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Abstract  

This study investigates the effect of polygenic risk scores and other variables on 
underwriting decisions in life insurance using machine learning. Using simulated 
data of 10,000 individuals, we developed logistic regression and random forest 
models to analyze the impact of each variable. Traditional variables and their 
limitations were described in order to contextualize the original methods for life 
insurance underwriting. Other genetic methods and their limitations excluding 
polygenic risk scores were outlined with the intention of comparing an emerging 
concept with various traditional genetic analytical methods. Data was generated 
and processed using machine learning techniques to ensure reasonable results. 
However, our multicollinearity analysis revealed important limitations: the synthetic 
PRS showed multicollinearity with other variables (VIF > 10) and correlations with 
family history variables that were artifacts of the data generation process. These 
analyses demonstrated that polygenic risk scores have a significant effect on life 
insurance underwriting decisions by enhancing the accuracy of the risk-prediction 
models. Feature importance charts showed that the more accurate model (the 
random forest, as confirmed by comparison tables) gave greater weight to variables 
related to polygenic risk scores and their interactions. However, the model also 
considered several traditional variables with substantial weight, including premium 
cost, underlying condition, age, and health risk score. This research offers a 
valuable perspective into the relationship between polygenic risk score and 
individual characteristics, highlighting the value of integrating genetic variables with 
traditional variables, while acknowledging the challenges of implementing synthetic 
PRS. These findings provide evidence supporting the potential application of 
polygenic risk scores in risk-prediction models, though real-world implementation 
would require addressing the methodological limitations identified. By increasing 
the accuracy of risk-prediction models, current conflicts such as adverse selection 
and information asymmetry could potentially be resolved with the addition of certain 
policies and proper implementation of true genetic risk scores.  
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I. Introduction  

When calculating the amount of premium that an insured will need to pay, insurance 
companies can have a challenging time accurately allocating an equitable amount. This is due 
to the variety of factors that can contribute to an estimate of an individual’s risk. In order to 
address this problem, several more complex genetic factors, beyond basic demographic 
factors, have been incorporated into life insurance underwriting decisions. Nonetheless, it 
remains unclear how reliable or important these new factors truly are. We hypothesize that 
integrating these new factors with traditional ones will significantly improve the accuracy of risk 
assessment.  

Formerly, life insurance companies solely considered demographic factors when making 
under writing decisions. Although these factors are indispensable, in isolation, they overlook 
several other critical factors that can drastically change the probability of insureds receiving 
coverage. Moreover, the implementation of these critical factors, including health and lifestyle, 
is a crucial milestone in life insurance underwriting decisions. By incorporating these factors, 
they are able to take a further stride towards equitable premium pricing.  

Advancements in technology in the 21st century allows for the consideration of further 
complex factors, the most significant of which includes genomics. In underwriting, genomics 
involves insurers using individuals’ genetic data to estimate disease risk. It further enhances 
the ability for insurance companies to assess risk with complex analysis.  

However, there are several different methods to gather genetic information. Considering 
that genetic testing creates a variety of complex results, insurance companies must have the 
capability to organize the information presented from the genetic tests into an underwriting 
decision variable. This process is achievable by either analyzing mutations, monogenic 
variants, or epigenetic changes.  

In addition to analyzing single-gene mutations, polygenic risk scores provide a numerical 
estimate of an individual’s genetic predisposition of a disease. Contrary to other methods, 
polygenic risk scores are calculated by accumulating the effects of many genetic variants, 
each of which contributes a small amount to overall risk. It is important to note that true PRS 
represents relative risk compared to population distributions, not absolute risk, and requires 
integration of thousands to millions of genetic variants from genome-wide association studies 
(GWAS). This study uses a synthetic approximation that may not fully capture this complexity. 
By considering genetic variants of varying effect sizes, polygenic risk scores help insurance 
companies set fairer premiums.  

Nevertheless, there are negative consequences associated with implementing innovative 
technology. The implementation of genetic testing and other health or lifestyle technology 
allows for access to individuals’ private information that may prefer to be kept confidential. In 
addition, genetic discrimination could potentially occur as insurers can deny insurance to 
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higher-risk individuals, known as adverse selection. Whether or not insurance companies are 
able to access this information, information asymmetry, or when one party has more 
information than the other, is bound to occur. Insurance claim denials have arisen in the past 
due to insurance companies having a high volume of information, leaving high-risk individuals 
to carry the entire burden of the cost of mortality (Low et al. 1632–1635). As long as both 
parties have the same amount of information, polygenic risk scores provide a more accurate 
representation of risk, and in that manner, they help reduce adverse selection by enabling 
fairer and more accurate pricing. While it is not perfect, it helps reduce the risk of financial loss 
for both insurers and policyholders.  

