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Abstract​
​
This paper presents a flow-based intrusion detection approach designed for modern 
encrypted network traffic. The proposed method uses an ensemble of machine learning 
classifiers in a two-tier stacking architecture to detect malicious flows using only 
flow-level metadata, without inspecting any packet payloads. The approach is evaluated 
on a large-scale benchmark dataset (CIC-IDS2018) containing diverse attack types 
mixed with extensive encrypted traffic. Results indicate that the stacking ensemble 
outperforms individual classifiers and traditional voting ensembles in detecting a wide 
range of attacks, while preserving privacy by avoiding decryption. The study establishes 
baseline performance for various algorithms on encrypted flows, demonstrates the 
advantages of learned ensemble fusion, and provides insights through ablation and 
feature augmentation experiments. These contributions illustrate a practical solution for 
intrusion detection in fully encrypted network environments, combining high detection 
effectiveness with privacy preservation. 
 
I. Introduction 
 
The widespread adoption of encryption in Internet communications has created 
significant challenges for traditional intrusion detection systems. Over 80% of Internet 
traffic is now encrypted, which means that legacy defenses relying on packet payload 
inspection are increasingly operating blind. Techniques like deep packet inspection and 
signature-based pattern matching (e.g., Snort rules) become ineffective when packet 
contents are hidden. Attackers have capitalized on this blind spot by tunneling malicious 
activities through encrypted channels (for instance, disguising command-and-control 
traffic or data exfiltration as normal TLS flows), rendering many conventional detection 
methods obsolete. This trend underscores the need for payload-agnostic detection 
strategies that can identify threats without reading packet contents. Few existing IDS 
solutions handle fully encrypted traffic effectively, which motivates the present work to fill 
that gap using flow-level information only. 
 
Another core challenge is that encrypted malicious traffic often blends in with legitimate 
traffic at the metadata level. Without payload signatures, an IDS must distinguish benign 
and malicious flows using only statistical features such as packet lengths, rates, timing 
intervals, and protocol headers. Sophisticated attacks can mimic normal user behavior 



 
to evade detection, leading to high false-positive rates if detection models are not 
sufficiently robust and adaptive. Moreover, modern attack campaigns are diverse 
(ranging from high-volume denial-of-service floods to low-and-slow infiltrations), 
requiring detection methods capable of handling a wide spectrum of patterns. Identifying 
all these attack types from flow-level observations alone demands machine learning 
techniques capable of modeling subtle statistical differences without relying on 
decrypted content. In summary, conventional IDS approaches struggle in encrypted 
environments and few alternatives exist; this gap underscores the need for an intrusion 
detection approach based on flow metadata. 
 
To address these challenges, this paper proposes a privacy-preserving intrusion 
detection method grounded in ensemble machine learning, with a focus on a 
stacking-based meta-classifier architecture. In contrast to single-model classifiers or 
simplistic majority-vote ensembles, a stacking ensemble combines the strengths of 
multiple learning algorithms by training a meta-classifier to fuse their outputs. This 
design enables the detection system to capture complex non-linear relationships in flow 
feature space and to compensate for individual model weaknesses. The approach relies 
exclusively on statistical features extracted from each network flow (e.g., packet counts, 
byte rates, inter-arrival times, and protocol flags) rather than any packet payload 
content, making it naturally suited for monitoring fully encrypted traffic. The resulting 
two-tier model adapts to diverse attack patterns and provides a practical, 
privacy-compliant anomaly detection solution for modern networks. 
 
Research Objectives and Contributions: This study develops a flow-based stacking 
ensemble IDS that achieves high attack detection capability using only network flow 
metadata. The key contributions of this work are summarized as follows: 

●​ Payload-Agnostic Stacking Ensemble: Introduces a two-tier stacking ensemble 
IDS using heterogeneous base learners on flow-level features, attaining high 
detection efficacy without inspecting packet payloads. This demonstrates an 
effective solution for encrypted traffic where deep packet inspection fails. 

●​ Baseline Algorithm Performance: Establishes robust baseline results by 
evaluating ten standalone machine learning classifiers across multiple feature 
subsets, benchmarking the limits of single-model performance on encrypted 
traffic. 

●​ Learned vs. Fixed Fusion: Demonstrates the advantage of a learned fusion 
approach by comparing the stacking meta-model to traditional ensemble voting 
methods (hard/soft voting). The stacking ensemble with an optimized 



 
meta-classifier outperforms equal-weight voting, highlighting the value of 
trainable combination rules. 

●​ Base Learner Importance Analysis: Quantifies the contribution of each base 
learner through an ablation study. Removing individual base models reveals their 
influence on ensemble performance, providing insight into model diversity and 
complementarity. 

●​ Feature Augmentation for Minority Attacks: Explores augmenting the 
meta-classifier’s input with select raw flow features. This extension evaluates 
whether simple additional features can further boost detection performance. 

 
II. Literature Review 
 
2.1 Traditional Anomaly Detection Techniques and Their Limitations 
 
Early network intrusion detection systems largely fell into two categories: 
signature-based detectors and anomaly-based detectors. Signature-based IDS 
(exemplified by tools like Snort) use known patterns of malicious payloads to identify 
attacks, whereas anomaly-based systems establish a baseline of normal behavior and 
flag deviations from that baseline. Both approaches face serious limitations in today’s 
environment. Signature-based techniques require visibility into packet contents and thus 
fail outright on encrypted traffic. Anomaly-based methods, on the other hand, may 
detect novel attacks but often at the expense of high false positives, since any unusual 
but benign behavior can be misclassified as malicious. This fundamental trade-off has 
highlighted the need for detection approaches that are both sensitive (to catch new 
attacks) and specific (to avoid false alarms). 
 
Research has underscored the difficulty of achieving this balance. Guo et al. (2023) [5] 
observe that entirely new zero-day attack patterns often evade purely supervised 
learning models, which are inherently limited by the scope of their training data. In 
response, some works have explored unsupervised or one-class anomaly detection 
techniques, such as clustering network flows or training one-class models on normal 
traffic, to detect deviations without prior attack labels. While these unsupervised 
methods can in theory identify novel threats, they tend to suffer from unstable behavior 
and high false alarm rates if not carefully tuned. Likewise, attempts to use deep learning 
for anomaly detection (e.g., autoencoders or recurrent neural networks) have 
encountered challenges: these models can automatically learn features from raw flows, 
but they demand very large training sets and significant computation, and their 
decisions are often opaque. In summary, traditional IDS techniques (whether 



 
signature-based or basic anomaly detectors) are ill-equipped to handle the dual 
challenge of fully encrypted traffic and continuously evolving attacks. These limitations 
drive the need for new approaches that operate on metadata and leverage more 
powerful machine learning techniques to achieve both high detection rates and low false 
positives in encrypted environments. 
 
2.2 Machine Learning for Encrypted Traffic Analysis 
 
With the majority of network traffic now encrypted, intrusion detection research has 
shifted toward analyzing features that remain observable despite encryption. Kang et al. 
(2017) [1] emphasize that the sheer volume of encrypted data in enterprise networks 
makes it difficult to spot sophisticated attacks, as traditional content-inspection methods 
can no longer “see” inside the traffic. In response, recent work focuses on statistical 
patterns and side-channel information gleaned from flow metadata rather than packet 
payloads. Flow-level features, such as packet sizes and counts, inter-packet timing 
intervals, connection durations, and header flags, have become a cornerstone of 
anomaly detection for encrypted traffic. Shiravi et al. (2012) [2] introduced 
comprehensive flow-based feature sets as content-agnostic proxies for suspicious 
behavior, demonstrating that many attack types can be identified through metadata 
alone. Tools like CICFlowMeter (from the Canadian Institute for Cybersecurity) have 
further standardized the extraction of dozens of such features from packet captures, 
enabling researchers to reproducibly evaluate IDS models on encrypted traffic across 
different datasets. 
 
