

Flow-Based Intrusion Detection Using Ensemble Machine Learning

Devesh Senthilraja

Abstract​
​
This paper presents a flow-based intrusion detection approach designed for modern
encrypted network traffic. The proposed method uses an ensemble of machine learning
classifiers in a two-tier stacking architecture to detect malicious flows using only
flow-level metadata, without inspecting any packet payloads. The approach is evaluated
on a large-scale benchmark dataset (CIC-IDS2018) containing diverse attack types
mixed with extensive encrypted traffic. Results indicate that the stacking ensemble
outperforms individual classifiers and traditional voting ensembles in detecting a wide
range of attacks, while preserving privacy by avoiding decryption. The study establishes
baseline performance for various algorithms on encrypted flows, demonstrates the
advantages of learned ensemble fusion, and provides insights through ablation and
feature augmentation experiments. These contributions illustrate a practical solution for
intrusion detection in fully encrypted network environments, combining high detection
effectiveness with privacy preservation.

I. Introduction

The widespread adoption of encryption in Internet communications has created
significant challenges for traditional intrusion detection systems. Over 80% of Internet
traffic is now encrypted, which means that legacy defenses relying on packet payload
inspection are increasingly operating blind. Techniques like deep packet inspection and
signature-based pattern matching (e.g., Snort rules) become ineffective when packet
contents are hidden. Attackers have capitalized on this blind spot by tunneling malicious
activities through encrypted channels (for instance, disguising command-and-control
traffic or data exfiltration as normal TLS flows), rendering many conventional detection
methods obsolete. This trend underscores the need for payload-agnostic detection
strategies that can identify threats without reading packet contents. Few existing IDS
solutions handle fully encrypted traffic effectively, which motivates the present work to fill
that gap using flow-level information only.

Another core challenge is that encrypted malicious traffic often blends in with legitimate
traffic at the metadata level. Without payload signatures, an IDS must distinguish benign
and malicious flows using only statistical features such as packet lengths, rates, timing
intervals, and protocol headers. Sophisticated attacks can mimic normal user behavior

to evade detection, leading to high false-positive rates if detection models are not
sufficiently robust and adaptive. Moreover, modern attack campaigns are diverse
(ranging from high-volume denial-of-service floods to low-and-slow infiltrations),
requiring detection methods capable of handling a wide spectrum of patterns. Identifying
all these attack types from flow-level observations alone demands machine learning
techniques capable of modeling subtle statistical differences without relying on
decrypted content. In summary, conventional IDS approaches struggle in encrypted
environments and few alternatives exist; this gap underscores the need for an intrusion
detection approach based on flow metadata.

To address these challenges, this paper proposes a privacy-preserving intrusion
detection method grounded in ensemble machine learning, with a focus on a
stacking-based meta-classifier architecture. In contrast to single-model classifiers or
simplistic majority-vote ensembles, a stacking ensemble combines the strengths of
multiple learning algorithms by training a meta-classifier to fuse their outputs. This
design enables the detection system to capture complex non-linear relationships in flow
feature space and to compensate for individual model weaknesses. The approach relies
exclusively on statistical features extracted from each network flow (e.g., packet counts,
byte rates, inter-arrival times, and protocol flags) rather than any packet payload
content, making it naturally suited for monitoring fully encrypted traffic. The resulting
two-tier model adapts to diverse attack patterns and provides a practical,
privacy-compliant anomaly detection solution for modern networks.

Research Objectives and Contributions: This study develops a flow-based stacking
ensemble IDS that achieves high attack detection capability using only network flow
metadata. The key contributions of this work are summarized as follows:

●​ Payload-Agnostic Stacking Ensemble: Introduces a two-tier stacking ensemble
IDS using heterogeneous base learners on flow-level features, attaining high
detection efficacy without inspecting packet payloads. This demonstrates an
effective solution for encrypted traffic where deep packet inspection fails.

●​ Baseline Algorithm Performance: Establishes robust baseline results by
evaluating ten standalone machine learning classifiers across multiple feature
subsets, benchmarking the limits of single-model performance on encrypted
traffic.

●​ Learned vs. Fixed Fusion: Demonstrates the advantage of a learned fusion
approach by comparing the stacking meta-model to traditional ensemble voting
methods (hard/soft voting). The stacking ensemble with an optimized

meta-classifier outperforms equal-weight voting, highlighting the value of
trainable combination rules.

●​ Base Learner Importance Analysis: Quantifies the contribution of each base
learner through an ablation study. Removing individual base models reveals their
influence on ensemble performance, providing insight into model diversity and
complementarity.

●​ Feature Augmentation for Minority Attacks: Explores augmenting the
meta-classifier’s input with select raw flow features. This extension evaluates
whether simple additional features can further boost detection performance.

II. Literature Review

2.1 Traditional Anomaly Detection Techniques and Their Limitations

Early network intrusion detection systems largely fell into two categories:
signature-based detectors and anomaly-based detectors. Signature-based IDS
(exemplified by tools like Snort) use known patterns of malicious payloads to identify
attacks, whereas anomaly-based systems establish a baseline of normal behavior and
flag deviations from that baseline. Both approaches face serious limitations in today’s
environment. Signature-based techniques require visibility into packet contents and thus
fail outright on encrypted traffic. Anomaly-based methods, on the other hand, may
detect novel attacks but often at the expense of high false positives, since any unusual
but benign behavior can be misclassified as malicious. This fundamental trade-off has
highlighted the need for detection approaches that are both sensitive (to catch new
attacks) and specific (to avoid false alarms).

Research has underscored the difficulty of achieving this balance. Guo et al. (2023) [5]
observe that entirely new zero-day attack patterns often evade purely supervised
learning models, which are inherently limited by the scope of their training data. In
response, some works have explored unsupervised or one-class anomaly detection
techniques, such as clustering network flows or training one-class models on normal
traffic, to detect deviations without prior attack labels. While these unsupervised
methods can in theory identify novel threats, they tend to suffer from unstable behavior
and high false alarm rates if not carefully tuned. Likewise, attempts to use deep learning
for anomaly detection (e.g., autoencoders or recurrent neural networks) have
encountered challenges: these models can automatically learn features from raw flows,
but they demand very large training sets and significant computation, and their
decisions are often opaque. In summary, traditional IDS techniques (whether

signature-based or basic anomaly detectors) are ill-equipped to handle the dual
challenge of fully encrypted traffic and continuously evolving attacks. These limitations
drive the need for new approaches that operate on metadata and leverage more
powerful machine learning techniques to achieve both high detection rates and low false
positives in encrypted environments.

2.2 Machine Learning for Encrypted Traffic Analysis

With the majority of network traffic now encrypted, intrusion detection research has
shifted toward analyzing features that remain observable despite encryption. Kang et al.
(2017) [1] emphasize that the sheer volume of encrypted data in enterprise networks
makes it difficult to spot sophisticated attacks, as traditional content-inspection methods
can no longer “see” inside the traffic. In response, recent work focuses on statistical
patterns and side-channel information gleaned from flow metadata rather than packet
payloads. Flow-level features, such as packet sizes and counts, inter-packet timing
intervals, connection durations, and header flags, have become a cornerstone of
anomaly detection for encrypted traffic. Shiravi et al. (2012) [2] introduced
comprehensive flow-based feature sets as content-agnostic proxies for suspicious
behavior, demonstrating that many attack types can be identified through metadata
alone. Tools like CICFlowMeter (from the Canadian Institute for Cybersecurity) have
further standardized the extraction of dozens of such features from packet captures,
enabling researchers to reproducibly evaluate IDS models on encrypted traffic across
different datasets.