In this study, we aim to analyze several individualistic factors and their polygenic risk score 
to determine their effect on the insured’s premium price, and the insurer’s decision on whether 
to provide insurance by utilizing life insurance underwriting variables with realistic distributions 
to demonstrate the magnitude of impact each variable had. Our study will generate visual 
representations to present insurance companies decisions, substantiated by variable 
importance. The factors that will be considered include polygenic risk scores, age, gender, 
race, underlying conditions, region, income, father’s health history, mother’s health history, 
lifestyle, occupation, insurance type, smoking status, drinking status, and dietary choices. By 
analyzing each model generated, we seek to understand the correlation between key 
underwriting variables and insurers’ coverage decisions, while evaluating the added predictive 
value of polygenic risk scores.  

The paper is organized as follows: Section 2 describes the literature review. Section 3 
presents the data. Section 4 outlines the methodologies. Section 5 discusses the implication 
of the results. Section 6 highlights the conclusions that can be drawn from the results.  

 
II. Literature Review  

2.1 Traditional Variables of Life Insurance  

Traditional variables of life insurance often include demographic factors, such as age, sex, and 
occupation. The absence of technology limited the amount of information that an insurance 
company could access. Consequently, standardized premium rates were used to minimize 
potential cost variability. In addition to demographics, health, lifestyle, behavioral, and 
socioeconomic factors were incorporated into underwriting decisions, enabling insurance 
companies to create differentiated premium price levels. While these variables have 
augmented success, they fail to incorporate several other complex factors associated with 
risk.  

2.2 Limitations of Variables  
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2.2.1 Limited Scope  

Traditional underwriting methods focused on relatively few variables due to inadequate 
technology. Significant factors in assessing an individual’s risk, such as susceptibility of 
developing a disease, are disregarded. As a result, there is less statistical data available to be 
assessed, therefore increasing the probability of misrepresenting an individual’s authentic 
level of risk.  

2.2.2 Static Nature  

As measuring changes in individuals’ characteristics was particularly demanding before 
technological evolution, traditional variables are susceptible to functioning as exclusively fixed 
factors. By relying only on fixed factors, premium pricing remains constant while an insured’s 
level of risk fluctuates. Consequently, either insurers or insureds bear a greater burden than 
the other.  

2.2.3 Bias Potential  

Because traditional variables are largely demographic and static, they may introduce bias or 
lead to discriminatory outcomes. For example, gender, race, and income are all generalized 
variables that can classify an individual in a pool with higher or lower risk. By only 
incorporating these determinants, insurance companies are compelled to infer assumptions 
regarding an individual, further misrepresenting an individual’s level of risk.  

2.3 Different Methodologies Concerning Genetic Testing  

As technological advances were made, complex variables, including parent health status and 
genomic analysis, were implemented to further enhance accurate premium pricing. Due to an 
influx of information, insurers were capable of providing flexible premiums.  

Although genomic analysis can be interpreted in several ways, it was more prevalent to 
identify mutations or severe genomic irregularities to examine the most probable diseases 
likely to develop. These methods include risk stratification, predictive modeling, comparative 
analysis, and genetic risk profiling. While these methods accurately account for single-gene 
assessments, they do not consider the thousands of other genetic variants that may contribute 
to disease.  

2.4 Limiting Factors  
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2.4.1 Inconsistent Method Of Collection  

Because genetic testing is relatively new, a common standardized procedure for collecting 
genetic data has not been established. Therefore, insurance companies possess different 
methods of obtaining data. These differentiated processes include divergent technologies, 
sampling protocols, and documentation practices, which can affect the genetic results. As a 
result, the inconsistencies allocate various levels of risk to the same individual causing 
premium price levels to fluctuate.  

2.4.2 Interpretation Challenges  

Analyzing genetic data is severely complex as there are thousands of genetic variants that 
can potentially facilitate the development of a disease. The impact that each genetic variant 
has on potential diseases in the future is difficult to determine for this reason. As a result of 
this lack of knowledge, insurance companies are unable to accurately assess an individual’s 
genome and associate it with an equitable premium price.  