Multiple studies have validated that machine learning models trained on flow features 
can achieve high accuracy in detecting attacks without any packet payload data. For 
instance, Ibraheem et al. (2022) [3] showed that classifiers leveraging inter-packet 
timing and size patterns can successfully surface anomalies in HTTPS (TLS-encrypted) 
flows. Similarly, Singh et al. (2025) [4] applied explainable machine learning techniques 
(using SHAP values) to TLS-encrypted traffic, confirming that even though encryption 
hides content, there are still statistical fingerprints of malicious behavior in the metadata 
that models can exploit. These works illustrate an important point: encryption blinds 
straightforward payload inspection, but it does not render traffic analysis impossible; the 
communication patterns themselves often betray an attack. 
 
Despite this progress, reliably detecting intrusions in encrypted traffic remains 
challenging. Attackers continuously adapt their tactics, and advanced malware can 
generate traffic patterns that closely mimic benign usage. For example, an infected host 



 
might deliberately behave like a normal web browser to avoid suspicion. As a result, 
purely flow-based detectors risk either high false positives (flagging unusual but benign 
behaviors) or missed detections (if the malicious pattern is too subtle) when they are not 
carefully designed. Achieving both high sensitivity and high specificity in encrypted 
traffic analysis is difficult. As noted earlier, supervised learning models can struggle with 
zero-day attacks that fall outside the training distribution. One strategy to improve 
generalization has been to incorporate unsupervised anomaly detection components: 
for example, clustering algorithms or autoencoders that detect outlier flows without 
needing known attack labels. However, such approaches have their own drawbacks: 
they can be unstable or trigger excessive false alarms if they pick up on noise. Another 
strategy has been to use deeper learning architectures (e.g., recurrent neural networks 
or deep autoencoders) to automatically learn feature representations from flows, which 
has shown promise but comes at the cost of high computational complexity. Overall, the 
literature indicates that detecting intrusions in fully encrypted environments is feasible 
using flow metadata alone, but doing so demands robust and adaptive models capable 
of handling a diverse range of attack patterns and adjusting to new threats. This insight 
has driven research toward ensemble and other advanced machine learning techniques 
that can boost detection performance while maintaining the generality needed for 
encrypted traffic scenarios. 
 
2.3 Intrusion Detection Datasets and CIC-IDS2018 
 
Evaluating intrusion detection methods requires representative datasets that capture 
realistic benign traffic and a variety of attack behaviors. Historically, researchers relied 
on benchmarks like the KDD Cup 1999 dataset and its improved version NSL-KDD, 
which provided labeled examples of simulated attacks. While useful in their time, these 
older datasets are now considered outdated; they lack the diversity of modern malware 
and do not include encrypted traffic. More recent corpora such as UNSW-NB15 (2015) 
and the Canadian Institute for Cybersecurity IDS datasets (2017 and 2018 editions) 
were developed to address these gaps by incorporating contemporary attack 
techniques, updated network protocols, and, in the case of CIC-IDS2018, a significant 
proportion of encrypted traffic. 
 
CIC-IDS2018 (also known as CSE-CIC-IDS2018) is a prime example of a modern 
intrusion detection dataset and is used as the basis for this study. Introduced by 
Sharafaldin et al. (2018) [7], CIC-IDS2018 was collected in a controlled cyber-range 
environment that closely mimics a large enterprise network. It encompasses 10 days of 
traffic captures, each day simulating specific attack scenarios blended with normal 



 
background traffic. In total, the dataset contains over a dozen attack types covering a 
broad spectrum of threat categories including brute-force authentication attacks, various 
denial-of-service (DoS and distributed DoS) floods, botnet command-and-control traffic, 
web application exploits (such as SQL injection and XSS), internal network infiltration, 
and data exfiltration. All these attacks are interspersed with legitimate user activity (e.g., 
web browsing, email, chat, voice-over-IP), yielding a complex mix that reflects 
real-world network conditions. Crucially, a large portion of the benign traffic in 
CIC-IDS2018 is encrypted (for example, HTTPS web browsing, SSH sessions, and 
VPN connections), which makes this dataset especially well-suited for evaluating 
flow-based IDS approaches that cannot rely on packet payload inspection. 
 
Each network connection (flow) in CIC-IDS2018 is described by an extensive set of 
features generated by CICFlowMeter, amounting to approximately 80 attributes per flow. 
These features capture a wide range of behavior indicators: for example, basic counters 
(total packets and bytes sent/received in each direction), flow duration and byte rates, 
packet length statistics (minimum, maximum, mean, standard deviation), inter-arrival 
time metrics, counts of TCP flag occurrences, connection status indicators, and more. 
All features are numeric or boolean and represent purely metadata about the flow; no 
application-layer payload content is included, preserving privacy. Each flow record is 
labeled as Benign or as a specific attack type, allowing for both binary classification and 
more fine-grained analysis by attack category (though models in many studies, 
including this one, focus on the binary distinction between benign and malicious). The 
rich feature set in CIC-IDS2018 provides a strong foundation for machine learning 
algorithms; prior work has shown that carefully chosen subsets of these features can 
yield detection accuracies above 95% for many attack classes on this dataset. For 
instance, features related to traffic volume and timing are highly effective for catching 
high-rate attacks like DDoS, whereas more subtle features such as certain unusual TCP 
flag patterns or idle time distributions can help identify stealthy intrusions. 
 
However, the high dimensionality of CIC-IDS2018’s feature space also poses 
challenges. Many of the ~80 recorded features are inter-correlated or even redundant 
(for example, “Total Fwd Packets” and “Total Fwd Bytes” are closely related, as are 
various packet length statistics). Including all of these features in a model can confuse 
learners and increase computational cost without improving accuracy. To tackle this, 
researchers have applied feature selection and dimensionality reduction techniques on 
CIC-IDS2018, such as correlation analysis, information gain ranking, and Principal 
Component Analysis (PCA), to identify the most informative features and eliminate 
noise. In this study, rather than permanently filtering out features, the features were 



 
organized into semantically related groups and ensemble methods were used to 
manage complexity. Nonetheless, the general lesson from the literature is that some 
form of feature reduction or careful feature handling is beneficial when using this 
dataset. Overall, CIC-IDS2018 represents a comprehensive, up-to-date benchmark for 
evaluating intrusion detection systems. It provides a rigorous test bed for flow-based 
IDS approaches, especially those targeting encrypted traffic, because it contains 
realistic encrypted benign flows alongside a wide array of attack types. By using this 
dataset, the evaluation in this research covers the challenges of imbalanced classes, 
diverse attack behaviors, and encryption: key factors that any practical IDS must be 
able to handle. 
 
2.4 Classification Algorithms for Flow-Based IDS 
 
A wide variety of classification algorithms have been explored for flow-based intrusion 
detection, ranging from simple linear models to complex ensemble and deep learning 
methods. Each approach brings its own advantages and inductive biases when 
modeling network traffic. Key categories of algorithms include: 

●​ Tree-Based Models: Decision trees and tree-based ensembles (e.g., Random 
Forests, ExtraTrees, and gradient-boosted trees like XGBoost or LightGBM) are 
well-suited to tabular flow data. They can capture non-linear interactions between 
features and effectively learn threshold rules (for example, “if packet rate > X and 
SYN flag count = Y, then classify as attack”). A single decision tree can overfit if 
grown too deep, but ensemble methods like Random Forest mitigate this by 
averaging many trees trained on bootstrap samples, improving generalization. 
Boosting algorithms (like AdaBoost or XGBoost) sequentially add trees that focus 
on previous errors, often achieving state-of-the-art accuracy on structured data. 
Overall, tree-based classifiers have been top performers in many IDS studies 
due to their ability to automatically handle heterogeneous features and discover 
important split conditions. 

