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Abstract 

This study conducts a comprehensive comparison of traditional machine learning, deep 
learning, and naïve baseline models for daily stock close predictions, using twelve publicly 
traded equities from various sectors within the S&P 500 index, including Tesla ($TSLA), 
JPMorgan Chase ($JPM), NVIDIA ($NVDA), UnitedHealth Group ($UNH), Alphabet ($GOOGL), 
General Electric ($GE), The Coca-Cola Company ($KO), ExxonMobil ($XOM), Duke Energy 
($DUK), American Tower ($AMT), and Linde plc ($LIN) and the SPDR S&P 500 ETF Trust 
($SPY). The SPDR S&P 500 ETF Trust - hereafter referred to by SPY - is used as a highly liquid 
proxy for the S&P 500 index, closely mirroring its price movements. Five models, Linear 
Regression, Lasso Regression, Random Forest, XGBoost and Long Short-Term Memory 
(LSTM) neural networks, are trained on identical historical market data with engineered 
technical features. These are then evaluated against common baselines, including previous 
close, previous open, and midpoint estimators. The predictive accuracy of each model is 
assessed using the average Mean Squared Error (MSE) and directional accuracy of each model 
on all 12 equities, with additional analysis via permutation feature importance to determine key 
drivers of model performance. Results reveal that, despite the complexity of advanced models, 
like the LSTM and XGBoost, simple linear and decision-tree based approaches often outperform 
deep learning in this domain, while all models struggle to consistently surpass basic baselines 
due to the efficient and noisy nature of financial markets. This research highlights the practical 
strengths and limitations of various modeling approaches for financial time series, offering 
guidance for future research and practitioners interested in predictive modeling for asset prices. 

Introduction 

Financial markets are notoriously challenging to forecast or predict, characterized by their 
complex dynamics, inherent noise, and the persistent quest for an elusive predictive edge. In 
such an environment, incremental improvements in predictive accuracy (even as little as 0.01%) 
are considered exceptionally valuable. Over the past decade, the increasing availability of 
high-frequency market data and advancements in machine learning (ML) have sparked a surge 
of interest in using data-driven models to predict asset prices. Despite this progress, the 
fundamental efficiency of financial markets, shaped by rapid information diffusion and the 
behavior of more than 50 million market participants, poses a formidable barrier for predictive 
modeling. 
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Within this landscape, researchers and practitioners have turned to a wide range of various 
modeling techniques, from classical linear regression to sophisticated deep learning 
architectures such as Long Short-Term Memory (LSTM) networks. Meanwhile, traditional 
benchmarks, such as the previous day’s closing price or rolling averages, continue to 
demonstrate remarkable resilience, often proving difficult for even advanced models to 
consistently outperform. The prevailing challenge lies in distinguishing meaningful signal from 
noise, and in evaluating whether increased model complexity truly yields superior predictive 
power in the context of daily stock prices. 

This paper seeks to systematically compare the predictive accuracy of five distinct modeling 
approaches – Linear Regression, Lasso Regression, Random Forest, XGBoost, and LSTM – on 
the task of one-day-ahead close predictions for the 12 stocks. All models are trained and tested 
on identical market data with an enriched set of technical and engineered features, allowing for 
a fair and rigorous assessment of their respective strengths and limitations. By benchmarking 
each model against several naïve baselines, including previous close, previous open and 
midpoint predictors, this research aims to illuminate the real-world value added by machine 
learning in financial forecasting. 

The importance of this research can be articulated in two key aspects. First, it provides empirical 
clarity regarding the practical performance of widely used ML models compared to financial 
heuristics, contributing to a more nuanced understanding of model selection in quantitative 
finance. Second, by evaluating feature importance alongside directional accuracy, the research 
offers insights into the factors that drive predictive success or failure in noisy and adaptive 
market environments. The findings are intended to guide both academic researchers and 
market practitioners in navigating the trade-offs between model sophistication, interpretability, 
and robustness in financial price prediction. 

