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ABSTRACT

Each year, nearly 20 million people are diagnosed with a form of cancer, and this number is expected to
significantly increase. Despite hundreds of years of research on various cancers, the causes and genetic
influences behind them are still not fully understood and current treatment options are, at times,
unsuccessful. The recent development of artificial intelligence (Al) and machine learning (ML) tools has
the potential to accelerate knowledge of and advancements in cancer screening, diagnostics, and
treatment. Al can be incorporated into complex sequencing data sets and clinical imaging to allow for
earlier detection of cancer. Similarly, by applying these tools to clinical data, Al and ML can drastically
improve diagnostics, allowing for more accuracy in identifying cancer types. Additionally, Al and ML
can greatly improve patients’ prognoses by utilizing deep learning to predict patient response to different
treatments. In this review, I will discuss the integration of Al and ML technologies into cancer screening,
diagnostics, and therapeutic approaches to enhance precision medicine and treatment outcomes for cancer
patients.

INTRODUCTION

Cancer is one of the leading causes of death worldwide with nearly 20 million new cases arising each year
(National Cancer Institute, 2025). In the United States alone, approximately 2 million people were
diagnosed with a type of cancer in 2024 (Collins, 2024). Of these, 600,000 are anticipated to die from the
cancer itself or related complications. Despite billions of dollars in funding, progress in developing new
ways to combat cancer has been slow. The lack of significant advancements underscores the need for new
approaches and perspectives in cancer research. Traditional approaches, including surgery, chemotherapy,
and radiation therapy, are often non-specific and maladapted to the high degree of variability observed
amongst cancers. More effective, precise, and personalized approaches could lead to better patient
outcomes and decreased rates of death.

Artificial intelligence (Al) and Machine Learning (ML) have emerged as powerful tools in healthcare,
offering the potential to process and analyze massive volumes of data generated through clinical care,
research studies, and patient monitoring. Al refers to the general ability of computer systems to mimic
human intelligence, such as performing complex tasks, reasoning, pattern recognition, and
decision-making (Columbia Engineering, 2025). ML, which is a subset of Al, involves the use of
algorithms that learn insights and recognize patterns from data in order to maximize the performance of
tasks. The use of ML allows machines to be trained to autonomously learn from past data with the goal of
delivering accurate results. While ML relies on statistical models and has a more limited scope of
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applications, both Al and ML offer powerful benefits of integrating heterogeneous data and informing
decision-making.

In healthcare, they are used to analyze complex information, such as genomic data and electronic health
records (EHRs); identify patterns; and support faster, more accurate diagnoses and treatments. Al and ML
have the potential to revolutionize cancer care by uncovering previously unknown oncogenes and
tailoring care to individuals depending on their cancer profiles, a strategy known as precision oncology.
This could significantly improve diagnostic accuracy and reduce mortality. As Al and ML continue to
expand and improve, it is critical to assess their impact on cancer care. In this review, I will examine the
role of Al and ML in precision oncology, focusing specifically on their ability to improve cancer
detection, diagnostic accuracy, and personalized treatment strategies.

MAIN TEXT
Revolutionizing Cancer Screening with Al and ML Technologies

Early cancer detection can improve survival rates, but traditional screening methods often miss subtle
signs. Advanced tools such as Al and ML can enhance accuracy and efficiency of detecting these signs.
Many new sequencing techniques, such as ARTEMIS and EPIC-seq, are being developed that allow for
better detection of cancer DNA and the integration of Al and ML technologies.

DNA Analysis Techniques

ARTEMIS, which stands for Analysis of RepeaT EleMents in dISease, analyzes the parts of DNA that
were once thought to have no function. These regions of non-coding DNA have been discovered to have
specific functions and play a role in tumor cells. Parts of non-coding DNA have repetitive sequences,
known as repeat elements, located throughout the genome, which have been found to be altered in
cancerous tissue. ARTEMIS was designed to specifically identify these repeat elements, in addition to
circulating cell-free DNA (cfDNA) - fragments of DNA shed from tumors that float in the bloodstream -
in order to find tumor-specific changes in cancer patients (Annapragada et al., 2024). The ARTEMIS ML
model was used to analyze over 1,200 types of repeat elements comprising nearly half of the entire human
genome. It identified a large number of repeats that were altered in tumor formation (Johns Hopkins
Medicine, 2024). When tested on patients with various cancers, ARTEMIS, when combined with another
DNA fragment assay, was able to predict patients’ tumor types with 75-85% accuracy. This technology
allows researchers to analyze the entire genomes of patients in a fast and efficient manner, allowing for a
noninvasive method to detect cancer.