●​ Linear Models: Linear classifiers such as logistic regression and linear support 
vector machines model a flow’s label as a weighted sum of its feature values. 
These models are computationally efficient and tend to generalize well when the 
classes are roughly linearly separable in the feature space. In the context of 
network flows, linear models can pick up broad distinctions (for instance, a high 
overall packet count or byte rate might strongly indicate an attack). However, 
they lack the capacity to capture complex non-linear feature interactions (e.g., a 
subtle combination of timing and size patterns), so they may underperform on 
problems where attacks manifest through intricate multi-feature signatures. 



 
Regularization techniques (like L2 penalties) are often applied to linear models in 
IDS tasks to prevent overfitting, given the high-dimensional input. 

●​ Instance-Based Models: The k-Nearest Neighbors (kNN) classifier is a 
non-parametric approach that classifies a new flow by examining the labels of the 
most similar flows (neighbors) in the training set. Instance-based methods can 
detect attacks that form tight clusters in feature space; for example, a repeated 
attack pattern might produce very similar flow records that kNN can group 
together. The challenge with kNN for intrusion detection is that distance metrics 
become less meaningful in high-dimensional feature spaces, and the method can 
be sensitive to noisy or irrelevant features. It is also computationally expensive at 
prediction time, since classifying a new flow requires computing distances to 
many training examples. In practice, kNN (with a small k) has been tested for 
catching localized anomalies, but its performance can degrade on large or noisy 
datasets. 

●​ Neural Network Models: Neural networks, such as multi-layer perceptrons 
(MLPs), can learn complex decision boundaries by composing multiple non-linear 
transformations of the input features. In intrusion detection, a moderately sized 
feed-forward neural network can combine flow features in ways that might detect 
subtle patterns;  for instance, an MLP could learn a hidden neuron that activates 
for a specific combination of packet timing and size statistics indicative of a 
particular attack. Prior work has shown that neural nets can achieve high 
accuracy on IDS benchmarks, but they require careful regularization (e.g., 
dropout, early stopping) to avoid overfitting, especially when the feature set is 
large relative to the number of training examples. Simpler neural architectures 
(one or two hidden layers) have been used as base learners in recent studies to 
balance complexity and generalization.  

 
By evaluating diverse model families, researchers have found that no single algorithm is 
universally best for flow-based intrusion detection; each has certain strengths 
depending on the attack type or feature characteristics. That said, there is a general 
trend that more complex non-linear models (e.g., boosted tree ensembles and neural 
networks) tend to outperform simpler ones (linear models or single decision trees) on 
rich flow datasets. Tree ensembles in particular (such as Random Forests and gradient 
boosting) have repeatedly been top performers on benchmarks like CIC-IDS2018, likely 
because they handle the mixture of categorical-like patterns (flags) and continuous 
patterns (timing or size metrics) very well. Simpler models, however, are not without 
value; they often provide faster computation and can serve as diverse components in an 
ensemble. In fact, the diversity among classifiers (linear vs. non-linear, parametric vs. 



 
instance-based, etc.) is beneficial for ensemble methods, as it ensures that different 
models contribute complementary views of the data. This forms the rationale for using a 
heterogeneous ensemble of classifiers in the proposed approach, as discussed next. 
 
2.5 Ensemble Learning: Voting vs. Stacking Approaches 
 
Ensemble learning has become a prominent strategy in IDS research due to its ability to 
improve robustness and accuracy by combining multiple models. Classic bagging 
ensembles like Random Forest (which aggregates many decision trees) and boosting 
methods like AdaBoost or XGBoost have long been used to reduce variance and 
capture diverse attack patterns in intrusion detection. More recently, simpler ensemble 
schemes based on classifier voting have shown success on benchmark datasets. For 
example, Demir et al. (2023) [6] introduced a voting-based ensemble system (VEL-IDS) 
that achieved superior detection rates compared to individual classifiers on 
CIC-IDS2018. In a voting ensemble, several base classifiers are trained independently 
and their outputs are combined by a fixed rule: hard voting predicts an attack if the 
majority of base models vote “malicious,” whereas soft voting averages the base 
models’ predicted probabilities and chooses the class with the highest average. Voting 
is straightforward to implement and often boosts accuracy by smoothing out the 
individual errors of classifiers. Indeed, prior IDS studies have found that even a simple 
majority vote can outperform the best single model in some cases. 
 
However, a limitation of equal-weight voting is that it treats all base learners as equally 
important. In practice, if one classifier is significantly more accurate than the others, a 
naïve majority vote does not fully exploit that strength; a strong model’s vote can still be 
outvoted by a group of weaker models. Likewise, if multiple models make correlated 
errors on a certain attack type, a voting ensemble will not correct those errors since it 
has no mechanism to dynamically adjust weights. This is where stacking ensembles 
(also known as stacked generalization) offer a more adaptive approach. In a stacking 
ensemble, the outputs of the base classifiers (either their predicted classes or 
probability scores) are used as features to train a meta-classifier, which learns how to 
best combine the base learners’ decisions. Unlike voting, which uses a fixed 
combination rule, stacking learns from data which models to trust more in different 
scenarios. For example, a stacking meta-model could learn that if models A and B 
predict “benign” but model C predicts “malicious,” and model C has historically been 
more reliable for that type of flow, then the meta-classifier should output “malicious.” 
The meta-classifier (sometimes called a level-2 model) is typically trained on a separate 
validation set or via cross-validation to avoid overfitting, ensuring that it generalizes well. 



 
 
Stacking has been explored in prior IDS studies as well. Early works often used a 
simple meta-learner like logistic regression to combine diverse base classifiers, 
essentially learning a weighted voting scheme where the weights are optimized during 
training. Recent investigations have gone further by using more complex meta-learners, 
including gradient boosting machines or neural networks, to maximize the ensemble’s 
accuracy. The appeal of stacking, especially for encrypted traffic analysis, is its 
flexibility; it can adaptively emphasize the strengths of each base model on different 
types of traffic. By training the meta-classifier on outputs from the base models (using 
held-out data to prevent overfitting), the system effectively learns an optimal fusion of 
decision criteria tailored to the problem. This data-driven fusion often outperforms any 
static combination rule. For instance, one study reported that using a lightweight neural 
network as the meta-learner provided a small but consistent boost in detection 
performance over conventional voting on an IDS dataset. Such results align with the 
expectation that a meta-model can intelligently correct the biases or blind spots of 
individual detectors. In other words, stacking can sometimes achieve higher detection 
rates than even the best individual base classifier, and also higher than an equal-weight 
or hand-tuned ensemble. 
 