Literature Review 

Machine learning and deep learning approaches have received significant attention for stock 
price prediction, yet much of the literature reveals both the promise and practical limitations of 
these techniques. This review synthesizes findings from several foundational studies: 

·       Deep Learning with Long Short-Term Memory Networks for Financial Market 
Predictions (Fischer & Krauss, 2018), 

·       Deep Neural Networks, Gradient-Boosted Trees, Random Forests: Statistical Arbitrage 
on the S&P 500 (Krauss et al., 2017), and 

·       The Probability of Backtest Overfitting (Bailey et al., 2015) 
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Fischer & Krauss (2018) apply LSTM networks to daily stock price forecasting, arguing that 
deep sequential models can capture complex temporal dependencies in financial time series. 
They report modest improvements over random guessing and linear models in certain market 
regimes, but the gains are limited and often sensitive to model tuning and sample period. 
Importantly, their study focuses on German equities and does not directly compare LSTM with 
other modern machine learning algorithms, nor does it address challenges of feature 
engineering or baseline selection in detail. Our study builds on Fischer & Krauss by 
benchmarking LSTM directly against a variety of classical and modern ML models, and by 
incorporating a broader set of engineered features and robust baseline comparisons on US 
equities. 

Krauss et al. (2017) conduct one of the largest empirical studies comparing deep neural 
networks, random forests, and gradient boosted machines for statistical arbitrage on the S&P 
500. Their results indicate that tree-based ensemble models such as random forests and 
XGBoost often match or outperform deep neural networks in terms of risk-adjusted returns and 
prediction accuracy, especially on tabular market data. However, their analysis does not 
systematically compare model results to strong naïve baselines (such as previous close or 
open), and the study is conducted primarily on minute-level intraday data rather than daily bars. 
Furthermore, they do not explicitly analyze directional accuracy or feature importance. Our work 
extends their comparative approach to daily price prediction, incorporates permutation feature 
importance, and emphasizes rigorous out-of-sample benchmarking against naïve baselines. 

Bailey et al. (2014) provides a cautionary perspective on financial forecasting, demonstrating 
that many published results in the field can be attributed to backtest overfitting rather than 
genuine predictive skill. They argue that naïve baselines are surprisingly difficult to beat in 
efficient markets (something that our research has proven to support) and they advocate for 
strong statistical controls and robust model validation. While their work is primarily theoretical 
and focuses on statistical methodology, it motivates our own emphasis on comprehensive 
baseline comparisons, careful out-of-sample validation, and transparency in model evaluation. 

Other recent literature highlights the importance of feature engineering in financial machine 
learning. Ghaffari & Rahmani (2020) review common feature selection and extraction methods, 
finding that while technical indicators such as moving averages and ATR can sometimes 
improve predictive performance, their impact is inconsistent and often modest. Moreover, few 
studies systematically assess which features actually matter for different model types, or 
compare feature importance across models. Our research addresses this gap by evaluating 
permutation feature importance for each model and exploring the marginal value of additional 
engineered features. 

Collectively, these works underscore the challenges of applying machine learning to financial 
prediction. While many methods show potential, persistent noise, market efficiency, and 
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overfitting limit the ability of complex models to consistently outperform simple heuristics. This 
paper addresses these open questions by systematically comparing the predictive accuracy and 
feature importance of LSTM, linear regression, lasso regression, random forest, and XGBoost 
models on identical data and robust baselines, using Tesla as a case study. In doing so, we 
provide new insight into the relative strengths and limitations of popular modeling approaches 
for real-world financial time series forecasting. 

Overview of Predictive Models 

Linear Regression 

Linear regression is one of the most fundamental and widely used techniques in statistical 
modeling and machine learning. It assumes a linear relationship between a set of input features 
and the target variable, modeling this relationship by fitting a straight line that attempts to 
minimize the mean squared error between predicted and actual values. Owing to its simplicity 
and interpretability, linear regression serves as a common baseline in predictive modeling tasks, 
including financial time series forecasting. Despite its strengths, linear regression is inherently 
limited to capture only linear dependencies and tends to struggle with multicollinearity or 
exponentiality among features. In the context of financial markets, where relationships between 
variables are often complex and nonlinear, this simplicity can hinder predictive performance. 
Nevertheless, linear regression remains valuable for its transparency, ease of implementation, 
and utility in highlighting fundamental trends within data. 

Lasso Regression 

Lasso regression, or Least Absolute Shrinkage and Selection Operator, is a regularized linear 
modeling technique designed to enhance both predictive accuracy and interpretability. By 
introducing an L1 penalty to term to the loss function, Lasso performs automatic feature 
selection by shrinking some coefficients entirely to zero, effectively excluding less informative 
predictors from the model. This property makes Lasso particularly valuable in high-dimensional 
datasets, where irrelevant or redundant features can degrade model performance. In financial 
time series forecasting, Lasso can help identify which technical indicators and engineered 
features are most relevant for price prediction while mitigating overfitting. However, like standard 
linear regression, Lasso is still limited to modeling linear relationships between features and the 
target. Despite this, its ability to produce sparse, interpretable models makes it a practical and 
insightful choice for financial data analysis. 