Another sequencing method called epigenetic expression inference from cell-free DNA-sequencing
(EPIC-seq) was developed to detect cfDNA in the bloodstream. Similar to ARTEMIS, EPIC-seq aims to
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be a noninvasive method for cancer detection. Its ability to classify different tumor subtypes from just
blood samples shows EPIC-seq’s ability as a powerful tool in early, non-invasive cancer screening. This
tool can be used to analyze biological markers faster, and more precisely, than traditional methods.
EPIC-seq relies on sequencing the promoter regions of genes of interest of the cfDNA to predict
differential gene expression in tumors (Esfahani et al., 2022). The sequencing results are then combined
with machine learning to predict RNA expression and identify the tumor subtype. This method
demonstrated high performance within cancer detection and tumor classification, with area under the
curve (AUC) values above 0.9 for multiple cancer types. While EPIC-seq utilizes cell-free DNA, other Al
models use other biological markers to detect tumors.

Epigenetic Targeting

DNA methylation represents a promising biomarker for revolutionizing cancer screening through Al and
ML technologies, as tumors exhibit distinct methylation patterns that can be detected using computational
approaches. While traditional methylation analysis has shown promise - such as a cervical cancer study
that identified three methylation markers (GHSR, SST, and ZIC1) with ROC curve values between 0.86
and 0.89 for detecting precancerous lesions (Verlaat et al., 2017) - the integration of artificial intelligence
has dramatically enhanced detection capabilities. A study demonstrated this potential by applying
different Al algorithms, including support vector machines and deep learning, to DNA methylation
patterns in circulating cell-free DNA from lung cancer patients (Bahado-Singh et al., 2022). These
Al-driven approaches achieved exceptional performance with area under the curve (AUC) values of 1.00
and 100% sensitivity and specificity, representing a significant advancement over traditional screening
methods. This integration of Al with epigenetic biomarkers exemplifies how machine learning
technologies are transforming cancer screening by enabling highly accurate and minimally invasive
detection methods that could revolutionize early cancer diagnosis.

Based on recent comprehensive research by Dr. Hajjar and colleagues, artificial intelligence and machine
learning technologies are fundamentally revolutionizing cancer screening through multi-cancer early
detection (MCED) tests that overcome traditional diagnostic limitations (Hajjar et al., 2024). These
Al-augmented liquid biopsy platforms leverage sophisticated algorithms - including ensemble methods
and deep learning - to analyze complex biomarker signatures from blood and urine samples, enabling
simultaneous detection of multiple cancer types from a single test. Machine learning approaches have
demonstrated remarkable performance with sensitivity ranges of 84-100% for early-stage cancers and
specificity rates exceeding 98%, while Al-driven methylation pattern analysis has achieved clinical
validation through FDA-approved tests like Galleri. Notably, multi-modal approaches integrating diverse
biomarker types, such as the combination of protein markers with circulating tumor DNA and
epidemiological data, have yielded superior diagnostic accuracy compared to single-biomarker strategies.
This transformation from invasive, single-cancer screening to minimally invasive, Al-powered
multi-cancer detection represents a paradigm shift toward precision oncology, offering the potential to
dramatically improve early detection rates and save lives through quick intervention.
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The integration of artificial intelligence and machine learning technologies has transformed cancer
screening methodologies, offering unprecedented capabilities in early detection through advanced
genomic analysis. Al algorithms excel at processing the massive datasets generated by next-generation
sequencing, enabling more accurate and efficient identification of cancer-causing variants through
improved variant-calling techniques such as DeepVariant, which outperforms standard tools in detecting
significant genetic alterations (Lin et al., 2022).