In summary, ensemble learning offers clear benefits for intrusion detection. Voting 
ensembles are simple and have been proven to enhance baseline detection by 
aggregating multiple models’ judgments, but they lack flexibility in weighting each 
model’s contribution. Stacking ensembles take the idea a step further by learning how to 
combine model outputs, typically leading to superior performance at the cost of a more 
complex training process. Given the heterogeneity of encrypted network traffic and the 
variety of attack vectors, a stacking approach is well-suited to leverage different models’ 
strengths. This insight motivates the use of a stacking ensemble in the present research 
for flow-based IDS. By allowing the meta-learner to dynamically weight the decisions of 
the base classifiers, the system can often outperform any single model or fixed-rule 
ensemble, providing a powerful and adaptive defense against attacks in fully encrypted 
network environments. 
​
III. Methodology 
 
This section describes the methodology used to develop and evaluate the flow-based 
intrusion detection system. An overview of the key steps taken in this study is illustrated 
in the pipeline below: 
 



 

 
 
3.1 Dataset and Feature Selection 
 
The experiments used the CIC-IDS2018 dataset, which contains labeled network flow 
records across multiple days with approximately 20% of flows being malicious and the 
remainder benign. Three days of data were excluded: 02-20-2018.csv due to its large 
file size, and 02-28-2018.csv and 03-01-2018.csv due to incomplete flows that could 
have introduced bias or inaccuracies. The remaining seven days formed the basis for all 
analyses. From each CSV file, only numeric flow features were retained: non-numeric 
columns were dropped and all entries converted to numeric values. Any rows containing 
invalid values (NaN or infinities) were removed. This process yielded 75 valid numeric 
features per flow, plus the original Attack Type label. Each flow was assigned a binary 
label for classification: benign flows were encoded as 0 and all attack flows as 1. (The 
original string “Attack Type” was preserved in its own column but not used as a feature.) 
 
The 75 numeric features were organized into six conceptual groups for analysis. Table 1 
presents these feature groups along with their corresponding features. For instance, the 
flow metrics group includes features like Flow Duration and Flow IAT Mean; the packet 
size statistics group includes features such as Tot Fwd Pkts and Pkt Len Mean; the 
timing/IAT group captures inter-arrival statistics (e.g. Fwd IAT Tot); the flags and 
protocol group covers TCP flag counts and protocol identifiers (e.g. ACK Flag Cnt, 
Protocol); the rates and ratios group includes traffic rate measures (e.g. Down/Up Ratio, 
Fwd Pkts/s); and the connection activity group comprises stateful metrics (e.g. Active 
Mean, Idle Max). 
 

Feature Group Features 

Flow_metrics (7) "Flow Duration", "Flow Byts/s", "Flow Pkts/s", "Flow IAT 
Mean", "Flow IAT Std", "Flow IAT Max", "Flow IAT Min" 

Packet_size_stats 
(20) 

"Tot Fwd Pkts", "Tot Bwd Pkts", "TotLen Fwd Pkts", "TotLen 
Bwd Pkts", "Fwd Pkt Len Max", "Fwd Pkt Len Min", "Fwd Pkt 
Len Mean", "Fwd Pkt Len Std", "Bwd Pkt Len Max", "Bwd Pkt 
Len Min", "Bwd Pkt Len Mean", "Bwd Pkt Len Std", "Pkt Len 



 

Min", "Pkt Len Max", "Pkt Len Mean", "Pkt Len Std", "Pkt Len 
Var", "Pkt Size Avg", "Fwd Seg Size Avg", "Bwd Seg Size 
Avg" 

Timing_iat (10) "Fwd IAT Tot", "Fwd IAT Mean", "Fwd IAT Std", "Fwd IAT 
Max", "Fwd IAT Min", "Bwd IAT Tot", "Bwd IAT Mean", "Bwd 
IAT Std", "Bwd IAT Max", "Bwd IAT Min" 

Flags_and_protocol 
(16) 

"FIN Flag Cnt", "SYN Flag Cnt", "RST Flag Cnt", "PSH Flag 
Cnt", "ACK Flag Cnt", "URG Flag Cnt", "CWE Flag Count", 
"ECE Flag Cnt", "Fwd PSH Flags", "Bwd PSH Flags", "Fwd 
URG Flags", "Bwd URG Flags", "Protocol", "Dst Port", "Init 
Fwd Win Byts", "Init Bwd Win Byts" 

Rates_and_ratios (9) "Down/Up Ratio", "Fwd Pkts/s", "Bwd Pkts/s", "Fwd Byts/b 
Avg", "Fwd Pkts/b Avg", "Fwd Blk Rate Avg", "Bwd Byts/b 
Avg", "Bwd Pkts/b Avg", "Bwd Blk Rate Avg" 

Connection_activity 
(13) 

"Subflow Fwd Pkts", "Subflow Fwd Byts", "Subflow Bwd 
Pkts", "Subflow Bwd Byts", "Fwd Act Data Pkts", "Active 
Mean", "Active Std", "Active Max", "Active Min", "Idle Mean", 
"Idle Std", "Idle Max", "Idle Min" 

 
Table 1: Feature Groups and Corresponding Features. 

 
Each feature was used in its original scale (no additional normalization was applied 
beyond the aforementioned type conversion). The features were grouped based on 
logical similarity to facilitate structured experimentation across subsets; however, no 
model was ever trained on all 75 features at once (each model operated on only one 
feature group at a time). 
 
3.2 Experimental Protocols 
 
Two evaluation protocols were employed: same-day and cross-day. Under the 
same-day protocol, each day’s cleaned data was split into a 70% training set and a 30% 
hold-out test set (stratified by label to preserve class proportions). From the training set, 
a 50% random downsampling was applied to reduce data volume due to hardware 
constraints. In code, this procedure was implemented as: 
 
X_tr, X_te, y_tr, y_te = train_test_split( 
    X, y, test_size=0.3, stratify=y, random_state=42 



 
) 
tmp = apply_downsample(pd.concat([X_tr, y_tr], axis=1), frac=0.5) 
X_train = tmp.drop('Label', axis=1) 
y_train = tmp['Label'] 
X_test, y_test = X_te, y_te 

 
Here, train_test_split with a fixed random seed (42) ensured reproducibility, and 
apply_downsample performed uniform random sampling of half the rows. No further 
stratification was applied during downsampling. 
 
Under the cross-day protocol, a leave-one-day-out strategy was used: for each day held 
out as the test set, the data from the other six days were combined to form the training 
pool. This combined training set was then randomly downsampled to 20% of its original 
size to manage computational load. In particular, all other days’ CSVs were 
concatenated, and 20% of the rows were randomly sampled: 
 
train_dfs = [load_cleaned_csv(fp) for fp in all_files if fp != 
file_fp] 
df_tr = pd.concat(train_dfs, ignore_index=True) 
tmp = apply_downsample(df_tr, frac=0.2) 
X_train = tmp[feats];  y_train = tmp['Label'] 
df_te = load_cleaned_csv(file_fp) 
X_test = df_te[feats];  y_test = df_te['Label'] 
 
The held-out day’s data was used as the test set with no downsampling, ensuring a 
strict evaluation on entirely unseen data. 
 
In both protocols, class weighting was applied during model training to counter residual 
class imbalance. This technique increased the penalty for misclassifying minority-class 
examples by assigning higher weight to their loss during optimization. The weights were 
computed inversely proportional to class frequencies using the formula: 
 

class_weight [c] = (Ntotal / 2Nc) 
 

for class c∈{0,1}, where Nc​ is the number of training samples of class c. In code, for 
example, after the training labels y_train were prepared, the following was set: 
 
neg, pos = (y_train==0).sum(), (y_train==1).sum() 
total = neg + pos 



 
class_weight = {0: total/(2*neg), 1: total/(2*pos)} 
 
Given the naturally skewed class distribution, class weighting encouraged the models to 
focus more on accurately classifying the less-frequent attack flows. 
 