Random Forest 

Random Forest is an ensemble learning algorithm that builds a large number of decision trees 
and aggregates their predictions to enhance accuracy and reduce overfitting. Each tree in the 
forest is trained on a random subset of the data and considers a random subset of features at 
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each split, which helps to decorrelate the trees and improve generalization. In financial time 
series forecasting, Random Forest models are capable of capturing complex, nonlinear 
relationships and interactions among features that linear models might miss. They are relatively 
robust to noisy data and can handle a wide variety of feature types without requiring extensive 
preprocessing. However, while Random Forests provide variable importance measures, their 
ensemble nature can make them less interpretable than simple linear models. Overall, Random 
Forest is valued for its flexibility, predictive power, and effectiveness across a broad range of 
data science problems, including financial market prediction. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Example of a Random Forest decision tree (Gunay, 2023) 
 

 
XGBoost 

XGBoost (Extreme Gradient Boosting) is a powerful and highly efficient ensemble learning 
algorithm based on gradient-boosted decision trees. Unlike Random Forest, which builds trees 
independently and averages their outputs, XGBoost constructs trees sequentially, with each 
new tree learning to correct the errors of the previous ensemble. Its use of gradient boosting 
allows for the modeling of complex nonlinear relationships and interactions among features, 
making it exceptionally effective on structured tabular data. XGBoost incorporates advanced 
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regularization techniques, such as L1 and L2 penalties, which help prevent overfitting – a 
common challenge in financial modeling. The algorithm is also optimized for speed and 
scalability, enabling the training of large models on extensive datasets. While XGBoost can be 
less interpretable than simple models, it is widely regarded for its predictive accuracy and is a 
top performer in many data science and machine learning competitions, including applications in 
financial time series prediction. 

LSTM (Long Short-Term Memory Networks) 

Long Short-Term Memory (LSTM) networks are a specialized type of recurrent neural network 
(RNN) designed to capture and learn from sequential dependencies in time series data. Unlike 
traditional feedforward models, LSTMs maintain an internal memory state, allowing them to 
effectively model long-range temporal relationships and mitigate the vanishing gradient problem 
common in standard RNNs. This makes them particularly well-suited for tasks involving financial 
time series, where patterns and dependencies may span multiple days or weeks. LSTMs are 
highly flexible and can approximate complex, nonlinear relationships between past market 
indicators and future price movements. However, they require significant computational 
resources and large amounts of data to train effectively, as they are prone to overfitting when 
data is limited. Despite these challenges, LSTM models remain a popular choice in financial 
forecasting research due to their ability to extract hidden temporal patterns that traditional 
models may overlook. 

 

 

 

 

 

 

 

 

 

Figure 2: Example of a Long Short-Term Memory Network 

(https://stackoverflow.com/questions/52647115/python-implementing-an-lstm-network-with-keras-and-tensorflow) 
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Methodology (Data Collection) 

This study collected historical daily price data for Tesla, JPMorgan, Nvidia, UnitedHealth Group, 
Alphabet, General Electric, Coca Cola, ExxonMobil, Duke Energy, American Tower, Linde, and 
the S&P 500 using the Twele Data API. The dataset includes open, high, low, close, and volume 
(OHLCV) values for each trading day, spanning the period from June 29th, 2010, to June 25th, 
2025. The time frame was selected to encompass both pre-pandemic, pandemic, and 
post-pandemic market conditions, ensuring that the models are evaluated across varying 
regimes of market volatility and investor behavior. 

Supplementary features were engineered based on the raw OHLCV data, including moving 
averages (MA5, MA10), relative strength index (RSI14), returns, rolling volume averages, price 
ranges, retail support and resistance levels, and multiple average true range (ATR) metrics 
(ATR5, ATR14). These features were chosen for their documented relevance in financial 
forecasting literature and their potential to capture underlying patterns in price dynamics. 

All data were cleaned to remove missing values and outliers prior to modeling. Technical 
indicators and lagged features were computed using rolling window operations, with the initial 
rows containing insufficient lookback periods dropped to ensure consistency. The final dataset 
was split into training (80%) and testing (20%) in chronological order to preserve the integrity of 
the time series. 