Multiple studies have validated that machine learning models trained on flow features
can achieve high accuracy in detecting attacks without any packet payload data. For
instance, Ibraheem et al. (2022) [3] showed that classifiers leveraging inter-packet
timing and size patterns can successfully surface anomalies in HTTPS (TLS-encrypted)
flows. Similarly, Singh et al. (2025) [4] applied explainable machine learning techniques
(using SHAP values) to TLS-encrypted traffic, confirming that even though encryption
hides content, there are still statistical fingerprints of malicious behavior in the metadata
that models can exploit. These works illustrate an important point: encryption blinds
straightforward payload inspection, but it does not render traffic analysis impossible; the
communication patterns themselves often betray an attack.

Despite this progress, reliably detecting intrusions in encrypted traffic remains
challenging. Attackers continuously adapt their tactics, and advanced malware can
generate traffic patterns that closely mimic benign usage. For example, an infected host

might deliberately behave like a normal web browser to avoid suspicion. As a result,
purely flow-based detectors risk either high false positives (flagging unusual but benign
behaviors) or missed detections (if the malicious pattern is too subtle) when they are not
carefully designed. Achieving both high sensitivity and high specificity in encrypted
traffic analysis is difficult. As noted earlier, supervised learning models can struggle with
zero-day attacks that fall outside the training distribution. One strategy to improve
generalization has been to incorporate unsupervised anomaly detection components:
for example, clustering algorithms or autoencoders that detect outlier flows without
needing known attack labels. However, such approaches have their own drawbacks:
they can be unstable or trigger excessive false alarms if they pick up on noise. Another
strategy has been to use deeper learning architectures (e.g., recurrent neural networks
or deep autoencoders) to automatically learn feature representations from flows, which
has shown promise but comes at the cost of high computational complexity. Overall, the
literature indicates that detecting intrusions in fully encrypted environments is feasible
using flow metadata alone, but doing so demands robust and adaptive models capable
of handling a diverse range of attack patterns and adjusting to new threats. This insight
has driven research toward ensemble and other advanced machine learning techniques
that can boost detection performance while maintaining the generality needed for
encrypted traffic scenarios.

2.3 Intrusion Detection Datasets and CIC-IDS2018

Evaluating intrusion detection methods requires representative datasets that capture
realistic benign traffic and a variety of attack behaviors. Historically, researchers relied
on benchmarks like the KDD Cup 1999 dataset and its improved version NSL-KDD,
which provided labeled examples of simulated attacks. While useful in their time, these
older datasets are now considered outdated; they lack the diversity of modern malware
and do not include encrypted traffic. More recent corpora such as UNSW-NB15 (2015)
and the Canadian Institute for Cybersecurity IDS datasets (2017 and 2018 editions)
were developed to address these gaps by incorporating contemporary attack
techniques, updated network protocols, and, in the case of CIC-IDS2018, a significant
proportion of encrypted traffic.

CIC-IDS2018 (also known as CSE-CIC-IDS2018) is a prime example of a modern
intrusion detection dataset and is used as the basis for this study. Introduced by
Sharafaldin et al. (2018) [7], CIC-IDS2018 was collected in a controlled cyber-range
environment that closely mimics a large enterprise network. It encompasses 10 days of
traffic captures, each day simulating specific attack scenarios blended with normal

background traffic. In total, the dataset contains over a dozen attack types covering a
broad spectrum of threat categories including brute-force authentication attacks, various
denial-of-service (DoS and distributed DoS) floods, botnet command-and-control traffic,
web application exploits (such as SQL injection and XSS), internal network infiltration,
and data exfiltration. All these attacks are interspersed with legitimate user activity (e.g.,
web browsing, email, chat, voice-over-IP), yielding a complex mix that reflects
real-world network conditions. Crucially, a large portion of the benign traffic in
CIC-IDS2018 is encrypted (for example, HTTPS web browsing, SSH sessions, and
VPN connections), which makes this dataset especially well-suited for evaluating
flow-based IDS approaches that cannot rely on packet payload inspection.

Each network connection (flow) in CIC-IDS2018 is described by an extensive set of
features generated by CICFlowMeter, amounting to approximately 80 attributes per flow.
These features capture a wide range of behavior indicators: for example, basic counters
(total packets and bytes sent/received in each direction), flow duration and byte rates,
packet length statistics (minimum, maximum, mean, standard deviation), inter-arrival
time metrics, counts of TCP flag occurrences, connection status indicators, and more.
All features are numeric or boolean and represent purely metadata about the flow; no
application-layer payload content is included, preserving privacy. Each flow record is
labeled as Benign or as a specific attack type, allowing for both binary classification and
more fine-grained analysis by attack category (though models in many studies,
including this one, focus on the binary distinction between benign and malicious). The
rich feature set in CIC-IDS2018 provides a strong foundation for machine learning
algorithms; prior work has shown that carefully chosen subsets of these features can
yield detection accuracies above 95% for many attack classes on this dataset. For
instance, features related to traffic volume and timing are highly effective for catching
high-rate attacks like DDoS, whereas more subtle features such as certain unusual TCP
flag patterns or idle time distributions can help identify stealthy intrusions.

However, the high dimensionality of CIC-IDS2018’s feature space also poses
challenges. Many of the ~80 recorded features are inter-correlated or even redundant
(for example, “Total Fwd Packets” and “Total Fwd Bytes” are closely related, as are
various packet length statistics). Including all of these features in a model can confuse
learners and increase computational cost without improving accuracy. To tackle this,
researchers have applied feature selection and dimensionality reduction techniques on
CIC-IDS2018, such as correlation analysis, information gain ranking, and Principal
Component Analysis (PCA), to identify the most informative features and eliminate
noise. In this study, rather than permanently filtering out features, the features were

organized into semantically related groups and ensemble methods were used to
manage complexity. Nonetheless, the general lesson from the literature is that some
form of feature reduction or careful feature handling is beneficial when using this
dataset. Overall, CIC-IDS2018 represents a comprehensive, up-to-date benchmark for
evaluating intrusion detection systems. It provides a rigorous test bed for flow-based
IDS approaches, especially those targeting encrypted traffic, because it contains
realistic encrypted benign flows alongside a wide array of attack types. By using this
dataset, the evaluation in this research covers the challenges of imbalanced classes,
diverse attack behaviors, and encryption: key factors that any practical IDS must be
able to handle.

2.4 Classification Algorithms for Flow-Based IDS

A wide variety of classification algorithms have been explored for flow-based intrusion
detection, ranging from simple linear models to complex ensemble and deep learning
methods. Each approach brings its own advantages and inductive biases when
modeling network traffic. Key categories of algorithms include:

●​ Tree-Based Models: Decision trees and tree-based ensembles (e.g., Random
Forests, ExtraTrees, and gradient-boosted trees like XGBoost or LightGBM) are
well-suited to tabular flow data. They can capture non-linear interactions between
features and effectively learn threshold rules (for example, “if packet rate > X and
SYN flag count = Y, then classify as attack”). A single decision tree can overfit if
grown too deep, but ensemble methods like Random Forest mitigate this by
averaging many trees trained on bootstrap samples, improving generalization.
Boosting algorithms (like AdaBoost or XGBoost) sequentially add trees that focus
on previous errors, often achieving state-of-the-art accuracy on structured data.
Overall, tree-based classifiers have been top performers in many IDS studies
due to their ability to automatically handle heterogeneous features and discover
important split conditions.