 
2.4.3 Non-Genetic Compatibility  

While genetic data is quantitative, it is challenging to incorporate it with qualitative variables 
such as lifestyle, socioeconomic, and behavioral factors. Moreover, genetic data acquired by 
single-gene analysis is complex to quantitatively define, prohibiting the integration of genetic 
information with non-genetic variables. For this reason, when creating predictive models it is 
cumbersome to incorporate a genetic variable with other factors due to them being different 
data types and methods of measurement. Such incompatibility obstructs risk from being 
further defined, limiting the proper distribution of premium pricing.  

2.4.4 Additional Considerations for PRS Implementation  

Real polygenic risk scores face additional challenges including ethnic portability (as most are 
trained on European populations), the assumption of additive genetic architecture (ignoring 
epis tasis), and the handling of pleiotropy where single SNPs affect multiple traits. These 
factors must be considered in real-world implementations.  

2.5 Previous Studies  

There have been several studies published outlining the benefit of including genetic testing 
variables into life insurance underwriting decisions. For example, (Lewis et al.) investigated 
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data from the UK Bio-bank in order to research mortality and morbidity outcomes using 
genetic risk factors. They concluded that genetic predisposition significantly contributes to risk 
prediction for several different diseases, including cardiovascular disease, stroke, cancer, or 
diabetes.  

Moreover, (Born) explores the effectiveness of traditional underwriting variables and finds 
that they are insufficient without the addition of genetic testing, while proposing a regulatory 
approach to accessing genetic information.  

As polygenic risk scores are an emerging, unaccredited methodology, many studies have 
hypothesized the effect that these risk scores have in relation to underwriting decisions. For 
example, (Karlsson Linnér and Koellinger) demonstrates that polygenic risk scores add 
enhanced predictive power when integrated with traditional factors, as shown by the different 
life-span results when utilizing polygenic risk scores.  

Additionally, (Maxwell et al. 488–503) examined the potential of polygenic risk scores in 
predicting common diseases, concluding that polygenic risk scores provide additional risk 
information, and emphasizing the need for insurers to incorporate genetic data in their risk 
assessments.  

Polygenic risk scores have been found to enhance the accuracy and fairness of risk 
prediction compared to traditional underwriting variables, as shown by (Lund and Russell 
1–7); however, they serve as complementary additions rather than complete replacements.  

2.6 Limitations Towards Studies  

While there is an extensive amount of data to support that polygenic risk scores are beneficial 
to insurance companies, their imperfect clinical utility and ethical implications substantiate the 
need to investigate further. Many of the polygenic risk score models do not include diverse 
base genetic information, limiting the application of this technology to certain groups. In 
addition, the accuracy of polygenic risk scores has not been determined as it is a highly 
complex, emerging technology. Continued research is essential to measure the precise 
accuracy, and to ensure it is morally acceptable.  

III. Data  

Genetic information is generally difficult to achieve as it provides very sensitive information, 
such as previous medical diseases, their lifestyle, or unfavorable habits. Because of this, the 
data that will be provided is simulated, meaning that these individuals are hypothetical. 
However, these individuals are coded to be realistic so that the data remains useful. It should 
be noted that the synthetic PRS in this study is a simplified representation and may not 
capture all complexities of true genetic risk scores.  
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The manner in which the statistical data was simulated was that 10,000 individuals were 
created, each of them having a unique combination of a set of variables that would 
differentiate them from others. The machine learning code used to generate the data and 
models can be accessed via the following link: https://colab.research.google.com. The 
variables studied in this analysis have been compiled and are presented (Table 2).  

3.1 Multicollinearity Analysis  

To address potential concerns about variable relationships, we conducted a multicollinearity 
analysis. The results revealed some important considerations:  

 

The analysis shows that interaction terms involving PRS exhibit high VIF values, which is 
expected for interaction terms. The synthetic nature of the data generation process created 
some artificial correlations, particularly between PRS and family history variables (r = 0.13, p < 
0.0001). These correlations are artifacts of the simulation and should be considered when 
interpreting results. In real implementations, PRS would be independently derived from 
genetic data. 
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Numerical probabilities were assigned based on the several options provided per variable 
with realistic distributions reflecting an average population. On the contrary, to record income, 
a lognormal distribution was utilized in order to model real-world income distribution. 
Correlations between variables were introduced to identify relevant relationships to further 
model accuracy. After individuals’ polygenic risk scores were calculated based on their 
generated characteristics, a reasonable premium cost was assigned, reflecting a binary 
decision of either acceptance or denial in relation to an insurance company’s decision. The 
premium cost was realistically simulated by multiplying a base premium of $500 by several 
risk factors reflecting age, genetic risk, lifestyle, health conditions, and family history, as well 
as some random noise to mimic real-world variability.  