Revolutionary screening approaches now leverage liquid biopsy technology, where Al facilitates the
analysis of circulating tumor cells, extracellular vesicles, and tumor-derived cell-free DNA (cfDNA)
found in blood and other bodily fluids, providing a less invasive alternative to traditional tissue sampling
(Ginghina et al., 2022). Multi-cancer early detection (MCED) tests utilize Al to analyze methylation
patterns indicative of cancer in cfDNA from asymptomatic populations, with machine learning algorithms
processing the vast amounts of data to enable timely analysis and intervention (O'Connor & McVeigh,
2025). Advanced Al models like AlphaMissense can predict the pathogenicity of all possible missense
variants in the human genome at a single amino acid substitution level, allowing clinicians to identify and
screen for clinically relevant pathogenic variants with unprecedented precision (Cheng et al., 2023).
Computer vision applications further enhance screening capabilities by analyzing histopathological and
radiological images to predict genetic mutations within tumors, as demonstrated by models that can
determine EGFR mutation status in non-small-cell lung cancer from CT and PET scan images (Popat et
al., 2025). These Al-driven screening innovations collectively enable earlier cancer detection, more
comprehensive genomic profiling, and the potential for population-wide screening programs that could
greatly improve patient outcomes through timely intervention.

Al and ML-Powered Advances in Cancer Diagnostics

Al and ML are transforming diagnostics by making detection faster, more accurate, and more
personalized. These technologies can analyze vast amounts of complex data, including medical scans,
genetic profiles, and pathology slides, to uncover patterns that may be difficult for human experts to
detect. Recent advances have demonstrated how Al can improve diagnostic precision, classify cancer
subtypes more effectively, and predict treatment outcomes. As these tools continue to evolve, growing
attention is being placed on how Al and ML models, such as Explainable Al, can help patients receive
more efficient diagnoses.

The Use of Explainable Al
Explainable AI (XAI) helps patients receive faster diagnoses by making complex machine learning

predictions more transparent and actionable for clinicians. A comparison of multiple XAl platforms used
on breast cancer datasets revealed one superior Al model, SHapley Additive exPlanations (SHAP), that
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was able to clearly present model outputs in simpler terms for clinicians to understand (Ghasemi et al.,
2024). By showing how specific features, such as biomarkers or clinical variables, contribute to a
diagnosis, SHAP allows healthcare providers to interpret Al-generated results while also having a clearer
understanding of the process that the Al model used to generate those outputs. This interpretability builds
trust in the model’s findings, enabling doctors to make faster and more confident decisions. As a result,
patients can move more quickly from initial screening to diagnosis and treatment, reducing delays that
could potentially worsen patients’ outcomes. In time-sensitive conditions like breast cancer, this
acceleration in the diagnosis process can make a critical difference in prognosis, highlighting how XAI
not only improves model transparency but also has a direct impact on patient care. In addition to faster
diagnoses, Al is also being used to anticipate complications during treatment, helping to predict negative
side effects that can result from these life-saving therapies.

Targeting Specific Cancer Types

Al is also being used to support treatment continuity by predicting and preventing complications that
might otherwise delay or interrupt therapy. In a phase 3 randomized controlled trial, researchers evaluated
the use of romiplostim (ROMI), a thrombopoietin receptor agonist, to address chemotherapy-induced
thrombocytopenia (CIT) in patients with gastrointestinal cancers. CIT is a common and serious side effect
of chemotherapy that can lead to dose reductions, delays, or even discontinuation of treatment, potentially
compromising patient outcomes. The study found that patients receiving ROMI were significantly more
likely to avoid CIT-related chemotherapy modifications compared to those receiving placebo - 84%
versus 36%, respectively (Al-Samkari, 2025). This kind of clinical challenge is increasingly being
addressed with Al models that can anticipate risks, like CIT, based on patient data. When integrated into
care, such predictive tools can help providers make early decisions, such as adjusting therapy or
preemptively introducing supportive treatments like ROMI, to keep patients on track. This demonstrates
the growing role of Al in optimizing treatment strategies, a trend also reflected in recent breakthroughs in
personalizing therapies for many other cancer types.

Recent advances show that Al can also play a critical role in identifying which patients are most likely to
benefit from specific cancer therapies, helping to personalize treatment while avoiding unnecessary side
effects. In a large international study, researchers developed an Al tool that analyzes tumor biopsy images
to predict which patients will respond best to abiraterone - a widely used drug for treating prostate cancer.
Although abiraterone has already improved survival for many with advanced disease, it also comes with
risks such as high blood pressure, liver abnormalities, and increased chances of heart problems (Gregory,
2025). The Al test identifies a subgroup of patients - about 25% - who are most likely to benefit from
treatment, with data showing the drug cut their five-year mortality risk nearly in half (Gregory, 2025).
Meanwhile, for patients unlikely to benefit, the tool helps avoid overtreatment by showing that standard
therapies alone are sufficient. This approach reflects a broader shift toward Al-powered precision
medicine, where treatment decisions are guided not just by clinical guidelines but by individualized
predictions derived from routinely collected data. By enabling clinicians to match therapies more



Q Research Archive of

Rising Scholars (preprint) Where bright minds share their learnings

effectively to each patient's specific disease profile, Al helps improve outcomes, reduce toxicity, and
make better use of healthcare resources.