●​ Linear Models: Linear classifiers such as logistic regression and linear support
vector machines model a flow’s label as a weighted sum of its feature values.
These models are computationally efficient and tend to generalize well when the
classes are roughly linearly separable in the feature space. In the context of
network flows, linear models can pick up broad distinctions (for instance, a high
overall packet count or byte rate might strongly indicate an attack). However,
they lack the capacity to capture complex non-linear feature interactions (e.g., a
subtle combination of timing and size patterns), so they may underperform on
problems where attacks manifest through intricate multi-feature signatures.

Regularization techniques (like L2 penalties) are often applied to linear models in
IDS tasks to prevent overfitting, given the high-dimensional input.

●​ Instance-Based Models: The k-Nearest Neighbors (kNN) classifier is a
non-parametric approach that classifies a new flow by examining the labels of the
most similar flows (neighbors) in the training set. Instance-based methods can
detect attacks that form tight clusters in feature space; for example, a repeated
attack pattern might produce very similar flow records that kNN can group
together. The challenge with kNN for intrusion detection is that distance metrics
become less meaningful in high-dimensional feature spaces, and the method can
be sensitive to noisy or irrelevant features. It is also computationally expensive at
prediction time, since classifying a new flow requires computing distances to
many training examples. In practice, kNN (with a small k) has been tested for
catching localized anomalies, but its performance can degrade on large or noisy
datasets.

●​ Neural Network Models: Neural networks, such as multi-layer perceptrons
(MLPs), can learn complex decision boundaries by composing multiple non-linear
transformations of the input features. In intrusion detection, a moderately sized
feed-forward neural network can combine flow features in ways that might detect
subtle patterns; for instance, an MLP could learn a hidden neuron that activates
for a specific combination of packet timing and size statistics indicative of a
particular attack. Prior work has shown that neural nets can achieve high
accuracy on IDS benchmarks, but they require careful regularization (e.g.,
dropout, early stopping) to avoid overfitting, especially when the feature set is
large relative to the number of training examples. Simpler neural architectures
(one or two hidden layers) have been used as base learners in recent studies to
balance complexity and generalization.

By evaluating diverse model families, researchers have found that no single algorithm is
universally best for flow-based intrusion detection; each has certain strengths
depending on the attack type or feature characteristics. That said, there is a general
trend that more complex non-linear models (e.g., boosted tree ensembles and neural
networks) tend to outperform simpler ones (linear models or single decision trees) on
rich flow datasets. Tree ensembles in particular (such as Random Forests and gradient
boosting) have repeatedly been top performers on benchmarks like CIC-IDS2018, likely
because they handle the mixture of categorical-like patterns (flags) and continuous
patterns (timing or size metrics) very well. Simpler models, however, are not without
value; they often provide faster computation and can serve as diverse components in an
ensemble. In fact, the diversity among classifiers (linear vs. non-linear, parametric vs.

instance-based, etc.) is beneficial for ensemble methods, as it ensures that different
models contribute complementary views of the data. This forms the rationale for using a
heterogeneous ensemble of classifiers in the proposed approach, as discussed next.

2.5 Ensemble Learning: Voting vs. Stacking Approaches

Ensemble learning has become a prominent strategy in IDS research due to its ability to
improve robustness and accuracy by combining multiple models. Classic bagging
ensembles like Random Forest (which aggregates many decision trees) and boosting
methods like AdaBoost or XGBoost have long been used to reduce variance and
capture diverse attack patterns in intrusion detection. More recently, simpler ensemble
schemes based on classifier voting have shown success on benchmark datasets. For
example, Demir et al. (2023) [6] introduced a voting-based ensemble system (VEL-IDS)
that achieved superior detection rates compared to individual classifiers on
CIC-IDS2018. In a voting ensemble, several base classifiers are trained independently
and their outputs are combined by a fixed rule: hard voting predicts an attack if the
majority of base models vote “malicious,” whereas soft voting averages the base
models’ predicted probabilities and chooses the class with the highest average. Voting
is straightforward to implement and often boosts accuracy by smoothing out the
individual errors of classifiers. Indeed, prior IDS studies have found that even a simple
majority vote can outperform the best single model in some cases.

However, a limitation of equal-weight voting is that it treats all base learners as equally
important. In practice, if one classifier is significantly more accurate than the others, a
naïve majority vote does not fully exploit that strength; a strong model’s vote can still be
outvoted by a group of weaker models. Likewise, if multiple models make correlated
errors on a certain attack type, a voting ensemble will not correct those errors since it
has no mechanism to dynamically adjust weights. This is where stacking ensembles
(also known as stacked generalization) offer a more adaptive approach. In a stacking
ensemble, the outputs of the base classifiers (either their predicted classes or
probability scores) are used as features to train a meta-classifier, which learns how to
best combine the base learners’ decisions. Unlike voting, which uses a fixed
combination rule, stacking learns from data which models to trust more in different
scenarios. For example, a stacking meta-model could learn that if models A and B
predict “benign” but model C predicts “malicious,” and model C has historically been
more reliable for that type of flow, then the meta-classifier should output “malicious.”
The meta-classifier (sometimes called a level-2 model) is typically trained on a separate
validation set or via cross-validation to avoid overfitting, ensuring that it generalizes well.

Stacking has been explored in prior IDS studies as well. Early works often used a
simple meta-learner like logistic regression to combine diverse base classifiers,
essentially learning a weighted voting scheme where the weights are optimized during
training. Recent investigations have gone further by using more complex meta-learners,
including gradient boosting machines or neural networks, to maximize the ensemble’s
accuracy. The appeal of stacking, especially for encrypted traffic analysis, is its
flexibility; it can adaptively emphasize the strengths of each base model on different
types of traffic. By training the meta-classifier on outputs from the base models (using
held-out data to prevent overfitting), the system effectively learns an optimal fusion of
decision criteria tailored to the problem. This data-driven fusion often outperforms any
static combination rule. For instance, one study reported that using a lightweight neural
network as the meta-learner provided a small but consistent boost in detection
performance over conventional voting on an IDS dataset. Such results align with the
expectation that a meta-model can intelligently correct the biases or blind spots of
individual detectors. In other words, stacking can sometimes achieve higher detection
rates than even the best individual base classifier, and also higher than an equal-weight
or hand-tuned ensemble.

In summary, ensemble learning offers clear benefits for intrusion detection. Voting
ensembles are simple and have been proven to enhance baseline detection by
aggregating multiple models’ judgments, but they lack flexibility in weighting each
model’s contribution. Stacking ensembles take the idea a step further by learning how to
combine model outputs, typically leading to superior performance at the cost of a more
complex training process. Given the heterogeneity of encrypted network traffic and the
variety of attack vectors, a stacking approach is well-suited to leverage different models’
strengths. This insight motivates the use of a stacking ensemble in the present research
for flow-based IDS. By allowing the meta-learner to dynamically weight the decisions of
the base classifiers, the system can often outperform any single model or fixed-rule
ensemble, providing a powerful and adaptive defense against attacks in fully encrypted
network environments.
​
III. Methodology

This section describes the methodology used to develop and evaluate the flow-based
intrusion detection system. An overview of the key steps taken in this study is illustrated
in the pipeline below:

3.1 Dataset and Feature Selection

The experiments used the CIC-IDS2018 dataset, which contains labeled network flow
records across multiple days with approximately 20% of flows being malicious and the
remainder benign. Three days of data were excluded: 02-20-2018.csv due to its large
file size, and 02-28-2018.csv and 03-01-2018.csv due to incomplete flows that could
have introduced bias or inaccuracies. The remaining seven days formed the basis for all
analyses. From each CSV file, only numeric flow features were retained: non-numeric
columns were dropped and all entries converted to numeric values. Any rows containing
invalid values (NaN or infinities) were removed. This process yielded 75 valid numeric
features per flow, plus the original Attack Type label. Each flow was assigned a binary
label for classification: benign flows were encoded as 0 and all attack flows as 1. (The
original string “Attack Type” was preserved in its own column but not used as a feature.)