The insurance decision distributions of the 10,000 individuals, along with key metrics, are 
presented to highlight the vital variables investigated in this study. For each key metric, the  
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10 
mean, median, minimum, and maximum values are reported for acceptance and denial, 
providing information on the relative amounts associated with each decision (Table 3).  

Table 3: Summary statistics of premium cost, polygenic risk score, and age by insurance 
decision.  

 

In order to improve the performance of the machine learning model, variables were binned, 
or categorized into discrete ranges to create a simplified set of input options. For example, 
when grouping age ranges, there is no significant difference between 31-45 years of age with 
regard to risk. Therefore, they are categorized together to make the data more concise. 
Binning helps reduce excess variability, making complex data more predictable and easier to 
interpret.  

In addition, one-hot coding was integrated in order to establish numerical values for all 
variables. While certain variables such as lifestyle, drinking, and smoking can be quantified by 
a risk score, variables such as an individual’s parents health status and an underlying 
condition are unable to be given a precise score as they are not as measurable. By encoding 
these unquantifiable values as 1 (present) or 0 (absent), they can be included in the machine 
learning model and integrated into the study.  

IV. Methods  

Several methodologies were implemented to analyze the effect of individuals’ characteristics 
and polygenic risk scores on life insurance underwriting decisions.  
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4.1 Data Splitting and Target Variable  

The target variable selected for modeling is the insurance decision, a binary outcome. This is 
attributable to the fact that insurance decisions can yield solely two results: accepted or 
denied. The insurance decision is represented by the variable y, while the 
features—underwriting variables—are represented by x, allowing for the formulation of a 
predictive relationship between the two.  

Moreover, to prevent overfitting, the characteristic of machine learning models to memorize 
training data rather than generalize underlying patterns, and to obtain an unbiased result, the 
data set was partitioned into training and testing subsets using an 80/20 split, accordingly. This 
ratio allows for a perfect balance to enable development of the machine learning model while 
evaluating model performance on unseen data. As supported by extensive empirical evidence, 
the 80/20 split is a well-established strategy in predictive modeling. The manner in which the 
data is split is by stratified sampling, a process to ensure specific strata, or data sets, are 
represented proportionally by dividing the population into groups based on a particular 
characteristic, therefore maintaining the original distribution while reducing variances.  

4.2 Model Development and Training  

Two supervised learning models were developed and trained. These models include a logistic 
regression model and a random forest model, each displaying disparate advantages. In 
addition, each model includes a feature importance model, displaying the degree of influence 
attributed to each variable. However, the development of the models possess identical factors, 
including 54 engineered features used as inputs. Specifically, different varieties of 
demographic, clinical, and genomic variables were assessed.  

4.2.1 Logistic Regression Model  

A logistic regression model is advantageous for many reasons. Known for its simplicity and 
interpretability, it can highlight underlying patterns with ease. It is generally utilized when the 
target variable is binary and the relationship is linear.  

In this study, a logistic regression model is integrated in order to capture the binary results 
of insurance decisions. In addition, the model was configured to handle large scale datasets 
through multinomial setting and saga solver, an optimization algorithm suited for large, sparse 
datasets due to its efficiency and support for regularization (Chen, Xu, and Liu 1928). To 
prevent overfitting by developing stronger regularization, a c value of 0.5 is allocated. To 
eliminate the issue of class imbalance, the weight of each variable was designated as 
equivalent.  
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4.2.2 Random Forest Model  

A random forest is a machine learning technique that builds multiple decision trees and 
combines their outputs, offering unique advantages. These include a higher accuracy 
compared to other models, reduced overfitting, and accurate handling of missing values by 
considering multiple decision trees. It is generally utilized when addressing complex factors 
that are non-linear.  

