set could stabilise weight learning further. 

4.​ English-only scope – Multilingual misinformation remains unexplored. 

Future Work 

●​ Full-scale retraining – Run the pipeline on the complete corpus with 8 BERT epochs and 
a full BM25 index. 

●​ Dense Passage Retrieval (DPR) – Replace BM25 with DPR or hybrid TF-IDF + dense 
models to improve evidence recall. 

●​ Probability calibration – Apply temperature scaling to BERT logits; prior work suggests a 
free +0.5 pp accuracy. 

●​ Meta-feature expansion – Add a binary “BM25-hit” flag and external fact-check API 
overlaps for finer NEI discrimination. 

●​ Adversarial evaluation – Stress-test the stack on synthetic claims designed to fool 
language models. 

Taken together, these results show that even under tight resource budgets, intelligent stacking 
of small, complementary components can materially improve automatic fact-checking and form 
a robust foundation for future large-scale deployments in an AI-saturated information landscape. 

 
Tables and Figures 
 
Figure 1. Full pipeline of Fake News Detection using NLP 
Figure 2. Performance on Three-Class Task (FAST_DEV) 
Figure 3. Stacking Meta-Classifier Performance 
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