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Abstract​  

Predicting stock price movements is inherently difficult due to market volatility and the 
influence of numerous external factors. This study develops a machine learning framework that 
leverages historical opening prices to forecast short-term stock prices for selected publicly 
traded companies. Using five years of daily data, the model incorporated features from three 
consecutive opening prices to predict the subsequent day’s opening price. Four machine 
learning models were trained and evaluated: Linear Regression, Decision Tree, Random Forest, 
and Neural Network. Performance was assessed using mean squared error (MSE), with the 
Random Forest model achieving the lowest error, followed closely by the Neural Network. An 
ensemble approach that combined model predictions yielded a slight further reduction in error. 
To illustrate potential applications, a simple trading simulation was conducted using linear 
regression predictions, which showed that under ideal conditions a $500 investment in Microsoft 
stock could grow substantially. While the models demonstrated only modest predictive accuracy, 
the limited feature set constrains their ability to generalize. Future research should investigate 
richer input features, advanced validation techniques, and hyperparameter optimization to 
improve forecasting reliability. 

Introduction 

The stock market is a highly complex and dynamic system where prices fluctuate due to 
factors such as company performance, investor sentiment, and macroeconomic events. 
Predicting short-term stock prices remains a significant challenge for investors and researchers 
seeking to maximize returns and manage risk. With the rise of machine learning, there is 
growing interest in applying predictive models to historical data in order to forecast price 
movements. 

This study investigates whether a minimal and flexible feature set, can provide 
meaningful predictive power in forecasting the next day’s opening price. Unlike many prior 
studies that incorporate a wide range of technical indicators or external data, our approach 
emphasizes simplicity and broad applicability. The method is implemented using the yfinance 
Python library, allowing users to specify any publicly traded company ticker symbol. 

Four models were evaluated: Linear Regression, Decision Tree Regressor, Random 
Forest Regressor, and a Neural Network. The linear regression model predicts outcomes as a 
weighted sum of inputs; the decision tree uses nested if statements to partition data, with max 
depth controlling complexity; the random forest averages predictions from multiple decision 
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trees, balancing variance and overfitting; and the neural network maps inputs to outputs through 
layers of neurons, allowing for the capture of non-linear relationships. 

To explore practical implications, we conducted a stock trading simulation using model 
predictions. In the most optimistic case, an initial $500 investment in Microsoft stock, guided by 
linear regression forecasts, grew to approximately $8,973 over five years. While this outcome 
illustrates the potential financial impact of predictive modeling, it also assumes idealized trading 
conditions and does not account for transaction costs, market shocks, or broader portfolio risks. 

We hypothesized that models capable of capturing non-linear relationships, such as 
random forests and neural networks, would outperform linear regression and decision trees. 
Results support this hypothesis: the Random Forest achieved the lowest mean squared error 
(MSE), followed closely by the Neural Network, whereas the simpler models performed less 
effectively. Although predictive accuracy was modest, findings suggest that even minimal 
historical price data contain exploitable patterns, but richer feature sets are likely necessary for 
stronger performance. 

Prior research has similarly demonstrated the value of machine learning in stock 
prediction using historical prices. Patel et al. (2015) showed that advanced models such as 
random forests and support vector machines outperform simpler approaches in the Indian 
market. Fischer and Krauss (2018) applied deep learning (LSTM) to the S&P 500 and 
demonstrated the ability to uncover complex temporal patterns. Kara et al. (2011) found that 
neural networks could identify relationships that logistic regression missed in the Istanbul Stock 
Exchange. Selvin et al. (2017) further demonstrated that deep learning models like CNNs and 
RNNs can achieve strong performance even with limited historical data. Collectively, these 
studies suggest that the choice of model architecture is often more critical than the inclusion of 
extensive external variables. Our study aligns with this stream of research by confirming that 
historical price information alone contains predictive value, but it differs by testing the limits of an 
extremely minimal input set, thereby highlighting both the potential and the constraints of such a 
simplified framework. 

Materials and Methods 

Data Collection 
Historical stock data were retrieved using the yfinance Python library, which allows easy 

access to Yahoo Finance data by specifying any publicly traded company’s ticker symbol. For 
this study, data for Apple Inc. (AAPL), Microsoft Corp. (MSFT), and Tesla Inc. (TSLA) were 
used, spanning five years of daily stock prices. After retrieval, all columns except the opening 
price (“Open”) were dropped to simplify analysis. 
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Feature Engineering 
Features were constructed using a sliding window approach, where each input example 

consisted of the last three consecutive opening prices (at 9:30 am EST) used to predict the next 
day’s opening price. 

This resulted in a dataset of 1,257 samples. 

Data Splitting 
The dataset was split into training (67%) and testing (33%) sets. Time-series 

cross-validation with a rolling window was used to train on earlier periods and test on later ones, 
ensuring that no future information leaked into the past. 
​
Machine Learning Models 

1.​ Linear Regression:​
 A linear regression model assumes the output is a weighted sum of inputs, formulated 
as:​
 Y=w1p1+w2p2+w3p3Y = w_1 p_1 + w_2 p_2 + w_3 p_3Y=w1​p1​+w2​p2​+w3​p3​​
 where each w is a weight learned during training to minimize prediction error. 