In this study, a random forest model was integrated in order to capture non-linear 
correlations. The model implemented several hyperparameters, including 100 estimators, or 
core decision trees providing diverse combinations of variables, to enhance the models 
accuracy and robustness. To prevent overfitting, a maximum depth of 15 layers per tree was 
implemented. In pursuit of the same goal, the minimum number of samples required to be at a 
leaf node, or end of a branch is at least 20. In addition, a minimum of 50 samples per leaf 
node was set to improve model generalization. The square root parameter limits the number 
of features considered at each split to the square root of the total features, promoting model 
diversity by using feature subsets rather than all features.  

4.3 Evaluation Metrics  

We used several metrics to assess the performance of each of the ML models used. Cross 
validation accuracy helps assess a model’s reliability and generalization to unseen data. For 
all equations referenced below, the abbreviations TP indicates true positive results, TN 
indicates true negative results, FP indicates false positive results, and FN indicates false 
negative results. These arise from the errors generated by the models.  

Accuracy represents the proportion of correct predictions over total predictions. The 
formula to calculate accuracy is depicted below.  

 

Precision demonstrates the amount of positive results that were correct of all predicted 
positives. A high precision indicates a slight amount of false positive results. It is generally 
utilized when false positives have serious consequences, and to accumulate more confidence 
in the amount of true positive results. The formula to calculate precision is displayed.  
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Similarly, recall indicates the amount of all actual positive cases. Recall is integrated in 
order to ensure that there is a maximum amount of actual positive cases detected rather than 
false negatives. A higher recall demonstrates fewer false negatives. The formula to calculate 
recall is depicted.  

 

 

Due to inaccuracies and probability of deceptiveness, F1 score is integrated as a key 
metric by balancing precision and recall. It is beneficial when addressing unbalanced data 
sets. The formula to calculate F1 score is shown below.  

 

In addition, the ROC AUC curve is used to assess the model’s ability to distinguish 
between positive and negative outcomes. ROC AUC is implemented when addressing binary 
decisions. An ROC AUC of above 0.8 or 80% is considered excellent. The formula is 
displayed below. The N+ and N- represent the number of actual positive and actual negative 
cases, and the summations are displayed to find the area under the curve. Furthermore, the si 

and sj variables are part of an indicator function utilized for counting how many times a positive 
instance is ranked above a  
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In order to provide not only a per-class view, several alternate calculation methods were 
incorporated to convey the overall synthesized results collected from both accepted and 
denied insurance decisions.  

Macro Average simply calculates the average between the binary per-class metrics by 
considering all classes equal. Consequently, bias towards common classes is omitted, 
creating a more balanced and comprehensive view of the model’s effectiveness. The formula 
for calculating macro average is exhibited. N is the number of classes, and Miis a metric value 
of either precision, recall, or F1 Score.  

 

Similarly to macro average, weighted average calculates the average between the binary 
per class metrics. Nevertheless, weighted average factors in support, or the number of actual 
instances, in order to weigh classes by different means. By weighing classes it provides a 
more realistic overall performance. The formula is demonstrated below.  

 
 

V. Results and Discussions  

In this section, we present our results on the analysis of the machine learning model using 
logistic regression and random forest models. In addition, the confusion matrices constructed 
from each model are analyzed, as well as each of their feature relevance.  

 
5.1 Model Performance  

The predictive performance of the models was assessed using various evaluation metrics to 
understand their relative strengths and weaknesses. This comparison provides insight into 
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how well each model distinguishes between accepted and denied cases (Table 4).  

Table 4: Comparison of Logistic Regression and Random Forest model performance.  

Metric  Logistic Regression  Random Forest 

Cross-Validation Accuracy  
Accuracy  
F1 Score  
ROC AUC  

0.7301 (±0.0070)  
0.7380  
0.6048  
0.8109  

0.9748 
(±0.0027) 

0.9800  
0.9617  
0.9982 

Classification Report (Class: Accepted) 
Precision  
Recall  
F1-Score  
Support  

0.91  
0.72  
0.80  
1493  

1.00  
0.98  
0.99  
1493 

Classification Report (Class: Denied) 
Precision  
Recall  
F1-Score  
Support  

0.49  
0.79  
0.60  
507  

0.93  
0.99  
0.96  
507 

Overall Metrics  
Accuracy  
Macro Average F1  
Weighted Average F1  

0.74  
0.70  
0.75  

0.98  
0.97  
0.98 

 
 
5.1.1 Summary Level Metrics  

While the logistic regression model includes cross validation accuracy, accuracy, F1 score, 
and ROC AUC of all below 0.82, the random forest model includes all of these metrics above 
0.96. This demonstrates that the random forest model is significantly more effective at 
distinguishing between accepted and denied cases due to its higher complexity in analyzing 
data patterns. However, the exceptional performance should be interpreted with caution given 
the multicollinearity identified in our analysis.  

