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Abstract 

Coral reefs, vital marine ecosystems for biodiversity and coastal protection, face 
increasing threats from both climate stressors and direct human impacts. Elevated sea surface 
temperatures, ocean acidification, and nutrient imbalances have been linked to widespread 
coral bleaching and declining reef resilience, alongside subsequent damage to coastal marine 
life which inhabit coral reefs. (Hagen 8-9) Accurate forecasting of coral reef health given these 
stressors is critical in informing conservation efforts. This study aims to evaluate the 
effectiveness of three machine learning models: linear regression, decision tree regression, and 
MLPRegressor (neural network) in predicting percentage coral cover based on sea surface 
temperature (SST), ocean pH, and nutrient levels (total dissolved phosphorous and nitrogen). 
Using datasets spanning 35 years (1988-2023) from the Biological & Chemical Oceanography 
Data Management Office (BCO-DMO) and National Oceanic and Atmospheric Administration 
(NOAA) hosted data from coral reef monitoring programs, these models were trained and tested 
on historical coral cover. Results were weak, with every model failing to effectively predict coral 
coverage due to limitations in data alignment and resolution. This outcome demonstrates the 
dependence of machine learning performance on data integrity and synchronization, 
emphasizing that even advanced algorithms cannot compensate for fragmented datasets. This 
study thus provides methodological insight for future ecological modeling, highlighting the need 
for temporally and spatially consistent environmental data to enable reliable coral health 
forecasting. 
 
Introduction 

Coral reefs are vital to the ecosystems they anchor, functioning as ecological hubs. In 
O’ahu alone, they provide habitat for an estimated 25% of marine species despite making up 
only ~0.5% of the ocean floor, sustaining fisheries that countless coastal communities use for 
food and livelihood (Cecchini). Their physical structure acts as a natural wavebreaker, absorbing 
wave energy and reducing coastal erosion (Harris). Besides their protective role, reefs also 
underpin Hawai’i’s largest industry: tourism (Wiener). Hawai’i’s uniquely vibrant reefs and the 
ecosystems that inhabit them attract divers, snorkelers, and researchers from around the world 
(Wiener). Perhaps most importantly, they carry deep cultural importance: in Native Hawaiian 
tradition, coral (ko’a) is regarded as the foundation of life in the sea (Gregg). This blend of 
ecological, economic, and cultural significance makes their protection important not only to 
marine biodiversity, but also to the human communities that depend on them. 

Sea surface temperature (SST) is among the most immediate stressors to reefs. It 
reflects climate warming while also capturing acute anomalies such as marine heat waves that 
drive mass bleaching (Wyatt). Even small increases in baseline temperature reduce the thermal 
margin available to corals, amplifying the impact of short-term anomalies (Wyatt). Thermal 
stress destabilizes the symbiosis between corals and their zooxanthellae, the algae which 
provide nutrients to coral as well as some of their color, often causing bleaching, starvation, and 
ultimately death (Rädecker). Because such events can develop within weeks, SST serves as 
both a long-term climate signal and a short-term indicator of anomaly. 

1 



Ocean pH provides a parallel measure of vulnerability. Acidification reduces carbonate 
ion availability, impairing calcification and weakening reef structures, making them more prone 
to erosion (Mollica). Lower pH slows coral growth while making them more vulnerable to 
warming and disease, making it an important indicator of reef integrity and growth potential. 

Nutrient concentrations, particularly dissolved nitrogen and phosphorus, act as proxies 
for eutrophication. Caused mainly by terrestrial runoff and wastewater, nutrient enrichment 
promotes algal blooms that outcompete corals for light and space, diminishing biodiversity 
(Lapointe). Because of this, nitrogen and phosphorus reflect local impacts from human activity 
on the shore. 

To address this challenge, we evaluate three different types of machine learning 
algorithms, each varying in complexity and interpretability: linear regression, decision tree 
regression, and neural networks. 
 
Methods 
 
Variables 

Independent variables used are SST, pH, total dissolved phosphorus, and total dissolved 
nitrogen from the BCO-DMO’s dataset Niskin bottle water samples and associated CTD 
measurements from the Hawaii Ocean Time-Series cruises from 1988-2023 (Biological & 
Chemical Oceanography Data Management Office, 2025). Each variable represents a known 
environmental stressor to coral health. The dependent variable is percent coral coverage 
derived from NOAA Coral Reef Assessment and Monitoring Program (CRAMP) surveys on 
Moloka’i, Hawai’i, conducted from 2000 to 2002. Percent coral coverage serves as a for overall 
coral health. 
 
Data Preprocessing 
​ The dependent variable BCO-DMO dataset was aligned with the NOAA survey period so 
that both directly overlapped, ensuring a link between predictor and response. The dependent 
variable percentage coral cover dataset was cleaned by removing quadrats with missing or 
incomplete values. Species-level percent cover values were summed to get total live coral cover 
per quadrant. Values were then normalized to a 0 - 100 scale in order for comparison across 
quadrats.  
 