Pancreatic cancer - particularly pancreatic ductal adenocarcinoma (PDAC) - remains one of the most
aggressive and lethal forms of cancer, with a five-year survival rate of just 13% (American Cancer
Society, 2025). Diagnosis is especially difficult due to vague early symptoms and a lack of reliable
screening methods, resulting in 80-90% of patients being diagnosed at an advanced stage when curative
treatment is no longer an option. Although CT imaging is the most commonly used modality for initial
evaluation and offers a sensitivity of 70-90%, its diagnostic effectiveness is limited without advanced
analytical support (Chen et al., 2016). To address these challenges, one study presents a deep
learning-based diagnostic system that integrates Convolutional Neural Networks (CNN) with a
YOLO-based CNN architecture (YCNN) to enhance early detection of PDAC (Dinesh et al., 2023). By
analyzing CT scans and identifying cancerous features using pixel-level classification, the system
demonstrated superior performance, achieving F1-scores of 0.99 and 1.00 in detecting and grading
pancreatic cancer. The model processes images by dividing them into 224x224 pixel patches, classifying
them, and then reconstructing the complete image for review by pathologists, offering both precision and
interpretability. The use of platforms like PyCharm and Google Colab streamlines development and
accessibility, and the authors propose future enhancements including data augmentation, expanded
datasets, and synthetic image generation guided by specialists. Ultimately, this Al-powered system holds
promise as a practical diagnostic aid, capable of providing consistent second opinions through a
user-friendly web interface and improving the early detection and classification of pancreatic cancer.

The Use of Omics Data

Machine learning is now underpinning major advances in cancer diagnostics by enabling integration of
heterogeneous omics data - genomic, transcriptomic, proteomic, and more - into unified analytical
frameworks. According to Dr. Cai and colleagues, these approaches are generally grouped into
general-purpose methods, which combine dimensionality reduction with downstream modeling, and
task-specific models, which are end-to-end tools tailored to particular applications (Cai et al., 2022).
Central to this integration is the strategy known as middle integration, which avoids naive feature
concatenation while consolidating signals across omics layers through machine learning, mitigating the
curse of dimensionality common in multi-omics datasets. The review also benchmarks five tools,
including DIABLO, MOFAZ2, iClusterPlus/Bayes, and moCluster, used on data from the Cancer Cell Line
Encyclopedia, evaluating for their accuracy in cancer type classification and drug response prediction, as
well as runtime performance. Notably, DIABLO, a supervised method that leverages label information,
like tissue type, achieved the highest cancer-type prediction accuracy (78.7%), underscoring how
integrative ML models can more precisely classify tumor subtypes compared to conventional
unsupervised approaches (Cai et al., 2022). These developments illustrate how Al-driven integration of
multi-omics datasets delivers richer molecular diagnostics, enabling identification of distinct cancer
subtypes, more accurate treatment stratification, and ultimately a path toward truly personalized oncology.
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Al and ML Applications in Tailored Cancer Therapies

Artificial intelligence and machine learning are playing an increasingly important role in developing and
refining cancer treatment strategies. By processing large-scale data from clinical records, genetic
information, and histopathological images, AI/ML models can identify complex patterns that predict how
individual patients will respond to specific therapies. This allows for more personalized and effective
treatment plans, going beyond generalized protocols. From enhancing chemotherapy response predictions
to identifying biomarkers for immunotherapy, Al and ML are accelerating the shift toward precision
oncology.

Predicting Patient Response to Treatment

One example of this progress is a new Al tool that predicts which cancer patients are most likely to
benefit from immune checkpoint inhibitors, which are a type of immunotherapy drug, using only
routinely collected clinical data (Chang et al., 2024). These therapies help the immune system recognize
and attack cancer cells, but their effectiveness varies widely between individuals. Existing tests to predict
treatment response are often expensive or unreliable. To address this, the team created a ML-based
scoring system called LORIS (LOgistic Regression-based Immunotherapy-response Score), which uses
six routinely collected clinical features: tumor mutational burden, patient age, cancer type, history of prior
therapies, blood albumin levels, and blood NLR (a measure of inflammation). After evaluating data from
over 2,800 patients with 18 different cancer types, LORIS outperformed existing models in predicting
both short- and long-term outcomes. Its simplicity and accessibility make it a promising tool for guiding
personalized treatment decisions in everyday clinical practice. Beyond tools like LORIS, broader
applications of Al are also advancing immunotherapy by identifying predictive biomarkers and new
therapeutic targets.