3.3 Model Training and Evaluation 
 
3.3.1 Base Models 
 
Ten classifiers were evaluated as base models across both evaluation protocols: 
Logistic Regression, Decision Tree, Random Forest, Extra Trees, XGBoost, LightGBM, 
CatBoost, k-Nearest Neighbors, Linear SVM, and Multi-Layer Perceptron. Each model 
was trained on each of the six feature subsets and evaluated across all 14 train-test 
scenarios, with seven distinct days evaluated under both the same-day and cross-day 
protocols. This setup ensured a thorough examination of how each model performed 
across different data splits and feature perspectives. 
 
Hyperparameter tuning was conducted using grid search with three-fold 
cross-validation. Each trial was executed using the following procedure: 
 
gs = GridSearchCV(model, param_grid, cv=3, scoring='f1', n_jobs=1) 
gs.fit(X_train, y_train) 
best = gs.best_estimator_ 
y_pred = best.predict(X_test) 
 
The optimization objective was the F1 score, selected to balance precision and recall, 
particularly in light of the malicious class being the minority in most cases. Prioritizing 
the F1 score helped the models remain sensitive to both false positives and false 
negatives, improving their effectiveness in this imbalanced detection task. 
 
The hyperparameter search grids used for each model are shown in table 2 below: 
 

Classifier Fixed Parameters Tuned Parameters (Grid) 

Logistic Regression solver='saga', 
max_iter=1000, 
random_state=42 

C: [0.01, 0.1, 1] 

Decision Tree random_state=42 max_depth: [5, 10, 20] 



 

Random Forest random_state=42, 
n_jobs=1 

n_estimators: [100, 200]; 
max_depth: [None, 10, 20] 

Extra Trees random_state=42, 
n_jobs=1 

n_estimators: [100, 200]; 
max_depth: [None, 10, 20] 

XGBoost use_label_encoder=False 
eval_metric='logloss', 
random_state=42, 
n_jobs=1 

learning_rate: [0.1, 0.01]; 
n_estimators: [100, 200]; 
max_depth: [3, 5] 

LightGBM random_state=42, 
n_jobs=1, verbose=-1 

learning_rate: [0.1, 0.01]; 
n_estimators: [100, 200]; 
num_leaves: [31, 50] 

CatBoost verbose=0, 
random_state=42 

depth: [4, 6]; iterations: [100, 
200]; learning_rate: [0.1, 0.01] 

k-Nearest Neighbors — n_neighbors: [3, 5, 7] 

Linear SVM max_iter=10000, 
random_state=42 

C: [0.1, 1, 10] 

MLP max_iter=500, 
random_state=42 

hidden_layer_sizes: [(50,), 
(100,)]; alpha: [1e-4, 1e-3] 

 
Table 2: Base classifier hyperparameter search grids 

 
Each trained model was evaluated on the hold-out test set, and a range of metrics was 
recorded, including accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. This 
comprehensive baseline study was conducted to identify the four most effective 
base-model and feature-group combinations to serve as candidates for the stacked 
meta-ensemble classifier. 
 
3.3.2 Stacked Meta-Model 
 
Following the baseline evaluation, four base classifiers were selected along with their 
top-performing feature subsets. The selection criteria were based on achieving the 
highest average F1 score across all evaluation scenarios while maintaining relatively 
efficient training time. These base models served as the foundation for the subsequent 
meta-ensemble experiments. 
 



 
Two ensemble strategies were implemented: voting and stacking. For voting, both hard 
and soft variants were evaluated. In hard voting, the predicted class label was 
determined by a majority vote across the base models. In soft voting, the predicted 
probabilities from each base model were averaged, and the final prediction was 
obtained by thresholding this average at 0.5. The implementation of both strategies is 
shown below: 
 
# Hard voting: majority vote 
votes = df_test[[f"label_{m}" for m in BASE_MODELS]].values 
hard_pred = (votes.sum(axis=1) >= (len(BASE_MODELS) / 2)).astype(int) 
 
# Soft voting: average probability 
probs = df_test[[f"pred_{m}" for m in BASE_MODELS]].values 
soft_score = probs.mean(axis=1) 
soft_pred = (soft_score >= 0.5).astype(int) 
 
In the stacking configuration, each meta-classifier was trained using the predicted 
scores of the selected base models on the training split. Evaluation was performed on 
the same held-out test set used for the base-model evaluation, using the corresponding 
base-model predictions as input features. This setup ensured a consistent comparison 
between stacking and individual base models. 
 
The meta-classifiers included ten candidates: Logistic Regression, Decision Tree, 
Random Forest, Extra Trees, XGBoost, LightGBM, CatBoost, k-Nearest Neighbors, 
Linear SVM, and Multi-Layer Perceptron. Each was trained independently on the 
meta-feature set for every day and protocol. An example of the training and evaluation 
procedure is shown below: 
 
X_tr_meta = df_train_preds[['pred_Model1', 'pred_Model2', ...]] 
X_te_meta = df_test_preds[['pred_Model1', 'pred_Model2', ...]] 
meta_model = META_MODELS[name] 
meta_model.fit(X_tr_meta, y_tr) 
y_pred = meta_model.predict(X_te_meta) 
 
Each configuration was evaluated using the same metrics recorded in the base model 
study: accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. This experiment 
was conducted both to assess whether stacking outperforms simpler ensemble 
techniques such as hard or soft voting, and to identify the most effective meta-classifier 
architecture for use in the subsequent ablation and feature augmentation experiments. 



 
 
3.3.3 Meta-Model Ablation Studies 
 
An ablation study was conducted to evaluate the contribution of each base classifier to 
the overall performance of the stacked ensemble. For this experiment, the 
meta-classifier was held fixed while the input feature set, comprising the predicted 
scores from the base models, was selectively modified. Specifically, each base model 
was removed one at a time from the meta-feature set, and performance was compared 
against a baseline configuration in which all base models were included. 
 
Concretely, for a given ablation, only the prediction scores from the remaining base 
models (e.g., pred_Model1, pred_Model2, pred_Model3) were passed to the 
meta-classifier during training and evaluation. This was implemented as follows: 
 
cols = [f"pred_{m}" for m in BASE_CLASSIFIERS if m != drop] 
X_tr = train_df[cols].values 
y_tr = train_df["y_true"].values 
X_te = test_df[cols].values 
y_te = test_df["y_true"].values 
meta = META_MODEL 
meta.fit(X_tr, y_tr) 
y_pred = meta.predict(X_te) 
 
Each configuration was evaluated under both same-day and cross-day protocols, 
across all available days. The evaluation included the same set of performance metrics 
used throughout the study: accuracy, precision, recall, F1 score, ROC-AUC, and 
PR-AUC. This ablation study was designed to determine the individual influence of each 
base model on the ensemble’s overall performance, and to assess whether any single 
model was particularly redundant or indispensable in the context of stacked learning. 
 
3.3.4 Meta-Feature Addition Experiments 
 
This experiment examined whether augmenting the stacked ensemble with additional 
raw features could improve classification performance. Each trial involved adding one of 
the 75 available numeric features to the set of meta-inputs (consisting of the base 
model prediction scores) and evaluating its effect across each day under both 
evaluation protocols. 
 



 
Implementation details varied slightly by protocol. For the same-day setup, a train-test 
split was performed, and the selected raw feature was appended to the meta-feature 
matrix using index alignment with the original flow data: 
 
raw_df = pd.read_csv(f"{day}.csv") 
X_tr[feat] = raw_df[feat].iloc[train_df.index].values 
X_te[feat] = raw_df[feat].iloc[test_df.index].values 
 
For the cross-day setup, a leave-one-day-out protocol was followed. The training 
feature values were drawn from all days except the one held out, and the test feature 
values were extracted from the current day: 
 
raw_full = pd.concat([pd.read_csv(f"{d}.csv") for d in other_days], 
ignore_index=True) 
raw_tr = raw_full.reset_index(drop=True) 
X_tr[feat] = raw_tr[feat].values 
 
raw_te = pd.read_csv(f"{day}.csv") 
X_te[feat] = raw_te[feat].values 
 
Each configuration was evaluated using the same set of metrics as the previous 
experiments: accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. The goal of 
this experiment was to determine whether incorporating individual raw features could 
enhance the meta-classifier’s ability to distinguish between benign and malicious flows 
beyond what was already captured by the base model outputs. 
 