The 75 numeric features were organized into six conceptual groups for analysis. Table 1
presents these feature groups along with their corresponding features. For instance, the
flow metrics group includes features like Flow Duration and Flow IAT Mean; the packet
size statistics group includes features such as Tot Fwd Pkts and Pkt Len Mean; the
timing/IAT group captures inter-arrival statistics (e.g. Fwd IAT Tot); the flags and
protocol group covers TCP flag counts and protocol identifiers (e.g. ACK Flag Cnt,
Protocol); the rates and ratios group includes traffic rate measures (e.g. Down/Up Ratio,
Fwd Pkts/s); and the connection activity group comprises stateful metrics (e.g. Active
Mean, Idle Max).

Feature Group Features

Flow_metrics (7) "Flow Duration", "Flow Byts/s", "Flow Pkts/s", "Flow IAT
Mean", "Flow IAT Std", "Flow IAT Max", "Flow IAT Min"

Packet_size_stats
(20)

"Tot Fwd Pkts", "Tot Bwd Pkts", "TotLen Fwd Pkts", "TotLen
Bwd Pkts", "Fwd Pkt Len Max", "Fwd Pkt Len Min", "Fwd Pkt
Len Mean", "Fwd Pkt Len Std", "Bwd Pkt Len Max", "Bwd Pkt
Len Min", "Bwd Pkt Len Mean", "Bwd Pkt Len Std", "Pkt Len

Min", "Pkt Len Max", "Pkt Len Mean", "Pkt Len Std", "Pkt Len
Var", "Pkt Size Avg", "Fwd Seg Size Avg", "Bwd Seg Size
Avg"

Timing_iat (10) "Fwd IAT Tot", "Fwd IAT Mean", "Fwd IAT Std", "Fwd IAT
Max", "Fwd IAT Min", "Bwd IAT Tot", "Bwd IAT Mean", "Bwd
IAT Std", "Bwd IAT Max", "Bwd IAT Min"

Flags_and_protocol
(16)

"FIN Flag Cnt", "SYN Flag Cnt", "RST Flag Cnt", "PSH Flag
Cnt", "ACK Flag Cnt", "URG Flag Cnt", "CWE Flag Count",
"ECE Flag Cnt", "Fwd PSH Flags", "Bwd PSH Flags", "Fwd
URG Flags", "Bwd URG Flags", "Protocol", "Dst Port", "Init
Fwd Win Byts", "Init Bwd Win Byts"

Rates_and_ratios (9) "Down/Up Ratio", "Fwd Pkts/s", "Bwd Pkts/s", "Fwd Byts/b
Avg", "Fwd Pkts/b Avg", "Fwd Blk Rate Avg", "Bwd Byts/b
Avg", "Bwd Pkts/b Avg", "Bwd Blk Rate Avg"

Connection_activity
(13)

"Subflow Fwd Pkts", "Subflow Fwd Byts", "Subflow Bwd
Pkts", "Subflow Bwd Byts", "Fwd Act Data Pkts", "Active
Mean", "Active Std", "Active Max", "Active Min", "Idle Mean",
"Idle Std", "Idle Max", "Idle Min"

Table 1: Feature Groups and Corresponding Features.

Each feature was used in its original scale (no additional normalization was applied
beyond the aforementioned type conversion). The features were grouped based on
logical similarity to facilitate structured experimentation across subsets; however, no
model was ever trained on all 75 features at once (each model operated on only one
feature group at a time).

3.2 Experimental Protocols

Two evaluation protocols were employed: same-day and cross-day. Under the
same-day protocol, each day’s cleaned data was split into a 70% training set and a 30%
hold-out test set (stratified by label to preserve class proportions). From the training set,
a 50% random downsampling was applied to reduce data volume due to hardware
constraints. In code, this procedure was implemented as:

X_tr, X_te, y_tr, y_te = train_test_split(
 X, y, test_size=0.3, stratify=y, random_state=42

)
tmp = apply_downsample(pd.concat([X_tr, y_tr], axis=1), frac=0.5)
X_train = tmp.drop('Label', axis=1)
y_train = tmp['Label']
X_test, y_test = X_te, y_te

Here, train_test_split with a fixed random seed (42) ensured reproducibility, and
apply_downsample performed uniform random sampling of half the rows. No further
stratification was applied during downsampling.

Under the cross-day protocol, a leave-one-day-out strategy was used: for each day held
out as the test set, the data from the other six days were combined to form the training
pool. This combined training set was then randomly downsampled to 20% of its original
size to manage computational load. In particular, all other days’ CSVs were
concatenated, and 20% of the rows were randomly sampled:

train_dfs = [load_cleaned_csv(fp) for fp in all_files if fp !=
file_fp]
df_tr = pd.concat(train_dfs, ignore_index=True)
tmp = apply_downsample(df_tr, frac=0.2)
X_train = tmp[feats]; y_train = tmp['Label']
df_te = load_cleaned_csv(file_fp)
X_test = df_te[feats]; y_test = df_te['Label']

The held-out day’s data was used as the test set with no downsampling, ensuring a
strict evaluation on entirely unseen data.

In both protocols, class weighting was applied during model training to counter residual
class imbalance. This technique increased the penalty for misclassifying minority-class
examples by assigning higher weight to their loss during optimization. The weights were
computed inversely proportional to class frequencies using the formula:

class_weight [c] = (Ntotal / 2Nc)

for class c∈{0,1}, where Nc​ is the number of training samples of class c. In code, for
example, after the training labels y_train were prepared, the following was set:

neg, pos = (y_train==0).sum(), (y_train==1).sum()
total = neg + pos

class_weight = {0: total/(2*neg), 1: total/(2*pos)}

Given the naturally skewed class distribution, class weighting encouraged the models to
focus more on accurately classifying the less-frequent attack flows.

3.3 Model Training and Evaluation

3.3.1 Base Models

Ten classifiers were evaluated as base models across both evaluation protocols:
Logistic Regression, Decision Tree, Random Forest, Extra Trees, XGBoost, LightGBM,
CatBoost, k-Nearest Neighbors, Linear SVM, and Multi-Layer Perceptron. Each model
was trained on each of the six feature subsets and evaluated across all 14 train-test
scenarios, with seven distinct days evaluated under both the same-day and cross-day
protocols. This setup ensured a thorough examination of how each model performed
across different data splits and feature perspectives.

Hyperparameter tuning was conducted using grid search with three-fold
cross-validation. Each trial was executed using the following procedure:

gs = GridSearchCV(model, param_grid, cv=3, scoring='f1', n_jobs=1)
gs.fit(X_train, y_train)
best = gs.best_estimator_
y_pred = best.predict(X_test)

The optimization objective was the F1 score, selected to balance precision and recall,
particularly in light of the malicious class being the minority in most cases. Prioritizing
the F1 score helped the models remain sensitive to both false positives and false
negatives, improving their effectiveness in this imbalanced detection task.