Methodology (Data Preprocessing) 

All price and volume data were first cleaned by removing missing values and sorting records 
chronologically. Key technical indicators, including moving averages, RSI, ATR (Average True 
Range), and support/resistance key levels, were computed using rolling windows and merged 
into the dataset as additional features. Any rows with insufficient historical data for these rolling 
features were dropped to ensure data consistency. All feature columns were standardized using 
z-score normalization, with scaling parameters fit only on the training data. The resulting dataset 
was then segmented into rolling input windows of 15 trading days; each paired with the next 
day’s price values for supervised learning. The 15-day rolling input window was chosen to 
capture both short- and medium-term patterns in market behavior, balancing responsiveness to 
recent price action with the smoothing benefits of longer-term trends. 

Methodology (Model Construction) 

To assess the predictive power of various machine learning techniques in forecasting next-day 
equity price movements, this study implements five distinct model architectures: Linear 
Regression, Lasso Regression, Random Forest, XGBoost, and Long Short-Term Memory neural 
networks. Each model was constructed using widely adopted Python libraries – skicit-learn for 
linear, lasso, and random forest regressions; XGBoost for gradient boosting; and PyTorch for the 
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LSTM network. The input features for all models were derived from a rolling window of 15 
consecutive trading days, with each sample containing technical indicators such as moving 
averages, RSI, ATR, and lagged price/volume metrics. The models were trained to predict the 
next trading day’s open, high, low, and close prices. An 80/20 chronological split was applied to 
partition the data into training and testing sets, preserving the temporal order of the financial 
time series and preventing lookahead bias. For the LSTM, additional hyperparameters such as 
the number of layers, hidden units, optimizer choice, batch size, and number of epochs were set 
according to best practices for time series forecasting. All models were trained and evaluated on 
the same dataset and feature set, enabling direct, unbiased comparisons of predictive accuracy 
and error metrics. 

Methodology (Training and Validation) 

All predictive models were trained exclusively on the training portion of the dataset, 
corresponding to 80% of the chronologically earliest data, while the remaining 20% served as 
the out-of-sample test set for validation. This split preserved the temporal integrity of the 
financial time series, preventing lookahead bias and simulating a true forecasting scenario. 
Standard scaling was applied to both features and targets, with scalers fit only on the training 
data and then applied to the test set. Hyperparameters for all models were selected based on 
established best practices and limited grid searches to ensure fair and consistent training 
conditions. Model performance was evaluated strictly on the withheld test data to assess 
generalizability and real-world predictive power. 

Methodology (Baseline Models and Evaluation Metrics) 

To contextualize the accuracy of each machine learning model, several baseline approaches 
were employed. These included a naive baseline that simply predicted the previous day’s 
closing price, a midpoint baseline using the average of the prior day’s open and close, and a 
previous open baseline that guessed the next close would equal the prior open. Model 
performance and baseline predictions were evaluated using the average Mean Squared Error 
(MSE) for next-day close price prediction across all 12 stocks, and directional accuracy (the 
fraction of correctly predicted up/down moves) to assess classification-like performance, again 
averaged across the model’s performance on all 12 stocks. This combination of metrics 
provided a robust framework for comparing models and gauging practical forecasting value. 

Methodology (Feature Importance and Visualization) 

To interpret model behavior and identify key predictors, permutation feature importance was 
computed for each model, quantifying the impact of each feature by measuring the increase in 
out-of-sample MSE when its values were randomly shuffled. Bar plots were used to visualize the 
relative importance of each feature, highlighting which technical indicators and engineered 
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variables most influenced model predictions. In addition, line graphs comparing predicted and 
actual close prices for each model were generated, enabling visual inspection of tracking 
accuracy and periods of divergence. These visualizations not only clarified the strengths and 
weaknesses of each approach but also provided insight into the drivers of price movement in 
the dataset. 

Results 

Linear Regression 

The linear regression model achieved an average test MSE of 31.19 across all stocks, 
outperforming the LSTM (1236.76), Random Forest (2785.90) and XGBoost (3018.78) models 
by a massive margin. However, it still underperformed compared to the simple “previous close” 
baseline, which had a lower average MSE of 24.43. Other baselines, such as the previous 
midpoint (27.14) and previous open (36.95), placed linear regression squarely in the middle of 
the pack. In terms of directional accuracy, linear regression averaged 50.16%, trailing the naïve 
baseline that always guessed up, which stood at 52.74%. 

Permutation feature importance analysis highlighted MA5, MA10 and low price as consistently 
valuable predictors, while RSI14 and returns had minimal impact, a trend observed across most 
stocks. Visually, as demonstrated in Figure 4, the linear regression model tracked actual closing 
prices closely, though it often faltered during periods of high volatility or abrupt market shifts.  
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Figure 3: Linear Regression model’s actual vs predicted closing prices 

 

This suggests that while linear regression is adept at capturing broad trends, it lacks the 
flexibility to model non-linear dynamics, a key limitation in financial time series forecasting. 