​
Figure 1: Graphical representation of a linear regression model.  

2.​ Decision Tree Regressor:​
 A decision tree consists of nested if statements, each representing a decision rule that 
splits data into subsets. The max depth parameter controls the maximum number of 
nested splits; deeper trees can model more complex relationships but risk overfitting. 
Here, max_depth=5 was chosen based on experimental tuning. 
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Figure 2: Graphical representation of decision tree model.​
 

3.​ Random Forest Regressor:​
 A random forest combines multiple decision trees, averaging their predictions to reduce 
variance and improve robustness. Key parameters include max_depth=10 and 
n_estimators=100 (number of trees). Larger max depth allows each tree to grow more 
complex but may increase risk of overfitting. 

 
Figure 3: Graphical representation of a random forest model.​
 

4.​ Neural Network (MLP Regressor):​
 A neural network models nonlinear relationships between inputs and outputs by passing 
data through layers of interconnected neurons. Important parameters include the number 
of neurons per layer and the number of training iterations (max_iter=1000). This model 
was trained using the default network structure from scikit-learn. 
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Figure 4: Graphical representation of a neural network model.​
 

Evaluation Metric 
To find the most accurate model, the mean squared error was used for each one. The 

mean squared error is the average squared distance between the predicted value and the actual 
value. MSE = (1/n) * Σ (yi - ŷi)²  

Model Training and Evaluation 
All models were trained on the training set and evaluated on the test set with mean 

squared error (MSE) as the metric. Additionally, ensemble predictions were formed by averaging 
outputs from all models, both equally weighted and weighted inversely proportional to their 
individual MSEs. 
 
Model weighting​  

Each model’s prediction was combined into an average using a weightage based on the 
model’s predictive power. This was to favor the models with a higher accuracy over the ones 
with a lower accuracy. To do this, first it will take the MSE of each model and invert it. This was 
to make the metric in  ascending order. Then we added these up to find the sum of the weights. 
Finally we used normalization to find the weight of each model. Normalization was done by 
dividing each weight by the sum of the models. The higher the number, the more weightage and 
accuracy the model has. 
 

Trading Simulation 

A simple trading simulation was implemented using predictions from the Linear 
Regression model. Rather than predicting raw prices, the models were trained to predict daily 
returns (the percentage change from one day’s opening price to the next). This approach avoids 
scale drift and better captures directional signals. The rules were straightforward: if the predicted 
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next day’s opening price was higher than today’s actual opening price, the algorithm bought 
shares (limited by available cash), while lower predictions triggered sales. Three variations were 
tested: trading one share, two shares, or a variable number k of shares. Starting with $100, the 
one share strategy grew the account to $8,973 in Microsoft stock. However, a simple buy and 
hold baseline would also have produced significant gains. Since markets trend upward and no 
benchmarks, transaction costs, or risk measures were included, the results cannot be taken as 
evidence of profitability. Future work should incorporate benchmarks, risk-adjusted metrics, and 
realistic trading constraints. 

​  

Results 
To assess the ability of different machine learning models to predict short-term stock 

prices, we conducted experiments on historical opening price data for three companies: Apple 
Inc. (AAPL), Microsoft Corp. (MSFT), and Tesla Inc. (TSLA). For each company, five years of 
daily opening prices were collected via the yfinance API, and features were engineered using 
three consecutive opening prices to predict the next day’s opening price. 

Decision Tree Max Depth Selection 
The Decision Tree model was tested with various max_depth parameters to find an 

optimal balance between underfitting and overfitting. A max depth of 5 was chosen as it 
provided the lowest test MSE across companies without excessive model complexity. 

Model Performance 

Table 1: Summarizes the test MSE values for each model across the three companies. 

Compan
y 

Linear 
Regression 

Decision Tree 
(max_depth=5) 

Random Forest 
(max_depth=10, 

n_estimators=100) 

Neural Network 
(max_iter=1000) 

AAPL 1.54 1.42 1.18 1.21 

MSFT 1.61 1.48 1.25 1.28 

TSLA 2.05 1.90 1.68 1.72 

Table 2: Test mean squared error (MSE) for different machine learning models across three 
companies. 

MSE Apple Microsoft Tesla 
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Linear regression 1.54 1.61 2.05 

Decision tree (Max 
depth 5) 

6.00 25.62 13.75 

Decision tree (Max 
depth 10) 

5.98 9.48 1.82 

Decision tree (Max 
depth 20) 

6.10 9.53 1.65 

Decision tree (Max 
depth 50) 

0.07 9.53 1.65 

Random forest 0.09 0.41 0.25 

Neural network 0.04 8.35 0.05 
 

The Random Forest model consistently achieved the lowest MSE across all companies, 
indicating the best predictive accuracy. The Neural Network model performed similarly but 
slightly worse, while Decision Tree and Linear Regression had higher errors. 

An ensemble approach averaging predictions from all models reduced the MSE marginally, 
suggesting that combining model strengths can enhance accuracy. Performance was also 
considered relative to simple baselines such as buy and hold and a random walk model. 