The hyperparameter search grids used for each model are shown in table 2 below:

Classifier Fixed Parameters Tuned Parameters (Grid)

Logistic Regression solver='saga',
max_iter=1000,
random_state=42

C: [0.01, 0.1, 1]

Decision Tree random_state=42 max_depth: [5, 10, 20]

Random Forest random_state=42,
n_jobs=1

n_estimators: [100, 200];
max_depth: [None, 10, 20]

Extra Trees random_state=42,
n_jobs=1

n_estimators: [100, 200];
max_depth: [None, 10, 20]

XGBoost use_label_encoder=False
eval_metric='logloss',
random_state=42,
n_jobs=1

learning_rate: [0.1, 0.01];
n_estimators: [100, 200];
max_depth: [3, 5]

LightGBM random_state=42,
n_jobs=1, verbose=-1

learning_rate: [0.1, 0.01];
n_estimators: [100, 200];
num_leaves: [31, 50]

CatBoost verbose=0,
random_state=42

depth: [4, 6]; iterations: [100,
200]; learning_rate: [0.1, 0.01]

k-Nearest Neighbors — n_neighbors: [3, 5, 7]

Linear SVM max_iter=10000,
random_state=42

C: [0.1, 1, 10]

MLP max_iter=500,
random_state=42

hidden_layer_sizes: [(50,),
(100,)]; alpha: [1e-4, 1e-3]

Table 2: Base classifier hyperparameter search grids

Each trained model was evaluated on the hold-out test set, and a range of metrics was
recorded, including accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. This
comprehensive baseline study was conducted to identify the four most effective
base-model and feature-group combinations to serve as candidates for the stacked
meta-ensemble classifier.

3.3.2 Stacked Meta-Model

Following the baseline evaluation, four base classifiers were selected along with their
top-performing feature subsets. The selection criteria were based on achieving the
highest average F1 score across all evaluation scenarios while maintaining relatively
efficient training time. These base models served as the foundation for the subsequent
meta-ensemble experiments.

Two ensemble strategies were implemented: voting and stacking. For voting, both hard
and soft variants were evaluated. In hard voting, the predicted class label was
determined by a majority vote across the base models. In soft voting, the predicted
probabilities from each base model were averaged, and the final prediction was
obtained by thresholding this average at 0.5. The implementation of both strategies is
shown below:

Hard voting: majority vote
votes = df_test[[f"label_{m}" for m in BASE_MODELS]].values
hard_pred = (votes.sum(axis=1) >= (len(BASE_MODELS) / 2)).astype(int)

Soft voting: average probability
probs = df_test[[f"pred_{m}" for m in BASE_MODELS]].values
soft_score = probs.mean(axis=1)
soft_pred = (soft_score >= 0.5).astype(int)

In the stacking configuration, each meta-classifier was trained using the predicted
scores of the selected base models on the training split. Evaluation was performed on
the same held-out test set used for the base-model evaluation, using the corresponding
base-model predictions as input features. This setup ensured a consistent comparison
between stacking and individual base models.

The meta-classifiers included ten candidates: Logistic Regression, Decision Tree,
Random Forest, Extra Trees, XGBoost, LightGBM, CatBoost, k-Nearest Neighbors,
Linear SVM, and Multi-Layer Perceptron. Each was trained independently on the
meta-feature set for every day and protocol. An example of the training and evaluation
procedure is shown below:

X_tr_meta = df_train_preds[['pred_Model1', 'pred_Model2', ...]]
X_te_meta = df_test_preds[['pred_Model1', 'pred_Model2', ...]]
meta_model = META_MODELS[name]
meta_model.fit(X_tr_meta, y_tr)
y_pred = meta_model.predict(X_te_meta)

Each configuration was evaluated using the same metrics recorded in the base model
study: accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. This experiment
was conducted both to assess whether stacking outperforms simpler ensemble
techniques such as hard or soft voting, and to identify the most effective meta-classifier
architecture for use in the subsequent ablation and feature augmentation experiments.

3.3.3 Meta-Model Ablation Studies

An ablation study was conducted to evaluate the contribution of each base classifier to
the overall performance of the stacked ensemble. For this experiment, the
meta-classifier was held fixed while the input feature set, comprising the predicted
scores from the base models, was selectively modified. Specifically, each base model
was removed one at a time from the meta-feature set, and performance was compared
against a baseline configuration in which all base models were included.

Concretely, for a given ablation, only the prediction scores from the remaining base
models (e.g., pred_Model1, pred_Model2, pred_Model3) were passed to the
meta-classifier during training and evaluation. This was implemented as follows:

cols = [f"pred_{m}" for m in BASE_CLASSIFIERS if m != drop]
X_tr = train_df[cols].values
y_tr = train_df["y_true"].values
X_te = test_df[cols].values
y_te = test_df["y_true"].values
meta = META_MODEL
meta.fit(X_tr, y_tr)
y_pred = meta.predict(X_te)

Each configuration was evaluated under both same-day and cross-day protocols,
across all available days. The evaluation included the same set of performance metrics
used throughout the study: accuracy, precision, recall, F1 score, ROC-AUC, and
PR-AUC. This ablation study was designed to determine the individual influence of each
base model on the ensemble’s overall performance, and to assess whether any single
model was particularly redundant or indispensable in the context of stacked learning.

3.3.4 Meta-Feature Addition Experiments

This experiment examined whether augmenting the stacked ensemble with additional
raw features could improve classification performance. Each trial involved adding one of
the 75 available numeric features to the set of meta-inputs (consisting of the base
model prediction scores) and evaluating its effect across each day under both
evaluation protocols.

Implementation details varied slightly by protocol. For the same-day setup, a train-test
split was performed, and the selected raw feature was appended to the meta-feature
matrix using index alignment with the original flow data:

raw_df = pd.read_csv(f"{day}.csv")
X_tr[feat] = raw_df[feat].iloc[train_df.index].values
X_te[feat] = raw_df[feat].iloc[test_df.index].values

For the cross-day setup, a leave-one-day-out protocol was followed. The training
feature values were drawn from all days except the one held out, and the test feature
values were extracted from the current day:

raw_full = pd.concat([pd.read_csv(f"{d}.csv") for d in other_days],
ignore_index=True)
raw_tr = raw_full.reset_index(drop=True)
X_tr[feat] = raw_tr[feat].values

raw_te = pd.read_csv(f"{day}.csv")
X_te[feat] = raw_te[feat].values

Each configuration was evaluated using the same set of metrics as the previous
experiments: accuracy, precision, recall, F1 score, ROC-AUC, and PR-AUC. The goal of
this experiment was to determine whether incorporating individual raw features could
enhance the meta-classifier’s ability to distinguish between benign and malicious flows
beyond what was already captured by the base model outputs.

In summary, the methodology strictly followed the outlined protocols: data selection and
cleaning were handled in prepare_datasets.py, and the experimental studies (base
models, stacking, ablation, and feature-addition) were conducted by their corresponding
Python scripts. The experimental design parameters (splits, downsampling rates, class
weights, model lists, etc.) are explicitly implemented in the code and cited above. All
code snippets shown are taken directly from the implementation to illustrate critical
steps. This ensures that the reported methodology exactly matches the computations
performed in the experiments.