In summary, the methodology strictly followed the outlined protocols: data selection and 
cleaning were handled in prepare_datasets.py, and the experimental studies (base 
models, stacking, ablation, and feature-addition) were conducted by their corresponding 
Python scripts. The experimental design parameters (splits, downsampling rates, class 
weights, model lists, etc.) are explicitly implemented in the code and cited above. All 
code snippets shown are taken directly from the implementation to illustrate critical 
steps. This ensures that the reported methodology exactly matches the computations 
performed in the experiments. 
 
IV. Results 
 
This section reports model performance under the same-day and cross-day protocols, 
focusing on metrics including Accuracy, Precision, Recall, F1, ROC-AUC, and PR-AUC. 



 
We first summarize the base models, then evaluate the meta-model, ablations, and 
feature additions. 
 
4.1 Base Model Study​
​
Ten classifiers were evaluated as base learners on six distinct feature groups across 
both same-day and cross-day protocols. Table 3 summarizes the top 10 model–feature 
combinations for each protocol, ranked by F1 score. 
 

Classifier Feature Group Accuracy Precision Recall F1 

CatBoost flags_and_protocol 0.9997 1 0.9634 0.979 

LightGBM flags_and_protocol 0.9997 0.9985 0.9637 0.9787 

DecisionTree flags_and_protocol 0.9997 0.9978 0.9634 0.9782 

XGBoost flags_and_protocol 0.9997 0.9967 0.9634 0.9778 

RandomForest flags_and_protocol 0.9997 0.9978 0.9621 0.9776 

ExtraTrees flags_and_protocol 0.9997 0.9967 0.9612 0.9766 

KNN flags_and_protocol 0.9997 0.9987 0.9521 0.9723 

ExtraTrees flow_metrics 0.9853 0.9677 0.8277 0.8746 

XGBoost flow_metrics 0.9855 0.9821 0.8233 0.8727 

LightGBM flow_metrics 0.9857 0.9744 0.8194 0.8679 
 

Table 3.1 Top 10 Base Model Results (Same Day) 
 

Classifier Feature Group Accuracy Precision Recall F1 

DecisionTree flags_and_protocol 0.8341 0.6942 0.5543 0.6075 

ExtraTrees flags_and_protocol 0.8385 0.6759 0.5626 0.6054 

KNN flags_and_protocol 0.8395 0.73 0.5727 0.6024 

RandomForest flags_and_protocol 0.8391 0.674 0.5594 0.6007 



 

XGBoost flags_and_protocol 0.841 0.6438 0.5877 0.6004 

LightGBM flags_and_protocol 0.8338 0.6445 0.513 0.5631 

LightGBM rates_and_ratios 0.928 0.5524 0.5332 0.5132 

CatBoost rates_and_ratios 0.9231 0.553 0.5209 0.5088 

XGBoost rates_and_ratios 0.9226 0.552 0.5192 0.5071 

CatBoost flags_and_protocol 0.8623 0.6569 0.438 0.4949 
 

Table 3.2 Top 10 Base Model Results (Cross Day) 
 
Overall, ensemble tree-based models achieved the highest classification performance. 
CatBoost, LightGBM, and XGBoost reached high same-day F1 scores between 0.977 
and 0.979 using the Flags and Protocols feature group, outperforming simpler 
classifiers such as k-NN (which peaked at 0.972 with the same feature group). In 
contrast, cross-day performance declined notably: models like Decision Tree only 
reached an F1 score of about 0.607, and CatBoost dropped to 0.494, despite being 
trained on the Flags and Protocols feature group. These results indicate that more 
complex learners, especially tree-based methods, are better equipped to model network 
flow data patterns under same-day evaluation, while their generalization across days 
remains more limited. 
 
Another clear trend is the variability of performance across feature groups. Certain 
subsets proved far more discriminative than others, as illustrated by Figure 1. 



 

Figure 1.1 F1 Score Per Model Across Feature Groups (Same Day) 
 

 
Figure 1.2 F1 Score Per Model Across Feature Groups (Cross Day) 

 
Most classifiers (7 out of 10 in the same-day tests and 9 out of 10 in the cross-day tests) 
achieved their highest F1 scores using the Flags and Protocols feature group. This 
feature group consistently yielded the highest average F1 for a majority of models in 
both same-day and cross-day settings. Conversely, groups like Timing_IAT and Packet 



 
Size Stats resulted in noticeably lower performance. Another observation is that overall 
F1 scores declined in the cross-day setting due to a temporal distribution shift, as 
shown in Figure 2. 
 

 
Figure 2. F1 Score Degradation between Same-Day and Cross-Day Protocols 

 
The Flags and Protocols and Rates and Ratios groups exhibited the least degradation 
in F1 score, demonstrating stronger cross-day generalization compared to more volatile 
feature groups such as Packet Size Stats and Connection Activity. Taken together, 
these trends highlight that tree-based models such as LightGBM, XGBoost, Random 
Forest, and Decision Tree, when trained on stable feature groups like Flags and 
Protocols, performed well across both same-day and cross-day settings. Their strong 
and reliable F1 scores led to these models being selected as the base learners for 
subsequent ensemble experiments. 
 
4.2 Meta Model Study 
 
Using the four top base learners (Decision Tree, Random Forest, XGBoost, LightGBM) 
as ensemble constituents, stacking-based meta-models were compared against 
traditional voting ensembles. Table 4 summarizes the overall metrics for each 
meta-classifier and voting method under both protocols. 
 



 

Model Name Accuracy Precision Recall F1 ROC 
AUC 

PR 
AUC 

KNN 0.9997 0.9997 0.9637 0.9791 0.9819 0.9816 

MLP 0.9997 0.9997 0.9637 0.9791 0.9999 0.9837 

XGBoost 0.9997 0.9978 0.9634 0.9782 0.9991 0.9832 

LinearSVC 0.9997 0.9967 0.9634 0.9778 0.9999 0.9832 

LightGBM 0.9997 0.9942 0.9637 0.9771 0.9995 0.9829 

CatBoost 0.9997 0.9946 0.9634 0.977 0.9999 0.9831 

DecisionTree 0.9997 0.9946 0.9634 0.977 0.9995 0.9811 

ExtraTrees 0.9997 0.9946 0.9634 0.977 0.9995 0.9822 

RandomForest 0.9997 0.9946 0.9634 0.977 0.9995 0.9828 

Soft Voting 0.9994 0.8882 0.9928 0.9075 0.9999 0.9837 

Hard Voting 0.9966 0.8606 0.9987 0.8636 0.9978 0.9297 

LogisticRegression 0.9996 0.7143 0.7138 0.714 0.9999 0.9837 
 

Table 4.1 Overall Metrics for each meta classifier and voting scheme (Same Day)​
 

Model Name Accuracy Precision Recall F1 ROC 
AUC 

PR 
AUC 

MLP 0.8578 0.8109 0.6101 0.6728 0.7649 0.6941 

ExtraTrees 0.8607 0.8375 0.5954 0.6676 0.7576 0.7252 

LightGBM 0.8599 0.8379 0.5823 0.6592 0.7855 0.765 

LinearSVC 0.8356 0.6936 0.5784 0.6219 0.8256 0.771 

LogisticRegression 0.8361 0.6845 0.5854 0.6218 0.8255 0.7297 

Soft Voting 0.8362 0.6838 0.5856 0.6215 0.8258 0.7233 

RandomForest 0.8392 0.6951 0.5649 0.6147 0.7578 0.7248 



 