A similar machine learning system has been built by Dr. Chowell’s team out of the Icahn School of
Medicine at Mount Sinai called SCORPIO (Standard Clinical and labOratory featuRes for
Prognostication of Immunotherapy Outcomes). SCORPIO predicts how well cancer patients will respond
to immune checkpoint inhibitors using only basic, routinely collected clinical data, such as blood counts
and metabolic profiles (Yoo et al., 2025). Unlike traditional biomarkers such as evaluating tumor
mutational burden and PD-L1 expression - which are expensive, time-consuming, and not widely
available methods - SCORPIO uses accessible data and outperforms these methods in predicting patient
response. Validated on nearly 10,000 patients across 21 cancer types, SCORPIO represents a scalable and
cost-effective tool that could expand access to precision oncology, especially in limited-resource
conditions. Additionally, SCORPIO has the capability to accurately predict survival rates of patients over
the course of 2.5 years, with performance rates of about 75%. Researchers emphasize its potential to
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reduce unnecessary treatments, improve outcomes, and promote equitable cancer care by making
personalized treatment decisions possible in daily clinical practice.

Artificial intelligence and machine learning are changing how we approach personalized cancer treatment
by making it possible to tailor therapies with incredible precision. In cancer treatment, especially
chemotherapy, Al helps analyze how medications interact with individual patients, making sure
treatments are given effectively while predicting how well patients will tolerate and respond to them
(Abdul Rasool Hassan et al., 2025). These Al tools excel at processing huge amounts of patient
information — including genetic profiles, biomarker levels, and medical histories — to figure out the best
treatment combinations and predict how each person will respond. Machine learning can spot complex
patterns in tumors and patient biology that doctors are rarely able to catch on their own, leading to better
drug options, optimized doses, and precise timing of treatments. Additionally, Al systems are
continuously learning from treatment results across thousands of patients, allowing them to improve
prediction accuracy, find alternative ways to target cancers, and assist with overcoming drug resistance.
This smart approach to cancer care represents a major shift away from the old "same treatment for
everyone" model to truly personalized medicine, where treatment decisions are made by sophisticated
algorithms that consider both the unique fingerprint of each person's cancer and their individual medical
background.

Al is also being used to support treatment continuity by predicting and preventing complications that
might otherwise delay or interrupt therapy. In a phase 3 randomized controlled trial, researchers evaluated
the use of romiplostim (ROMI), a thrombopoietin receptor agonist, to address chemotherapy-induced
thrombocytopenia (CIT) in patients with gastrointestinal cancers. CIT is a common and serious side effect
of chemotherapy that can lead to dose reductions, delays, or even discontinuation of treatment, potentially
compromising patient outcomes. The study found that patients receiving ROMI were significantly more
likely to avoid CIT-related chemotherapy modifications compared to those receiving placebo - 84%
versus 36%, respectively (Al-Samkari, 2025). This kind of clinical challenge is increasingly being
addressed with Al models that can anticipate risks, like CIT, based on patient data. When integrated into
care, such predictive tools can help providers make early decisions, such as adjusting therapy or
preemptively introducing supportive treatments like ROMI, to keep patients on track. This demonstrates
the growing role of Al in optimizing treatment strategies, a trend also reflected in recent breakthroughs in
personalizing therapies for many other cancer types.