Train/test split 
​ Because NOAA’s CRAMP dataset is cross-sectional across sites rather than continuous 
over time, a site-level holdout method was selected for splitting training and testing data. This 
means that quadrats were grouped by site. Six sites were assigned to the training set, and three 
were reserved for testing. This prevented the model from “cheating” by seeing quadrats from the 
same reef in both training and testing, which would erroneously inflate performance. 
​ Cross validation was used by repeating the split multiple times with different site 
combinations, which served to reduce bias from any one particular split. This design evaluates 
the capability of each model, trained on certain Moloka’i reefs, in generalizing to reefs it has 
never encountered, emulating how predictive tools might be applied to new survey locations in 
practice. 
 
Modeling Approach 
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​ Three types of machine learning model were chosen to compare performance and 
interpretability. 
​ Linear regression models coral cover as a weighted sum of predictors (dependent 
variables SST, pH, total phosphorus & nitrogen). Linear regression excels in transparency 
because coefficients directly represent the magnitude of each stressors impact, unlike other 
models where the cause of results can be hard to trace. However, this approach assumes linear, 
positive relationships, struggling to capture more complex interactions and subsequent trends. 

Decision tree regression models split data into decision rules, essentially testing if 
conditions are true or false and adjusting accordingly. Decision trees are good at capturing 
nonlinear trends and interactions. While more flexible than linear regression, single trees are 
prone to overfitting data unless otherwise accounted for, in addition to their predictions being 
less stable. 

Multilayer perceptron models (MLP models), are neural networks capable of modeling 
highly complex and nonlinear relationships between multiple variables. Inputs are processed 
through one or more layers of “neurons”, which result in a model capable of detecting patterns 
that simpler models cannot. Their superior pattern recognition ability often makes neural 
networks accurate predictors. This superior predictive ability comes at the cost of interpretability. 
Many neural network models are described as “black box” models, in that it is extremely difficult 
to track the exact reasons behind predictions. 
​ All models were trained using the quadrat-level data excluding reefs held out for testing. 
Model performance was evaluated using root mean squared error (RMSE), which measures 
average prediction error, and coefficient of determination (R²), which measures the proportion of 
variance in coral cover explained by the model. In addition to numerical performance, models 
were qualitatively compared in terms of interpretability, ease of use, and ecological relevance. 
 
Scripting Work 

All modeling and data analysis were conducted in Google Colab, using Python (v3.10) 
and standard data science libraries including pandas, NumPy, matplotlib, seaborn, and 
scikit-learn. The script was designed to allow reproducibility through user upload of data files 
and automatic calculation of model performance metrics. 

The input dataset was the , containing yearly-averaged environmental variables (sea 
surface temperature, pH, total dissolved phosphorus, and total dissolved nitrogen) from 
2000–2002. 

Both files were uploaded directly to the Colab.Site identifiers were standardized by 
assigning unique indices to each survey location. 

The modeling workflow proceeded as follows. Independent variables (SST, pH, nitrogen, 
and phosphorus) were extracted from the merged environmental dataset, while percent coral 
cover served as the dependent variable. Data were split into training and testing subsets using 
scikit-learn’s train_test_split() function. To prevent spatial leakage between sets, quadrats 
belonging to the same site were grouped, ensuring that no site appeared in both training and 
testing. This method approximated a site-level holdout, where six sites were allocated for model 
training and three for testing. 

Three regression algorithms were implemented for comparison: 
Linear Regression using Scikit-Learn’s LinearRegression() 
Decision Tree Regression using Scikit-Learn’s DecisionTreeRegressor() 
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Neural Network (MLP) using Scikit-Learn’s MLPRegressor() with hidden layer sizes 6, 4, and 5,  
10000 max iterations, and random state 1. 

Each model was trained on the same predictor matrix and evaluated on the held-out 
sites. Predictions were compared to observed coral cover to compute three evaluation metrics: 
coefficient of determination (R²), root mean squared error (RMSE), and mean absolute error 
(MAE). These metrics were calculated using scikit-learn’s r2_score(), mean_squared_error(), 
and mean_absolute_error() functions, with RMSE derived as the square root of the mean 
squared error. All metrics were stored in a pandas DataFrame for standardized display. 

Model performance results were visualized through scatter plots of predicted versus 
observed coral cover generated with matplotlib. Each graph included a red dashed reference 
line (y = x) indicating a perfect prediction, against which model performance could be visually 
assessed. Annotation boxes containing each model’s R², RMSE, and MAE were overlaid on the 
plot for clarity. 