CatBoost 0.8341 0.6947 0.5616 0.6129 0.8133 0.762 

XGBoost 0.8385 0.695 0.5614 0.6129 0.7931 0.7201 

KNN 0.8376 0.6941 0.5524 0.6063 0.7981 0.7674 

DecisionTree 0.8386 0.695 0.5499 0.6052 0.7934 0.7347 

Hard Voting 0.8497 0.59 0.6303 0.598 0.8087 0.6831 
 

Table 4.2 Overall Metrics for each meta classifier and voting scheme (Cross Day)​
 

Stacking with a learned meta-classifier yielded superior results compared to direct 
voting. The best-performing meta-learner was the Multi-Layer Perceptron (MLP), which 
achieved the highest average F1 score across all ensemble methods. Under the 
same-day evaluation, the stacked MLP ensemble attained an F1 of 0.9791, 
outperforming soft voting (0.9075) and hard voting (0.8636). A similar pattern held in the 
cross-day tests: MLP stacking reached an F1 of 0.6728, compared to 0.6215 with soft 
voting and 0.5980 with hard voting. This indicates that the meta-classifier effectively 
learned how to weight the base model outputs, resulting in an improved balance 
between precision and recall. Consistently, MLP stacking also achieved some of the 
highest ROC-AUC and PR-AUC values in both protocols (reaching 0.7649 and 0.6941 
under cross-day evaluation, and 0.9999 and 0.9837 under same-day evaluation), 
exceeding all voting-based alternatives. Overall, stacking improved detection 
performance across all metrics, demonstrating a significant advantage over the simpler 
ensemble techniques. 
 
Interestingly, not all meta-classifiers in the stacking framework performed equally well. 
Figure 3 illustrates the comparative F1 scores of different meta-models versus voting 
ensembles under both same-day and cross-day evaluations. 



 
​

Figure 3. F1 Scores of Stacking and Voting Ensembles 
 

While MLP delivered the strongest results overall, several other meta-models (such as 
LightGBM and ExtraTrees) also outperformed both hard and soft voting in terms of F1 
score across both testing protocols, though by smaller margins. In contrast, simpler 
architectures like Logistic Regression tended to underperform, occasionally falling 
below even the hard-voting ensemble in the same-day setting. The MLP stack stands 
out at the top of both testing protocols, confirming it as the optimal meta-learner in this 
study. 
 
These results validate that a learned stacking model (particularly the MLP 
meta-classifier) can better exploit the complementary strengths of base classifiers, thus 
delivering more robust detection performance than a straightforward majority-voting 
ensemble. 
 
4.3 Ablation Study 
 
To assess each base classifier’s contribution to the ensemble, an ablation experiment 
was conducted by removing one base model at a time from the stacked MLP ensemble. 
Table 5 reports the resulting performance metrics for the full ensemble and each ablated 
variant, across both same-day and cross-day protocols. 
 



 
 

Removed Model Accuracy Precision Recall F1 ROC 
AUC 

PR 
AUC 

None 0.9997 0.9997 0.9637 0.9791 0.9999 0.9837 

LightGBM 0.9997 0.9997 0.9637 0.9791 0.9999 0.9837 

RandomForest 0.9997 0.9996 0.9637 0.9791 0.9999 0.9834 

DecisionTree 0.9997 0.9996 0.9624 0.9784 0.9999 0.9835 

XGBoost 0.9997 0.8568 0.8557 0.8562 0.9995 0.9803 
 

Table 5.1 Ablation results (Same Day), sorted by F1 score 
 

Removed Model Accuracy Precision Recall F1 ROC 
AUC 

PR 
AUC 

None 0.8578 0.8109 0.6101 0.6728 0.7649 0.6941 

XGBoost 0.8605 0.8371 0.5952 0.6675 0.7682 0.7336 

LightGBM 0.8572 0.813 0.5965 0.6658 0.82 0.744 

DecisionTree 0.853 0.7954 0.5962 0.6633 0.7598 0.693 

RandomForest 0.8354 0.6836 0.5848 0.6211 0.8604 0.689 
 

Table 5.2 Ablation results (Cross Day), sorted by F1 score 
 
As expected, the full ensemble (with all four base learners) achieved the highest overall 
scores, reaching approximately 0.9791 F1, 0.9999 ROC-AUC, and 0.9837 PR-AUC on 
average for the same-day tests, and 0.6728 F1, 0.7649 ROC-AUC, and 0.6941 
PR-AUC for the cross-day tests. Removing certain base learners caused clear 
performance drops. For instance, dropping XGBoost reduced the same-day F1 to 
0.8562. Similarly, removing Random Forest reduced the cross-day F1 to 0.6211. Both of 
these removals also caused meaningful declines in AUC scores across the testing 
protocols. In contrast, removing LightGBM or Decision Tree led to much smaller 
changes. In particular, ablating LightGBM barely impacted the same-day F1 (staying at 
0.9791) or the cross-day F1 (from 0.6728 to 0.6658), indicating that it contributed the 



 
least to the ensemble. These results suggest that XGBoost and Random Forest are 
central to ensemble performance on both seen and unseen days. These trends are 
further illustrated in Figure 4, which visualizes the F1 score drop resulting from the 
removal of each base model. 

 
Figure 4. F1 score drop after removing each base model (bar chart) 

 
In the same-day setting (where overall F1 scores were higher), XGBoost emerged as 
the key contributor: its removal led to a sharp 12% absolute drop in F1, while other 
models had minimal impact. In contrast, under cross-day evaluation, every base learner 
played a more pivotal role. Random Forest’s removal resulted in about a 5% drop, and 
smaller yet still meaningful degradations followed from removing Decision Tree and 
LightGBM. This broader distribution of impact suggests that while same-day 
performance was largely carried by a single model, generalization across days required 
the combined strength of multiple diverse learners. 
 
Together, these results reinforce the importance of XGBoost for maximizing same-day 
performance and highlight the collective value of all four base models, especially 
Random Forest, for ensuring robust cross-day generalization. 
 
4.4 Feature Addition Study 



 
 
Finally, a feature addition experiment was performed to explore whether adding 
individual raw features to the meta-classifier, beyond the base model predictions, could 
improve ensemble performance. Table 6 presents the top-performing features in this 
experiment, ranked by F1 score. 
 