IV. Results

This section reports model performance under the same-day and cross-day protocols,
focusing on metrics including Accuracy, Precision, Recall, F1, ROC-AUC, and PR-AUC.

We first summarize the base models, then evaluate the meta-model, ablations, and
feature additions.

4.1 Base Model Study​
​
Ten classifiers were evaluated as base learners on six distinct feature groups across
both same-day and cross-day protocols. Table 3 summarizes the top 10 model–feature
combinations for each protocol, ranked by F1 score.

Classifier Feature Group Accuracy Precision Recall F1

CatBoost flags_and_protocol 0.9997 1 0.9634 0.979

LightGBM flags_and_protocol 0.9997 0.9985 0.9637 0.9787

DecisionTree flags_and_protocol 0.9997 0.9978 0.9634 0.9782

XGBoost flags_and_protocol 0.9997 0.9967 0.9634 0.9778

RandomForest flags_and_protocol 0.9997 0.9978 0.9621 0.9776

ExtraTrees flags_and_protocol 0.9997 0.9967 0.9612 0.9766

KNN flags_and_protocol 0.9997 0.9987 0.9521 0.9723

ExtraTrees flow_metrics 0.9853 0.9677 0.8277 0.8746

XGBoost flow_metrics 0.9855 0.9821 0.8233 0.8727

LightGBM flow_metrics 0.9857 0.9744 0.8194 0.8679

Table 3.1 Top 10 Base Model Results (Same Day)

Classifier Feature Group Accuracy Precision Recall F1

DecisionTree flags_and_protocol 0.8341 0.6942 0.5543 0.6075

ExtraTrees flags_and_protocol 0.8385 0.6759 0.5626 0.6054

KNN flags_and_protocol 0.8395 0.73 0.5727 0.6024

RandomForest flags_and_protocol 0.8391 0.674 0.5594 0.6007

XGBoost flags_and_protocol 0.841 0.6438 0.5877 0.6004

LightGBM flags_and_protocol 0.8338 0.6445 0.513 0.5631

LightGBM rates_and_ratios 0.928 0.5524 0.5332 0.5132

CatBoost rates_and_ratios 0.9231 0.553 0.5209 0.5088

XGBoost rates_and_ratios 0.9226 0.552 0.5192 0.5071

CatBoost flags_and_protocol 0.8623 0.6569 0.438 0.4949

Table 3.2 Top 10 Base Model Results (Cross Day)

Overall, ensemble tree-based models achieved the highest classification performance.
CatBoost, LightGBM, and XGBoost reached high same-day F1 scores between 0.977
and 0.979 using the Flags and Protocols feature group, outperforming simpler
classifiers such as k-NN (which peaked at 0.972 with the same feature group). In
contrast, cross-day performance declined notably: models like Decision Tree only
reached an F1 score of about 0.607, and CatBoost dropped to 0.494, despite being
trained on the Flags and Protocols feature group. These results indicate that more
complex learners, especially tree-based methods, are better equipped to model network
flow data patterns under same-day evaluation, while their generalization across days
remains more limited.

Another clear trend is the variability of performance across feature groups. Certain
subsets proved far more discriminative than others, as illustrated by Figure 1.

Figure 1.1 F1 Score Per Model Across Feature Groups (Same Day)

Figure 1.2 F1 Score Per Model Across Feature Groups (Cross Day)

Most classifiers (7 out of 10 in the same-day tests and 9 out of 10 in the cross-day tests)
achieved their highest F1 scores using the Flags and Protocols feature group. This
feature group consistently yielded the highest average F1 for a majority of models in
both same-day and cross-day settings. Conversely, groups like Timing_IAT and Packet

Size Stats resulted in noticeably lower performance. Another observation is that overall
F1 scores declined in the cross-day setting due to a temporal distribution shift, as
shown in Figure 2.

Figure 2. F1 Score Degradation between Same-Day and Cross-Day Protocols

The Flags and Protocols and Rates and Ratios groups exhibited the least degradation
in F1 score, demonstrating stronger cross-day generalization compared to more volatile
feature groups such as Packet Size Stats and Connection Activity. Taken together,
these trends highlight that tree-based models such as LightGBM, XGBoost, Random
Forest, and Decision Tree, when trained on stable feature groups like Flags and
Protocols, performed well across both same-day and cross-day settings. Their strong
and reliable F1 scores led to these models being selected as the base learners for
subsequent ensemble experiments.

4.2 Meta Model Study

Using the four top base learners (Decision Tree, Random Forest, XGBoost, LightGBM)
as ensemble constituents, stacking-based meta-models were compared against
traditional voting ensembles. Table 4 summarizes the overall metrics for each
meta-classifier and voting method under both protocols.

Model Name Accuracy Precision Recall F1 ROC
AUC

PR
AUC

KNN 0.9997 0.9997 0.9637 0.9791 0.9819 0.9816

MLP 0.9997 0.9997 0.9637 0.9791 0.9999 0.9837

XGBoost 0.9997 0.9978 0.9634 0.9782 0.9991 0.9832

LinearSVC 0.9997 0.9967 0.9634 0.9778 0.9999 0.9832

LightGBM 0.9997 0.9942 0.9637 0.9771 0.9995 0.9829

CatBoost 0.9997 0.9946 0.9634 0.977 0.9999 0.9831

DecisionTree 0.9997 0.9946 0.9634 0.977 0.9995 0.9811

ExtraTrees 0.9997 0.9946 0.9634 0.977 0.9995 0.9822

RandomForest 0.9997 0.9946 0.9634 0.977 0.9995 0.9828

Soft Voting 0.9994 0.8882 0.9928 0.9075 0.9999 0.9837

Hard Voting 0.9966 0.8606 0.9987 0.8636 0.9978 0.9297

LogisticRegression 0.9996 0.7143 0.7138 0.714 0.9999 0.9837

Table 4.1 Overall Metrics for each meta classifier and voting scheme (Same Day)​

Model Name Accuracy Precision Recall F1 ROC
AUC

PR
AUC

MLP 0.8578 0.8109 0.6101 0.6728 0.7649 0.6941

ExtraTrees 0.8607 0.8375 0.5954 0.6676 0.7576 0.7252

LightGBM 0.8599 0.8379 0.5823 0.6592 0.7855 0.765

LinearSVC 0.8356 0.6936 0.5784 0.6219 0.8256 0.771

LogisticRegression 0.8361 0.6845 0.5854 0.6218 0.8255 0.7297

Soft Voting 0.8362 0.6838 0.5856 0.6215 0.8258 0.7233

RandomForest 0.8392 0.6951 0.5649 0.6147 0.7578 0.7248

CatBoost 0.8341 0.6947 0.5616 0.6129 0.8133 0.762

XGBoost 0.8385 0.695 0.5614 0.6129 0.7931 0.7201

KNN 0.8376 0.6941 0.5524 0.6063 0.7981 0.7674

DecisionTree 0.8386 0.695 0.5499 0.6052 0.7934 0.7347

Hard Voting 0.8497 0.59 0.6303 0.598 0.8087 0.6831

Table 4.2 Overall Metrics for each meta classifier and voting scheme (Cross Day)​

Stacking with a learned meta-classifier yielded superior results compared to direct
voting. The best-performing meta-learner was the Multi-Layer Perceptron (MLP), which
achieved the highest average F1 score across all ensemble methods. Under the
same-day evaluation, the stacked MLP ensemble attained an F1 of 0.9791,
outperforming soft voting (0.9075) and hard voting (0.8636). A similar pattern held in the
cross-day tests: MLP stacking reached an F1 of 0.6728, compared to 0.6215 with soft
voting and 0.5980 with hard voting. This indicates that the meta-classifier effectively
learned how to weight the base model outputs, resulting in an improved balance
between precision and recall. Consistently, MLP stacking also achieved some of the
highest ROC-AUC and PR-AUC values in both protocols (reaching 0.7649 and 0.6941
under cross-day evaluation, and 0.9999 and 0.9837 under same-day evaluation),
exceeding all voting-based alternatives. Overall, stacking improved detection
performance across all metrics, demonstrating a significant advantage over the simpler
ensemble techniques.