The plot above visually reinforces the strength of the Linear Regression model. The predicted 
closing prices (orange) extremely closely mirror the actual prices (blue) across the entire time 
series, with minimal deviation even during volatile swings. This consistency suggests that the 
model effectively captured the overall trend and structure of the data, likely due to its heavy 
weighting of features like open, close, and MA10, which reflect short term trends and 
momentum well. While it may still struggle with sharp inflection points, its performance in stable 
and trending periods is impressively accurate. 

Despite its simplicity, linear regression holds up surprisingly well, outperforming all machine 
learning models except Lasso Regression, which was the only model to beat all three naive 
baselines in MSE. 

XGBoost 

The XGBoost model, a powerful gradient-boosted tree algorithm, demonstrated the poorest 
performance out of all five models in this study. It produced an average test MSE of 3018.78, 
significantly higher than Linear Regression (31.19) and Lasso Regression (26.80), and even 
dramatically worse than the naive baselines. The best baseline, predicting the next close as the 
previous close, had a much lower average MSE of 24.43, while the previous midpoint and 
previous open baselines posted 27.14 and 36.95, respectively. This means XGBoost was not 
only outperformed by simpler linear models, but also by extremely basic heuristics. 

In terms of directional accuracy, XGBoost scored an average of 47.81%, below all other models 
and trailing the naive “always up” baseline of 52.74%. This highlights its inability to even beat 
random guessing across most stocks. 

Permutation feature importance across the dataset revealed that features like close, low, and 
open prices were most impactful to the model’s decisions. However, other features such as 
MA10, ATR14, and Volume MA5 frequently had negative or near-zero importance, indicating 
redundancy or possibly noisy signal contributions. This is likely due to overfitting in the presence 
of many correlated inputs, which is a common pitfall of complex ensemble models when applied 
to limited or noisy time series data. 

As illustrated in the plot below, XGBoost’s predicted closing prices tended to lag or underreact 
during periods of high volatility, especially during large price swings. The model smoothed out 
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sharp rallies and sell-offs, making it poorly suited for assets with high volatility or non-stationary 
behavior, a major weakness in financial forecasting tasks where sudden regime changes are 
frequent. 

 

 

 

Figure 4: XGBoost’s actual vs predicted closing prices 

While XGBoost is often a top-tier performer in other domains (e.g., classification, structured data 
competitions), it failed to deliver in this setting due to the sequential, noisy, and nonlinear nature 
of financial time series data. Without added temporal context or engineered lag features, its 
tree-based architecture struggled to adapt. 

Random Forest 

The Random Forest model, an ensemble of decision trees known for its robustness and 
resistance to overfitting, produced mixed results in the context of next-day stock closing price 
prediction. Across all 12 stocks, Random Forest recorded an average MSE of 2785.90, placing 
it as the second worst-performing model after only XGBoost (3018.78), and far behind both 
Lasso and Linear Regression (26.80 and 31.19, respectively). This indicates that despite its 
flexibility and non-linear learning capability, Random Forest struggled significantly in forecasting 
continuous values in the financial domain. 

11 



When compared to the naïve baselines – Prev. Close (24.43), Prev. Midpoint (27.14), and Prev. 
Open (36.95) – Random Forest underperformed them all by a large margin. This highlights that 
the model, despite its complexity, failed to outperform even the most basic heuristics that simply 
reused the previous day’s data. 

In terms of directional accuracy, Random Forest achieved an average of 48.21% across all 12 
stocks, which also fell short of the baseline directional accuracy of 52.74%. It slightly edged out 
XGBoost and LSTM but still failed to break the 50% mark, showing its weakness in capturing 
short-term directional shifts in stock prices. 

Permutation feature importance analysis indicated that Random Forest heavily prioritized close 
price, which was consistently the most influential feature across most stocks. However, features 
such as MA10, Support and Returns were frequently ranked lowest, often contributing negative 
or negligible influence. This may indicate high redundancy or ineffective signal contribution in a 
model already prone to averaging effects across its ensemble structure. 

The visualized predictions below further support this performance profile. The orange predicted 
line frequently lags the actual closing price (blue), particularly during sharp upward movements 
and spikes, such as the surge around sample 600. This lag and smoothing effect are typical of 
Random Forests, which due to their reliance on averaging multiple trees, tend to dampen high 
volatility and fail to capture abrupt regime shifts. In trending or sideways markets, the model 
performs relatively well, but its underreaction to price spikes underscores a fundamental 
limitation in time-sensitive financial forecasting tasks. 