All code cells were executed sequentially within a single Colab notebook. Output tables, 
metrics, and figures were exported directly from the runtime environment. The notebook 
structure allows full reproducibility, provided that identical datasets are uploaded and cell order 
is maintained. 
 
Results 
​ All three models were trained using the selected environmental variables as predictors 
and percent coral cover as the response. Model performance was evaluated using the 
coefficient of determination (R²), root mean squared error (RMSE), and mean absolute error 
(MAE). The neural network produced the highest R² value (0.301), while the decision tree and 
linear regression performed slightly lower (0.284 and 0.169, respectively). Error values were 
similar across models, with RMSE ranging from 23.881 to 25.198, and MAE from 20.670 to 
21.247.  
 

Table 1: Performance metrics for each machine learning model 
 

Model R² RMSE MAE 

Decision Tree 0.284 25.032 21.127 

Linear Regression 0.169 23.881 20.670 

Neural Network 0.301 25.198 21.247 
 

 

4 



 
Fig 1: Graph of performance of three machine learning models. Red dotted line is hypothetical 

perfect result 
 
Discussion 
​ Results indicate that none of the three models were able to capture a strong predictive 
relationship between the selected environmental variables and coral cover. R² values remained 
low across all models, with the neural network’s best performance being only 0.301. Error 
values were consistently high, suggesting that the models produced predictions only marginally 
better than chance. 
​ These poor results are largely attributable to issues in data rather than the algorithms 
themselves. The datasets used were misaligned in both temporal and spatial resolution, 
meaning that independent variables (such as SST, pH, and nutrient levels) did not correspond 
correctly with the quadrat-level coral cover measurements. The models failed to establish a 
connection due to there being little to none existing in the first place. 
​ Although these outcomes fall short of demonstrating predictive power, they embody the 
importance of careful dataset selection and preprocessing in modeling. Model performance is 
fundamentally constrained by data quality and alignment. Future studies should prioritize 
sourcing datasets collected within the same timeframes and locations. By addressing these 
limitations, it is possible to fully utilize the predictive potential that the tested algorithms can 
provide. 
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​ In an ideal context, the models tested in this study would be capable of producing 
meaningful predictions. Each algorithm possesses the theoretical capacity to model complex 
nonlinear relationships between environmental stressors and coral health. However, this 
potential can only be realized when the underlying data are both comprehensive and 
concurrent. A robust modeling framework would require that all predictor variables (sea surface 
temperature, pH, total dissolved nitrogen, and total dissolved phosphorus) be collected at the 
same locations and times as the dependent variable, percent coral cover. Such synchronization 
would eliminate temporal and spatial mismatches, minimize confounding effects from 
unmeasured local factors, and allow the models to fit to the true relationship rather than broad 
correlations. Under these conditions, it is likely that one or more of the evaluated models could 
achieve strong predictive performance, demonstrating that the primary limitation lies not in the 
algorithms themselves, but in the fragmented nature of current public data. 
 
Limitations and Challenges 

This study faced several limitations that constrained the usability of the results. The most 
significant challenge was datasets. The independent environmental variables and dependent 
coral coverage were not collected on matching spatial or temporal scales. Without alignment 
points, the predictors and response were not synchronized, greatly reducing the ability of the 
models to capture any meaningful relationships. 

Another limitation was data coverage. While the environmental datasets spanned a broad 
temporal range, coral cover observations were limited to specific locations and far fewer 
instances. This is because coral coverage is far more complex to measure than metrics like pH, 
temperature, or nutrient levels, requiring more complex procedures, equipment, and more time. 
Ultimately, this resulted in a large disconnect between the data collected for use in predicting, 
and that used in validating response, which pre-processing could not fix. 

All of the previous issues amplified the weaknesses of machine learning models. The 
small number and lack of detailed data on coral coverage dates led to overfitting and an 
incredibly low initial predicted range, only becoming slightly useful with heavy processing to the 
inputted datasets in order to try and mend the lack of overlap in independent and dependent 
data. 
 
Conclusion 

This study evaluated the potential of three machine learning algorithms (linear 
regression, decision tree regression, and a multilayer perceptron neural network) in predicting 
coral cover from key environmental stressors. While none of the models achieved strong 
predictive accuracy, their performance reveals a central constraint of data-driven ecological 
forecasting: even robust algorithms cannot compensate for fragmented or misaligned data. 
Results emphasize the importance of temporal and spatial coherence in environmental 
datasets. 

Future work should prioritize the coordinated collection of biological and oceanographic 
data at shared sites and timescales. By integrating high-resolution, concurrent measurements of 
sea surface temperature, pH, and nutrient levels with coral cover observations, it will become 
possible to evaluate these algorithms under conditions that truly reflect their predictive capacity. 
With improved data alignment and scale, the methods tested here could provide valuable tools 
for monitoring and forecasting coral reef health in a changing climate. 
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