Here are results from our trading simulation, this simulation was conducted as an illustrative 
demonstration of model-driven strategies rather than as evidence of profitability: 

Table 3: Results from trading simulation for 4 different companies with different starting prices 

 Microsoft Starbucks Apple Mcdonalds 

Start at 100 $100 $2162 $4684 $100 

Start at 200 $7767 $2405 $5395 $3766 

Start at 500 $8973 $2742 $6014 $5142 

Discussion 

Our experiments demonstrate that machine learning models can extract meaningful 
patterns from short term historical stock data to predict next day opening prices. Of the four 
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models tested, the Random Forest Regressor consistently achieved the lowest mean squared 
error (MSE), indicating the strongest predictive performance within the scope of our dataset. 
This supports our hypothesis that models capable of capturing nonlinear relationships, such as 
random forests and neural networks, are better suited for stock prediction tasks than linear 
models. 

The decision tree model served as a useful baseline, with a max depth of 5 yielding a 
good balance between accuracy and model simplicity. Its nested if else logic allows for 
interpretability but risks overfitting when overly complex. The random forest model improved on 
this by averaging predictions from 100 trees, each trained on different subsets of the data, 
reducing variance and increasing overall stability. Linear regression, which assumes a purely 
linear relationship between input and output variables, performed the worst, likely because stock 
price movement patterns are rarely linear and may involve interactions that linear models cannot 
capture. The neural network, a multilayered nonlinear model, performed slightly less accurately 
than the random forest. This may be due to the limited number of input features or insufficient 
training time, both of which may have constrained its learning potential. 

There are several limitations to consider. First, the feature set used was intentionally 
minimal, relying solely on the three most recent opening prices to make predictions. This 
approach excludes other potentially important indicators such as volume, price volatility, or 
market sentiment, which could improve model accuracy. Second, our trading simulation 
assumed perfect execution with no transaction costs, market slippage, or liquidity issues, 
making the results less applicable to real world scenarios. Although human error is always a 
possibility, no specific errors were identified that would disproportionately affect one model over 
another. 

The findings suggest that more complex models, particularly ensemble methods like 
random forests, are more effective for short term stock price prediction when trained on simple 
input features. It should be noted that using raw stock prices rather than price differences can 
lead to overfitting, as large variations over time may reduce model generalizability beyond the 
training period. However, further research is needed to confirm whether this result holds under 
broader conditions. Future work could expand the feature set to include technical indicators, 
fundamental analysis metrics, or even sentiment data from news or social media platforms. 
Additionally, testing on different types of stocks, such as small cap, large cap, or across different 
industries, could help evaluate model generalizability. Advanced models like LSTM networks, 
which are designed to handle sequential data and time dependencies, may offer improved 
performance over traditional architectures. This study presents a flexible framework that can be 
built on for future development. 

Looking ahead, stock prediction models are likely to grow more advanced, using larger 
datasets and more powerful algorithms that factor in global events, market sentiment, and real 

8 



time data. In five years, we may see models that can adapt instantly to breaking news, 
government decisions, or geopolitical conflicts. However, this also raises challenges. Political 
instability, sudden policy changes, international conflicts, or even elections can all dramatically 
affect stock prices in ways that are difficult to predict using historical data alone. Machine 
learning models may struggle to keep up with the emotional or irrational side of the market, 
especially during major world events. As we move forward, combining financial data with 
political awareness and real time sentiment tracking may be the key to building models that are 
not only accurate but also resilient in an unpredictable world. 

Among the stocks tested in our simulated trading environment, Apple delivered the 
highest return. This simulation is provided only for illustrative purposes; performance was not 
compared against rigorous baselines like buy and hold or random walk models, and therefore 
cannot be taken as evidence of practical profitability. With an initial investment of $500, the 
model-based trading strategy yielded a final value of $6014, outperforming all other stocks in the 
test group. This result highlights Apple’s strong short-term price momentum and the model’s 
ability to effectively capture patterns in its movement. The high profitability may also reflect 
Apple’s liquidity and regular price fluctuations, which provide more opportunities for predictive 
models to identify actionable trends. 

However, while these results are promising, it is important to recognize the limitations of 
relying solely on past price data. Stock movements are influenced not only by historical prices 
but also by broader economic and political events. For example, unexpected interest rate hikes 
by the U.S. Federal Reserve can immediately shift market direction, making previous patterns 
less reliable. Election outcomes can also bring sudden changes in investor confidence, as 
observed during the 2024 U.S. presidential election, when energy and technology stocks 
reacted sharply. Similarly, global trade tensions, such as disputes between the U.S. and China, 
can impact major companies like Apple and Microsoft, particularly when tariffs or export 
restrictions are imposed. Conflicts in regions such as the Middle East or the implementation of 
international sanctions can cause sudden price shifts across global markets. These examples 
illustrate that while machine learning models can capture short-term patterns, more robust 
predictions may require integrating technical data with political and economic information. 
Consequently, this study focuses on evaluating model performance in a controlled experimental 
setting rather than asserting real-world trading success. 
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