 

Figure 5: RandomForest’s actual vs predicted closing prices 
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Overall, while Random Forest offers strong performance in many static classification or 
regression tasks, it is poorly suited for this financial time series context without significant 
feature engineering or temporal modeling enhancements. Its inability to adapt to rapid market 
shifts, combined with its bloated average MSE, makes it an inefficient choice for stock price 
prediction in its default form. 

Long Short-Term Memory Network 

The LSTM (Long Short-Term Memory) model, often considered a go-to architecture for time 
series prediction, delivered disappointing results in the context of next-day closing price 
forecasting. Across all 12 stocks, LSTM produced an average MSE of 1236.76, which was 
directly in the middle of the pack, worse than the regression models but better than the 
ensemble models. Lasso Regression (26.80) and Linear Regression (31.19) were not only more 
accurate, but also far simpler. LSTM’s performance trailed behind every naive baseline tested, 
including Prev. Close (24.43), Prev. Midpoint (27.14) and Prev. Open (36.95). 

 In terms of directional accuracy, the LSTM model averaged 47.92%, which is below the naïve 
directional baseline of 52.74% that simply always predicts upward movement. This further 
shows that the model lacked the sensitivity required to capture short-term market direction or 
momentum, despite its design being tailored to sequence learning. 

One possible explanation for this performance gap is the lack of explicit temporal feature 
engineering. While LSTM is theoretically capable of learning dependencies across time, it 
struggles when the time series lacks clear structure or when the data is noisy, which is often the 
case in financial markets. Without lagged features, seasonality indicators, or volume-based 
volatility adjustments, the model fails to leverage its full capabilities and ends up overfitting to 
noise. 

Feature sensitivity analysis showed that LSTM most often prioritized close price, last close and 
open, while consistently deprioritizing ATR14 and volume. This pattern suggests that the model 
leaned heavily on recent price action rather than exploiting broader technical indicators. 
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Figure 6: LSTM’s actual vs predicted closing prices 

The prediction chart in the plot above visually confirms this weakness. The orange predicted line 
trails behind the actual close prices in several regions, especially during sharp directional shifts 
or trend reversals. While LSTM occasionally tracks the overall trend, it frequently lags and 
smooths out volatility, showing a delayed response to sudden spikes or dips. This behavior is 
common in RNNs that are not fine-tuned for market regimes or volatility structures. 

Overall, while LSTM is powerful in theory and widely used in time series domains like weather, 
speech, and demand forecasting, it underperformed drastically in this stock market forecasting 
setting. Without more advanced temporal features, regularization techniques, or hybrid 
architectures, LSTM’s deep complexity only served to amplify error and reduce reliability. 

Lasso Regression 

The Lasso Regression model emerged as the most effective performer in this study. With an 
average MSE of 26.80, it was the only model to consistently beat all three naïve baselines: Prev. 
Close (24.43), Prev. Midpoint (27.14) and Prev. Open (36.95). While its margin over the best 
baseline was narrow, Lasso’s success lies in combining simplicity with strong generalization, 
outperforming far more complex models like LSTM (1236.76), XGBoost (3018.78), and Random 
Forest (2785.90). 

In terms of directional accuracy, Lasso achieved an average of 48.05%, slightly better than 
LSTM and XGBoost but still below the naïve “always up” baseline of 52.74%. Although it didn’t 
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dominate in directional calls, Lasso’s ability to minimize squared error gives it a clear edge in 
price prediction accuracy. 

What sets Lasso apart is its built-in feature selection ability through L1 regularization. Across the 
12 stocks, Lasso consistently assigned high weights to the close price, while eliminating many 
redundant or noisy indicators by assigning them zero weights. Commonly zeroed-out features 
included Volume, RSI14, ATR14, and returns, which suggests that these metrics offered little 
marginal value once price-based features were accounted for. This lean feature set likely 
contributed to the model’s strong bias-variance tradeoff and lower overfitting. 

 

Figure 7: Lasso Regression model’s actual vs predicted closing prices 

The plot above confirms this performance visually. The predicted close price (orange) tightly 
tracks the actual price (blue) throughout the entire sample. Even during more volatile periods, 
the model maintains close alignment with the real price, demonstrating its ability to generalize 
across varying market conditions. Unlike other models that smooth or lag, Lasso stays 
responsive and accurate. 