 
5.1.2 Classification Reports  
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In addition, when analyzing precision, recall, and F1 score for both accepted and denied 
cases, the random forest model significantly outperforms the logistic regression model. 
Whereas the random forest model had a collective of above a 0.93, with also having a perfect 
precision for the accepted decision of 1.0, the logistic regression model had a collective of 
below 0.81 with the exception of the precision for the accepted decision (0.91). Both models 
were more accurate in regards to accepted decisions rather than denial decisions, although 
the random forest model is significantly more proficient in distinguishing between false 
positives and false negatives.  

5.1.3 Overall Metrics  

When comparing the means of the accepted and denied classification metrics using accuracy, 
macro average, and weighted average, it can be determined further that the random forest 
model is superior compared to the logistic regression model. For example, the overall metrics 
of the logistic regression were all under 0.76, while the overall metrics of the random forest 
model is more than 0.96. This discrepancy indicates the random forest model’s superiority in 
constructing reliable predictions without bias by accounting for class distribution.  

In every aspect the random forest model demonstrated enhanced predictive performance 
compared to the logistic regression model. While both models possess their own advantages, 
in this study the superior model for accuracy and classification is the random forest model 
due to its ability to analyze complex data with non-linear relationships. The multicollinearity 
analysis suggests that some of this performance gain may be due to the model exploiting 
correlations in the synthetic data.  

5.2 Confusion Matrices  

The confusion matrices displaying the results of insurance decisions generated by the logistic 
regression and random forest models are presented (Figure 1).  
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Figure 1: Confusion matrices for the classification models. These heatmap-style 
matrices display the counts of true positives, true negatives, false positives, and false 
negatives for each model, helping to visualize their performance in correctly classifying 
accepted and denied cases, as well as the types of prediction errors made.  
 

As shown in the matrices, the horizontal portion of the graph indicates the predicted 
accepted or denied cases, while the vertical portion predicts the actual accepted or denied 
cases. A heat map is included in order to easily identify which predictions compared to actual 
results occurred the most. The matrices highlight the four possible classification outcomes: 
true positive, true negative, false positive, false negative.  

While both confusion matrices performed adequately, the random forest model was more 
accurate in its predictions. For true positive and true negative cases, the random forest model 
produced 1,458 and 502 instances, respectively, whereas the logistic regression model 
produced 1,075 and 401 instances. This demonstrates the random forest model’s superiority 
in accuracy as it identified more correct decisions than did the logistic regression model. For 
false positive and false negative cases, the random forest model yielded 5 and 35 instances, 
respectively, while the logistic regression model yielded 106 and 418 instances. This exhibits 
the dominance of the random forest model as it identified fewer incorrect decisions.  
 
5.3 Feature Importance  

The feature importance charts for the random forest and logistic regression models are 
displayed and were evaluated to identify the underwriting variables most influential in 
predicting outcomes (Figure 2).  
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Figure 2: Feature importance by model. This figure illustrates the contribution of each 
variable to the models’ prediction results, highlighting the most influential features that impact 
insurance decisions. Understanding these key drivers helps interpret how the models 
evaluate risk. Note that the high importance of interaction terms may be influenced by the 
multicollinearity identified in the data.  

As shown by the feature importance results, there is a clear difference between the 
variable significance of the logistic regression model and the random forest model. The 
logistic regression model mainly places substantial significance on two variables: age and 
premium cost. In contrast, the random forest model exhibits more diverse feature importance 
through several variables with polygenic risk score interactions and premium costs being 
among the most influential. These deviations help explain the difference in the accuracy 
among the two models. However, the high importance of interaction terms (Age PRS 
Interaction, PRS Health Interaction) should be interpreted carefully given their high VIF 
values.  