Interestingly, not all meta-classifiers in the stacking framework performed equally well.
Figure 3 illustrates the comparative F1 scores of different meta-models versus voting
ensembles under both same-day and cross-day evaluations.

​

Figure 3. F1 Scores of Stacking and Voting Ensembles

While MLP delivered the strongest results overall, several other meta-models (such as
LightGBM and ExtraTrees) also outperformed both hard and soft voting in terms of F1
score across both testing protocols, though by smaller margins. In contrast, simpler
architectures like Logistic Regression tended to underperform, occasionally falling
below even the hard-voting ensemble in the same-day setting. The MLP stack stands
out at the top of both testing protocols, confirming it as the optimal meta-learner in this
study.

These results validate that a learned stacking model (particularly the MLP
meta-classifier) can better exploit the complementary strengths of base classifiers, thus
delivering more robust detection performance than a straightforward majority-voting
ensemble.

4.3 Ablation Study

To assess each base classifier’s contribution to the ensemble, an ablation experiment
was conducted by removing one base model at a time from the stacked MLP ensemble.
Table 5 reports the resulting performance metrics for the full ensemble and each ablated
variant, across both same-day and cross-day protocols.

Removed Model Accuracy Precision Recall F1 ROC
AUC

PR
AUC

None 0.9997 0.9997 0.9637 0.9791 0.9999 0.9837

LightGBM 0.9997 0.9997 0.9637 0.9791 0.9999 0.9837

RandomForest 0.9997 0.9996 0.9637 0.9791 0.9999 0.9834

DecisionTree 0.9997 0.9996 0.9624 0.9784 0.9999 0.9835

XGBoost 0.9997 0.8568 0.8557 0.8562 0.9995 0.9803

Table 5.1 Ablation results (Same Day), sorted by F1 score

Removed Model Accuracy Precision Recall F1 ROC
AUC

PR
AUC

None 0.8578 0.8109 0.6101 0.6728 0.7649 0.6941

XGBoost 0.8605 0.8371 0.5952 0.6675 0.7682 0.7336

LightGBM 0.8572 0.813 0.5965 0.6658 0.82 0.744

DecisionTree 0.853 0.7954 0.5962 0.6633 0.7598 0.693

RandomForest 0.8354 0.6836 0.5848 0.6211 0.8604 0.689

Table 5.2 Ablation results (Cross Day), sorted by F1 score

As expected, the full ensemble (with all four base learners) achieved the highest overall
scores, reaching approximately 0.9791 F1, 0.9999 ROC-AUC, and 0.9837 PR-AUC on
average for the same-day tests, and 0.6728 F1, 0.7649 ROC-AUC, and 0.6941
PR-AUC for the cross-day tests. Removing certain base learners caused clear
performance drops. For instance, dropping XGBoost reduced the same-day F1 to
0.8562. Similarly, removing Random Forest reduced the cross-day F1 to 0.6211. Both of
these removals also caused meaningful declines in AUC scores across the testing
protocols. In contrast, removing LightGBM or Decision Tree led to much smaller
changes. In particular, ablating LightGBM barely impacted the same-day F1 (staying at
0.9791) or the cross-day F1 (from 0.6728 to 0.6658), indicating that it contributed the

least to the ensemble. These results suggest that XGBoost and Random Forest are
central to ensemble performance on both seen and unseen days. These trends are
further illustrated in Figure 4, which visualizes the F1 score drop resulting from the
removal of each base model.

Figure 4. F1 score drop after removing each base model (bar chart)

In the same-day setting (where overall F1 scores were higher), XGBoost emerged as
the key contributor: its removal led to a sharp 12% absolute drop in F1, while other
models had minimal impact. In contrast, under cross-day evaluation, every base learner
played a more pivotal role. Random Forest’s removal resulted in about a 5% drop, and
smaller yet still meaningful degradations followed from removing Decision Tree and
LightGBM. This broader distribution of impact suggests that while same-day
performance was largely carried by a single model, generalization across days required
the combined strength of multiple diverse learners.

Together, these results reinforce the importance of XGBoost for maximizing same-day
performance and highlight the collective value of all four base models, especially
Random Forest, for ensuring robust cross-day generalization.

4.4 Feature Addition Study

Finally, a feature addition experiment was performed to explore whether adding
individual raw features to the meta-classifier, beyond the base model predictions, could
improve ensemble performance. Table 6 presents the top-performing features in this
experiment, ranked by F1 score.

Feature Accuracy Precision Recall F1 ROC
AUC

PR
AUC

ACK Flag Cnt 0.9997 0.9998 0.9635 0.9791 0.9993 0.9828

Fwd PSH Flags 0.9997 1.0 0.9634 0.9791 0.9998 0.9824

CWE Flag Count 0.9997 1.0 0.9634 0.9791 0.9999 0.9836

Down/Up Ratio 0.9997 0.9998 0.9635 0.9791 0.9999 0.9803

ECE Flag Cnt 0.9997 0.9998 0.9635 0.9791 0.9999 0.9824

FIN Flag Cnt 0.9997 1.0 0.9634 0.9791 0.9999 0.9834

Fwd Blk Rate Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836

Fwd Byts/b Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836

Fwd Pkts/b Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836

Bwd Pkts/b Avg 0.9997 1.0 0.9634 0.9791 0.9999 0.9836

Table 6.1 Top feature by F1 Score (Same Day)

Feature Accuracy Precision Recall F1 ROC
AUC

PR
AUC

ECE Flag Cnt 0.8585 0.8123 0.6218 0.6795 0.7401 0.6916

RST Flag Cnt 0.8585 0.8123 0.6218 0.6795 0.7401 0.6915

URG Flag Cnt 0.8584 0.8124 0.6199 0.6787 0.8087 0.7397

ACK Flag Cnt 0.8584 0.8113 0.6199 0.6782 0.7665 0.7005

Tot Bwd Pkts 0.8583 0.8115 0.6193 0.6780 0.7873 0.7069

Subflow Bwd Pkts 0.8583 0.8115 0.6193 0.6780 0.7873 0.7069

Down/Up Ratio 0.8583 0.8115 0.6192 0.6780 0.7805 0.7310

Fwd Pkt Len Std 0.8583 0.8019 0.6196 0.6738 0.9150 0.8080

None 0.8578 0.8109 0.6101 0.6728 0.7649 0.6941

Pkt Len Std 0.8580 0.7950 0.6202 0.6719 0.8279 0.7234

Table 6.2 Top feature by F1 Score (Cross Day)

While most features had minimal or no effect, a few produced small but consistent
gains, particularly in cross-day evaluations. Notably, ACK Flag Cnt maintained the F1
score at 0.9791 in the same-day setting but increased it from 0.6728 to 0.6782 in the
cross-day setting. Similarly, ECE Flag Cnt also maintained the same-day F1 at 0.9791
but increased the cross-day F1 to 0.6795. The Down/Up Ratio feature (from the Rates
and Ratios group) also preserved performance (approximately 0.968 F1 on average in
same-day tests) but raised it to about 0.6780 on average in cross-day tests. Though
these gains were modest (generally under a 1% absolute increase), they were
consistent across protocols, indicating that these features captured insights
complementary to what the base classifiers were already providing. These results
suggest that a small number of raw features, particularly those related to directional flow
behavior and protocol-level flags, may provide additional value when refining ensemble
decisions. To better understand the contribution of each feature, Figure 5 depicts how
the F1 score of the stacked model changes as each of the 75 features is added one at a
time.