 

Feature Accuracy Precision Recall F1 ROC 
AUC 

PR 
AUC 

ACK Flag Cnt 0.9997 0.9998 0.9635 0.9791 0.9993 0.9828 

Fwd PSH Flags 0.9997 1.0 0.9634 0.9791 0.9998 0.9824 

CWE Flag Count 0.9997 1.0 0.9634 0.9791 0.9999 0.9836 

Down/Up Ratio 0.9997 0.9998 0.9635 0.9791 0.9999 0.9803 

ECE Flag Cnt 0.9997 0.9998 0.9635 0.9791 0.9999 0.9824 

FIN Flag Cnt 0.9997 1.0 0.9634 0.9791 0.9999 0.9834 

Fwd Blk Rate Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836 

Fwd Byts/b Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836 

Fwd Pkts/b Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836 

Bwd Pkts/b Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836 
 

Table 6.1 Top feature by F1 Score (Same Day) 
 

Feature Accuracy Precision Recall F1 ROC 
AUC 

PR 
AUC 

ECE Flag Cnt 0.8585 0.8123 0.6218 0.6795 0.7401 0.6916 

RST Flag Cnt 0.8585 0.8123 0.6218 0.6795 0.7401 0.6915 

URG Flag Cnt 0.8584 0.8124 0.6199 0.6787 0.8087 0.7397 

ACK Flag Cnt 0.8584 0.8113 0.6199 0.6782 0.7665 0.7005 



 

Tot Bwd Pkts 0.8583 0.8115 0.6193 0.6780 0.7873 0.7069 

Subflow Bwd Pkts 0.8583 0.8115 0.6193 0.6780 0.7873 0.7069 

Down/Up Ratio 0.8583 0.8115 0.6192 0.6780 0.7805 0.7310 

Fwd Pkt Len Std 0.8583 0.8019 0.6196 0.6738 0.9150 0.8080 

None 0.8578 0.8109 0.6101 0.6728 0.7649 0.6941 

Pkt Len Std 0.8580 0.7950 0.6202 0.6719 0.8279 0.7234 
 

Table 6.2 Top feature by F1 Score (Cross Day) 
 

While most features had minimal or no effect, a few produced small but consistent 
gains, particularly in cross-day evaluations. Notably, ACK Flag Cnt maintained the F1 
score at 0.9791 in the same-day setting but increased it from 0.6728 to 0.6782 in the 
cross-day setting. Similarly, ECE Flag Cnt also maintained the same-day F1 at 0.9791 
but increased the cross-day F1 to 0.6795. The Down/Up Ratio feature (from the Rates 
and Ratios group) also preserved performance (approximately 0.968 F1 on average in 
same-day tests) but raised it to about 0.6780 on average in cross-day tests. Though 
these gains were modest (generally under a 1% absolute increase), they were 
consistent across protocols, indicating that these features captured insights 
complementary to what the base classifiers were already providing. These results 
suggest that a small number of raw features, particularly those related to directional flow 
behavior and protocol-level flags, may provide additional value when refining ensemble 
decisions. To better understand the contribution of each feature, Figure 5 depicts how 
the F1 score of the stacked model changes as each of the 75 features is added one at a 
time. 
 



 

 
Figure 5. Change in stacked model F1 score as individual features are added 

 
While a small number of features near the top clearly provide marginal improvements, 
the curve drops off sharply beyond the first ~20 additions, indicating that most features 
actually have a negative impact on performance. Rather than plateauing, this decline 
suggests that many raw inputs introduce noise or redundancy, ultimately degrading the 
predictive power of the ensemble. This observation reinforces the notion that only a 
narrow subset of well-aligned features, especially those tied to protocol-level signals or 
directional flow dynamics, offer meaningful benefit when augmenting the ensemble. 
 
Together, these findings indicate that while feature augmentation can offer minor 
enhancements, the core effectiveness of the stacked model is already captured by the 
base classifiers and their selected feature groups. 
 
V. Discussion 
 
The experimental results indicate that flow-based detection using an ensemble is highly 
effective on modern benchmark data. The stacking ensemble achieved near-perfect 
detection on CIC-IDS2018 in same-day testing (F1 ≈ 0.979) and maintained solid 
performance across different days (cross-day F1 ≈ 0.673), outperforming individual 
classifiers and traditional voting schemes. This confirms that a learned meta-classifier 
can better balance precision and recall than fixed fusion rules, yielding more robust 
detection across diverse attack types. Compared to prior works on CIC-IDS2018 and 



 
similar datasets, which report high in-sample accuracy with single models or basic 
ensembles, the proposed approach offers improved adaptability. For example, machine 
learning models have previously shown strong accuracy on encrypted traffic, but often 
without addressing temporal shifts. In our case, the stacking method not only matches 
state-of-the-art detection rates reported in literature but also sustains higher 
performance compared to individual classifiers when confronted with completely unseen 
daily traffic. This suggests the ensemble can generalize better to new conditions, an 
important advantage for real-world deployment. 
 
The findings also highlight which components contributed most to success. Tree-based 
algorithms (especially XGBoost and Random Forest) were key drivers of ensemble 
performance, aligning with other studies that emphasize the strength of gradient 
boosting and forests in intrusion detection. The flags & protocol features proved most 
discriminative, consistent with reports that metadata like header flags carry significant 
attack signatures. Meanwhile, adding raw features to the meta-classifier yielded only 
marginal gains; a few features (e.g. ACK flag count, Down/Up ratio) slightly improved 
cross-day recall, but most features provided no benefit or introduced noise. This 
underscores that the core feature groups were already informative and that the 
ensemble was largely capturing the relevant information. 
 
Despite its strong performance, the proposed approach has several practical limitations. 
Firstly, the dataset had to be downsampled due to hardware constraints, meaning the 
models were trained on only a fraction of available data. While necessary to manage 
memory and computation, this downsampling may omit some traffic patterns and limit 
the absolute performance. Minimal hyperparameter tuning was performed (using only 
small grid searches), so the results might be further improved with more extensive 
optimization. Additionally, no deep packet features or advanced feature engineering 
beyond basic grouping were applied; the approach relies purely on provided flow 
features without normalization, which could affect algorithms sensitive to feature scale. 
Another limitation is that the evaluation, although comprehensive on CIC-IDS2018, 
reflects one particular environment. The ensemble’s effectiveness against completely 
novel (zero-day) attacks was not explicitly tested; like most supervised models, it may 
struggle with threats that differ significantly from the training data.  
 
Future Work: Building on this study, several enhancements are planned to address the 
above limitations and further improve the system: 

●​ Dimensionality Reduction: Apply PCA or other feature engineering techniques to 
reduce redundant features and improve model efficiency. 



 
●​ Model Explainability: Integrate SHAP or similar explainable AI methods to 

interpret feature importance and explain the ensemble’s decisions for better 
transparency. 

●​ Handling Imbalance: Use techniques like SMOTE or targeted oversampling to 
bolster minority attack classes, complementing the class-weighting approach and 
improving recall for rare attacks. 

●​ Feature Normalization: Investigate normalizing or scaling flow features, which 
may benefit algorithms like k-NN or SVM and lead to more consistent 
performance across features. 

●​ Cross-Dataset Evaluation: Test the ensemble on new datasets (e.g., other recent 
IDS benchmarks) to verify its generalization to different network environments 
and attack scenarios. 

●​ Zero-Day Detection: Explore hybrid models that combine the ensemble with 
anomaly detection or online learning to identify zero-day attacks, ensuring the 
IDS remains effective against emerging threats. 

 
These future directions aim to enhance the model’s accuracy, generality, and 
interpretability, moving the solution closer to real-world deployment in diverse settings. 
 
IV. Conclusion 
 
This work introduced a privacy-preserving, flow-based intrusion detection solution using 
an ensemble of machine learning classifiers in a two-tier stacking architecture. The 
proposed system demonstrated improved detection performance over individual models 
and traditional voting ensembles on a modern encrypted traffic dataset, achieving high 
recall and precision across a broad range of attack types. Key contributions include 
establishing baseline performance for various algorithms on encrypted flows, 
quantifying base learner importance via ablation, and showing the benefit of trainable 
fusion in the ensemble. The practical value of this approach is significant: by inspecting 
only flow metadata and not packet payloads, it operates without decrypting traffic, 
thereby preserving user privacy and simplifying compliance with data protection 
requirements. The results also show that the ensemble can adapt to temporal variations 
in network traffic, indicating its suitability for deployment in dynamic real-world networks. 
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