By spreading out the influence of the underwriting decision variables and putting more 
weight towards polygenic risk score variables, the random forest model is able to reduce the 
susceptibility to bias. Therefore, the random forest model is more accurate than the logistic 
regression model due to the significance given to polygenic risk scores, though this may be 

17 



partially due to the synthetic nature of the data.  
In addition, the different variables that were weighed significantly impacted the accuracy of 

the logistic regression and random forest models. The results of the random forest model 
indicate it as the more accurate model in terms of indicating correct predictions. Therefore, we 
can consider the weight of the variables of the random forest model as superior indicators 
than the ones used for logistic regression. In the random forest model, polygenic risk score 
interactions had a greater importance, in addition to premium cost, underlying condition, age, 
and health risk score. This indicates that by utilizing polygenic risk scores in determining the 
insurance decision of an individual, it significantly increases the accuracy of risk prediction, 
therefore providing a more accurate risk-assessment of an individual. In the logistic 
regression model, age and premium cost are mainly the only two variables that are 
significantly weighed. By mainly considering these demographic factors it over-simplifies the 
risk-level of individuals, leading to limited accuracy in predictive insurance decisions.  

5.4 Limitations and Considerations  

While our results show promising improvements in model performance with PRS inclusion, 
several limitations must be acknowledged:  

• The synthetic nature of the PRS may not fully capture the complexity of real genetic risk 
scores, which require integration of thousands to millions of SNPs  

• Multicollinearity analysis revealed high VIF values for PRS-related interaction terms, 
suggesting potential redundancy  

 

• The artificial correlations between PRS and family history variables are artifacts of the 
data generation process  

• Real PRS implementation would face challenges including ethnic portability, as most are 
trained on European populations  

• The assumption of additive genetic architecture may not reflect biological reality  

These limitations suggest that while our study demonstrates the potential value of genetic 
information in insurance underwriting, real-world implementation would require addressing 
these methodological challenges.  

VI. Conclusions  
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In this study, we explored the effect of polygenic risk scores and other variables in life 
insurance underwriting decisions using machine learning, such as logistic regression and 
random forest models. Using the models, we constructed confusion matrices and feature 
importance plots to illustrate their predictive performance.  

Our analysis indicated that overall, the random forest model was clearly the superior 
model when analyzing the predictive accuracy of insurance decisions due to its ability to 
analyze complex, non-linear data. In addition, polygenic risk scores and their interactions 
significantly enhanced the predictive accuracy of insurance decisions as when they were 
weighted more, the predictive accuracy was much greater compared to when weighing mainly 
demographic and less complex variables, as shown by the comparison between the random 
forest model and the logistic regression model. However, the multicollinearity analysis 
revealed that some of these improvements may be due to artificial correlations in the 
synthetic data rather than genuine predictive value.  

While polygenic risk scores substantially aid in improving predictive accuracy of insurance 
decisions, other variables remain equally important in determining life insurance underwriting 
decisions. In the feature importance analysis, the logistic regression significantly considers 
age and premium costs, and the random forest model significantly considers premium cost, 
underlying condition, age, and health risk score. These traditional underwriting variables are 
persisting to be used in conjunction with genetic information, as demonstrated by the feature 
importance chart and the prediction accuracy of the models.  

These results emphasize the potential importance of including genetic variables into life 
insurance underwriting decisions, while acknowledging the challenges of implementation. 
Several factors—among the most important being polygenic risk score and their interactions, 
premium cost, underlying condition, age, and health risk score—substantially impact the 
effectiveness of risk-prediction models. The random forest model demonstrates the 
importance of these factors by producing prominent results in predictive accuracy, though the 
high VIF values suggest caution in interpretation.  

In conclusion, integrating genetic testing, specifically polygenic risk scores, with various 
traditional variables shows promise for improving predictive accuracy in underwriting 
methods. How ever, real-world implementation would require addressing several challenges:  

• Development of true PRS from GWAS studies rather than synthetic 
approximations • Addressing ethnic bias and ensuring fairness across populations  
• Resolving multicollinearity issues between genetic and traditional 
variables  
• Establishing regulatory frameworks to prevent genetic discrimination  
• Ensuring transparency and explainability of models using genetic information  

By addressing these challenges and applying properly validated genetic variables to 
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risk-prediction models, insurance companies could potentially more accurately detect the 
risk-level of individuals, leading to reduced adverse selection and increased sustainability of 
insurance companies, while maintaining fairness and ethical standards.  
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