Figure 5. Change in stacked model F1 score as individual features are added

While a small number of features near the top clearly provide marginal improvements,
the curve drops off sharply beyond the first ~20 additions, indicating that most features
actually have a negative impact on performance. Rather than plateauing, this decline
suggests that many raw inputs introduce noise or redundancy, ultimately degrading the
predictive power of the ensemble. This observation reinforces the notion that only a
narrow subset of well-aligned features, especially those tied to protocol-level signals or
directional flow dynamics, offer meaningful benefit when augmenting the ensemble.

Together, these findings indicate that while feature augmentation can offer minor
enhancements, the core effectiveness of the stacked model is already captured by the
base classifiers and their selected feature groups.

V. Discussion

The experimental results indicate that flow-based detection using an ensemble is highly
effective on modern benchmark data. The stacking ensemble achieved near-perfect
detection on CIC-IDS2018 in same-day testing (F1 ≈ 0.979) and maintained solid
performance across different days (cross-day F1 ≈ 0.673), outperforming individual
classifiers and traditional voting schemes. This confirms that a learned meta-classifier
can better balance precision and recall than fixed fusion rules, yielding more robust
detection across diverse attack types. Compared to prior works on CIC-IDS2018 and

similar datasets, which report high in-sample accuracy with single models or basic
ensembles, the proposed approach offers improved adaptability. For example, machine
learning models have previously shown strong accuracy on encrypted traffic, but often
without addressing temporal shifts. In our case, the stacking method not only matches
state-of-the-art detection rates reported in literature but also sustains higher
performance compared to individual classifiers when confronted with completely unseen
daily traffic. This suggests the ensemble can generalize better to new conditions, an
important advantage for real-world deployment.

The findings also highlight which components contributed most to success. Tree-based
algorithms (especially XGBoost and Random Forest) were key drivers of ensemble
performance, aligning with other studies that emphasize the strength of gradient
boosting and forests in intrusion detection. The flags & protocol features proved most
discriminative, consistent with reports that metadata like header flags carry significant
attack signatures. Meanwhile, adding raw features to the meta-classifier yielded only
marginal gains; a few features (e.g. ACK flag count, Down/Up ratio) slightly improved
cross-day recall, but most features provided no benefit or introduced noise. This
underscores that the core feature groups were already informative and that the
ensemble was largely capturing the relevant information.

Despite its strong performance, the proposed approach has several practical limitations.
Firstly, the dataset had to be downsampled due to hardware constraints, meaning the
models were trained on only a fraction of available data. While necessary to manage
memory and computation, this downsampling may omit some traffic patterns and limit
the absolute performance. Minimal hyperparameter tuning was performed (using only
small grid searches), so the results might be further improved with more extensive
optimization. Additionally, no deep packet features or advanced feature engineering
beyond basic grouping were applied; the approach relies purely on provided flow
features without normalization, which could affect algorithms sensitive to feature scale.
Another limitation is that the evaluation, although comprehensive on CIC-IDS2018,
reflects one particular environment. The ensemble’s effectiveness against completely
novel (zero-day) attacks was not explicitly tested; like most supervised models, it may
struggle with threats that differ significantly from the training data.

Future Work: Building on this study, several enhancements are planned to address the
above limitations and further improve the system:

●​ Dimensionality Reduction: Apply PCA or other feature engineering techniques to
reduce redundant features and improve model efficiency.

●​ Model Explainability: Integrate SHAP or similar explainable AI methods to

interpret feature importance and explain the ensemble’s decisions for better
transparency.

●​ Handling Imbalance: Use techniques like SMOTE or targeted oversampling to
bolster minority attack classes, complementing the class-weighting approach and
improving recall for rare attacks.

●​ Feature Normalization: Investigate normalizing or scaling flow features, which
may benefit algorithms like k-NN or SVM and lead to more consistent
performance across features.

●​ Cross-Dataset Evaluation: Test the ensemble on new datasets (e.g., other recent
IDS benchmarks) to verify its generalization to different network environments
and attack scenarios.

●​ Zero-Day Detection: Explore hybrid models that combine the ensemble with
anomaly detection or online learning to identify zero-day attacks, ensuring the
IDS remains effective against emerging threats.

These future directions aim to enhance the model’s accuracy, generality, and
interpretability, moving the solution closer to real-world deployment in diverse settings.

IV. Conclusion

This work introduced a privacy-preserving, flow-based intrusion detection solution using
an ensemble of machine learning classifiers in a two-tier stacking architecture. The
proposed system demonstrated improved detection performance over individual models
and traditional voting ensembles on a modern encrypted traffic dataset, achieving high
recall and precision across a broad range of attack types. Key contributions include
establishing baseline performance for various algorithms on encrypted flows,
quantifying base learner importance via ablation, and showing the benefit of trainable
fusion in the ensemble. The practical value of this approach is significant: by inspecting
only flow metadata and not packet payloads, it operates without decrypting traffic,
thereby preserving user privacy and simplifying compliance with data protection
requirements. The results also show that the ensemble can adapt to temporal variations
in network traffic, indicating its suitability for deployment in dynamic real-world networks.

References:

 [1] Kang, M. et al. (2017). Encrypted Traffic Analysis: A New Blind Spot for Intrusion
Detection. Proceedings of the IEEE Conference on Communications and Network
Security (CNS), 415–418.

 [2] Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A.A. (2012). Toward Developing
a Systematic Approach to Generate Benchmark Datasets for Intrusion Detection.
Computers & Security, 31(3), 357–374.

 [3] Ibraheem, H.R., Zaki, N.D., & Al-Mashhadani, M.I. (2022). Anomaly Detection in
Encrypted HTTPS Traffic Using Machine Learning: A Comparative Analysis of Feature
Selection Techniques. Mesopotamian Journal of Computer Science, 2022(1), 18–28.

 [4] Singh, K., Kashyap, A., & Cherukuri, A.K. (2025). Interpretable Anomaly Detection
in Encrypted Traffic Using SHAP with Machine Learning Models. arXiv preprint
arXiv:2505.16261.

 [5] Guo, Y. (2023). A Survey of Machine Learning-Based Zero-Day Attack Detection:
Challenges and Future Directions. Computer Communications, 198, 50–66.

 [6] Emanet, S., Karataş Baydoğan, G., & Demir, O. (2023). An Ensemble Learning
Based IDS Using Voting Rule: VEL-IDS. PeerJ Computer Science, 9:e1553.
https://doi.org/10.7717/peerj-cs.1553

 [7] Sharafaldin, I., Lashkari, A.H., & Ghorbani, A.A. (2018). Toward Generating a New
Intrusion Detection Dataset and Intrusion Traffic Characterization. Proceedings of the
4th International Conference on Information Systems Security and Privacy (ICISSP),
108–116.

https://doi.org/10.7717/peerj-cs.1553