The Use of Deep Learning

A novel deep learning (DL) model demonstrates how artificial intelligence can significantly enhance
treatment prediction for patients with metastatic clear cell renal cell carcinoma (ccRCC), the most
common and lethal form of kidney cancer. ccRCC is typically treated with anti-angiogenic (AA)
therapies, which aim to block the formation of new blood vessels feeding the tumor. However, due to
substantial variability in tumor vascular architecture and gene expression, identifying which patients will
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benefit from AA therapy has remained a major clinical challenge. Traditional approaches, such as
RNA-based tools like the Angioscore, provide some predictive power but are expensive, time-consuming,
and sensitive to tumor sampling variability. To overcome these limitations, researchers developed the
H&E DL Angioscore using a convolutional neural network trained on routine hematoxylin and eosin
(H&E)-stained pathology slides (Jasti et al., 2025). This AI model automatically quantifies angiogenesis
and generates a continuous score that predicts patient response to AA therapies. In both real-world and
clinical trial cohorts - including the IMmotion150 trial - the model performed comparably to the RNA
Angioscore (c-index 0.66 vs. 0.67) and outperformed conventional vascular biomarkers like CD31
immunohistochemistry (Jasti et al., 2025). Beyond its predictive accuracy, the model produces visually
interpretable vascular heatmaps that highlight intra-tumoral variation, making its output more clinically
transparent and trustworthy. By enabling fast, scalable, and cost-effective assessment of tumor
angiogenesis, the H&E DL Angioscore represents a powerful step forward in personalizing treatment for
renal cancer patients and optimizing the use of AA therapies in clinical practice.

Traditional cancer treatment strategies, such as those based on maximum tolerated dose (MTD), often fail
in the metastatic setting due to rapid emergence of drug resistance. To address this limitation, researchers
developed a deep reinforcement learning (DRL) framework designed to optimize adaptive therapy (AT),
an approach that delays resistance by maintaining a population of drug-sensitive cancer cells to suppress
resistant ones (Gallagher et al., 2024). Using a virtual cohort of prostate cancer patients, the study trained
DRL agents on tumor dynamics simulated by mechanistic mathematical models. These agents learned
personalized treatment schedules that significantly outperformed both MTD and commonly used AT
strategies, including outperforming AT50 in delaying disease progression. Notably, the DRL policies
required only a single input — the tumor burden threshold — and were interpretable, allowing clinicians to
understand and trust the model’s decisions. Even when trained without full knowledge of the tumor
model, the DRL framework achieved robust and clinically relevant outcomes, highlighting its flexibility.
To support clinical translation, the authors proposed a five-step pathway emphasizing mechanistic
modeling, DRL training, and clinical interpretability. This work shows how Al-guided strategies can
transform cancer care by adapting therapy to the evolving dynamics of each individual patient’s disease.
Together with earlier advances in drug response prediction and treatment stratification, these innovations
demonstrate that Al is reshaping cancer therapy into a more dynamic, data-driven process. As machine
learning models grow more interpretable and clinically validated, they are poised to become essential
tools in designing effective, patient-specific treatment plans.

CONCLUSION

The growing integration of Al and ML into cancer research and care is reshaping how clinicians detect,
diagnose, and treat malignancies. In screening, these technologies have advanced the analysis of genomic,
epigenetic, and molecular data, enabling earlier identification of cancer-related patterns that may be
missed by traditional approaches. In diagnostics, Al has improved the accuracy of classification,
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integrated diverse biological datasets, and provided explainable outputs that enhance trust in clinical
settings. In treatment, AI models, including deep learning, have optimized therapy schedules, predicted
patient-specific drug responses, and tailored interventions to tumor dynamics. Together, these
developments mark a decisive move toward precision oncology, where care is increasingly proactive,
data-driven, and individualized.

The advantages of Al and ML in oncology are substantial. They allow rapid processing of
high-dimensional data, reveal patterns invisible to human interpretation, and offer the potential for more
accurate and timely decision-making. Personalized approaches informed by Al can reduce overtreatment,
improve survival outcomes, and enhance quality of life. However, limitations remain. Many Al models
are developed on controlled datasets that may not reflect the complexity of real-world patient populations.
Data privacy concerns, potential biases in training datasets, and limited interpretability in some algorithms
can hinder clinical adoption. Additionally, the need for large, high-quality annotated datasets presents
logistical and ethical challenges that must be addressed.

To make these technologies mainstream, several steps are essential. Rigorous clinical validation across
diverse populations is needed to confirm the reliability and generalizability of Al models.
Interdisciplinary collaboration between clinicians, data scientists, and regulatory bodies will be important
to ensure that algorithms meet both performance and ethical standards. Efforts to improve model
transparency and interpretability will foster clinician and patient trust. Integrating Al tools into existing
healthcare infrastructure, supported by data governance frameworks, will further smooth the transition
from research to clinical practice. As these requirements are met, Al and ML have the potential to become
indispensable components of oncology, delivering real benefits to cancer patients worldwide.
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