Lasso’s overall performance highlights a critical insight for financial forecasting: simpler models 
can outperform complex ones when noise dominates signal. In this context, the penalty for 
overfitting worked in Lasso’s favor, helping it outperform models that were more prone to 
memorizing irrelevant patterns. While it may not capture sudden directional shifts perfectly, its 
consistency in tracking real prices makes it a highly practical choice for daily close prediction. 
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Comparative Model Performance and Feature Importance 

A comprehensive evaluation of both mean squared error (MSE) and directional accuracy across 
twelve diverse stocks reveals significant differences in model performance. As shown in Figure 
8, Lasso Regression achieved the lowest average MSE of 26.80, outperforming all other 
machine learning models and even the naive baselines of previous open (36.95) and previous 
midpoint (27.14). The only baseline that narrowly outperformed Lasso was the previous close, 
with an average MSE of 24.43. Despite this small gap, Lasso was the only model to consistently 
beat all three baselines, solidifying it as the most accurate and generalizable model in the study. 

 

  LSTM Lasso 
Reg 

Linear 
Reg 

Random 
Forest 

XGBoost 

JPM 997.30 9.77 8.91 1617.18 1725.81 

SPY 2154.77 36.84 35.40 6509.84 6821.08 

NVDA 3474.20 7.02 7.8067 3741.28 3782.6631 

UNH 2760.20 101.20 124.97 9825.60 11041.92 

GOOGL 240.46 8.93 8.76 866.20 927.60 

GE 28.81 6.80 6.53 77.33 84.50 

KO 7.69 0.50 0.46 30.43 33.00 

XOM 104.92 2.98 3.22 68.06 85.69 

DUK 3.45 1.62 1.68 41.30 49.24 

AMT 36.45 15.66 17.75 33.26 54.97 

LIN 4788.92 30.49 26.66 10341.45 11247.86 

TSLA 244.08 99.78 132.15 278.95 371.12 

Average 
MSE 

1236.76 26.80 31.19 2785.90 3018.78 
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Figure 8: Comparison of average Mean Squared Error (MSE) of each model across all 12 
stocks 

Linear Regression followed closely with an average MSE of 31.19, demonstrating that even 
simple models can be effective in financial forecasting. In stark contrast, more complex methods 
like XGBoost (3018.78), Random Forest (2785.90), and LSTM (1236.76) performed 
substantially worse. These models, while theoretically capable of modeling nonlinearities and 
sequential dependencies, struggled to generalize due to high feature correlation, limited sample 
size, and the inherently noisy nature of stock price movements. 

A closer look at individual stock-level MSEs reveals further insights. As seen in Figure 8, stocks 
like KO (The Coca-Cola Company) had extremely low MSEs across all models. For instance, 
Lasso and Linear Regression achieved MSEs of 0.50 and 0.46 respectively. This is likely 
because KO exhibits low volatility, relatively stable price action, and smooth trends, making it 
easier to model with linear methods. On the other hand, stocks such as UNH (UnitedHealth 
Group) and LIN (Linde plc) posted exceptionally high MSEs for all models, particularly for 
Random Forest and XGBoost which exceeded 10,000. These large-cap stocks tend to have 
frequent sharp movements, irregular jumps, or volatile earnings swings, which traditional 
regression models and even tree-based models struggle to predict without lagged or 
event-driven features. This stock-level heterogeneity underscores the need to tailor models to 
the volatility and structure of the underlying asset.  

 

  LSTM Lasso 
Reg. 

Linear 
Reg. 

Rando
m 
Forest 

XGBoost Baseline 
Model 

Average 
Directional 
Accuracy 

47.92% 48.05% 50.61% 48.21% 47.81% 52.74% 

Figure 9: Comparison of average directional accuracy across all 5 models 

Directional accuracy, or the ability to predict whether the next day’s closing price would increase 
or decrease, tells a more nuanced story. As illustrated in Figure 2, none of the models exceeded 
the naïve directional baseline of 52.74%, which simply assumes the stock will always go up. The 
highest accuracy among models came from Linear Regression at 50.61%, followed by Random 
Forest (48.21%), Lasso Regression (48.05%), LSTM (47.92%) and XGBoost (27.81%). These 
results highlight a core challenge of financial prediction: minimizing prediction error is not the 
same as correctly guessing direction. Linear and Lasso models achieved strong MSEs by 
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tracking overall trends, but lacked the sensitivity to catch short-term directional shifts. 
Meanwhile, deep models like LSTM, despite being designed for sequence learning, failed to 
extract meaningful temporal dynamics and underperformed both in accuracy and MSE. 

The clear success of Lasso Regression lies in its ability to eliminate irrelevant features through 
L1 regularization. Across all stocks, Lasso frequently zeroed out noisy or redundant indicators 
such as RSI14, returns, and volume-based metrics, while emphasizing reliable predictors like 
close price, MA5, and low. This led to simpler, more interpretable models with stronger 
out-of-sample performance. Linear Regression benefited from many of the same features but 
lacked regularization, making it slightly more vulnerable to overfitting. In contrast, XGBoost and 
Random Forest showed inconsistent feature importance rankings and often overemphasized 
weak features like ATR14 or support, likely due to their greedy splitting mechanisms and 
sensitivity to correlated data. 

LSTM, often seen as a powerful sequence model, fell short in this context. Without the addition 
of time-delayed lags, trend indicators, or seasonal encodings, the model failed to learn 
meaningful patterns and instead produced smoothed predictions that lagged behind real price 
movement. This resulted in poor MSE scores and uninspiring directional accuracy. 

Overall, these results demonstrate that model complexity does not guarantee better 
performance in financial forecasting. In fact, the most consistent performers were simpler, 
regularized linear models that relied on a narrow set of strong, price-based features. When 
signal is weak and noise dominates, as is common in equity markets, models that penalize 
overfitting and focus on trend-following characteristics prove far more robust. This study 
reinforces the notion that recent price behavior, short-term averages, and minimalistic design 
often yield the most reliable forecasts in a volatile and stochastic environment like the stock 
market. 

Conclusion 

This study set out to evaluate the predictability of next-day equity closing prices using five 
distinct modeling approaches: Linear Regression, Lasso Regression, Random Forest, XGBoost, 
and Long Short-Term Memory (LSTM) neural networks. By applying each model to a consistent 
feature set across 12 diverse publicly traded stocks, this research aimed to determine whether 
complex machine learning architectures provide a meaningful advantage over simpler, 
regularized models and naive baselines in short-term forecasting. 

The results strongly favored Lasso Regression, which achieved the lowest average mean 
squared error (MSE) of 26.80, beating all other models and every naive baseline except the 
previous close (24.43). Linear Regression also performed well with an average MSE of 31.19, 
while Random Forest (2785.90), XGBoost (3018.78), and LSTM (1236.76) delivered 
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significantly worse results. Despite their complexity, these models failed to generalize effectively, 
particularly on stocks with higher volatility or irregular movement. 

Directional accuracy metrics, shown in Figure 2, revealed that none of the models outperformed 
the naive “always-up” strategy (52.74%). The highest model accuracy came from Linear 
Regression at 50.61%, with others hovering around 48%. This highlights a key distinction 
between minimizing prediction error and accurately forecasting price direction, a task made 
challenging by the noisy, mean-reverting nature of daily market movements. 

Feature importance analysis explained these differences. The best-performing models focused 
on a minimal set of price-driven features, especially close price, MA5, and low, while filtering out 
indicators like RSI14, returns, and volume averages. Complex models failed to leverage their 
theoretical advantages due to overfitting and a lack of meaningful signal in the added features. 

These findings reaffirm a critical insight in financial machine learning: model complexity does not 
guarantee better predictive power. In fact, when forecasting noisy financial time series with 
conventional technical features, simpler and regularized models like Lasso can outperform 
advanced architectures in both accuracy and consistency. This supports the idea that 
parsimony, interpretability, and proper regularization often offer greater practical value than brute 
complexity in noisy real-world data. 

That said, limitations remain. The study focused exclusively on daily bars, technical features, 
and a fixed univariate target (next-day closing price). It did not account for trading frictions, 
market microstructure, or multi-step forecasting. Model tuning was intentionally minimal to focus 
on architectural differences rather than hyperparameter optimization. 

Future research could extend this framework by incorporating alternative data types (e.g., 
macroeconomic indicators, sentiment, or order flow), experimenting with more sophisticated 
temporal encoding or ensembling techniques, and applying the methodology to other asset 
classes or intraday intervals. Evaluating models across distinct market regimes and 
incorporating risk-adjusted or probabilistic metrics would also add depth and practical value. 

In conclusion, this study provides strong evidence that in the context of short-term stock price 
forecasting, simplicity and robustness often outperform complexity and scale. For practitioners 
and researchers alike, the results serve as a reminder that the right model is not always the 
most powerful one, but the most appropriate for the signal available. 

 

Code Availability 

The code produced by the author in this study is available here (https://tinyurl.com/yup267rk). 
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https://github.com/samyakjayanth/Financial-Market-ML-Prediction
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