

Predicting stock prices using linear and non linear machine learning models

Ishaan Bondre

Abstract​

Predicting stock price movements is inherently difficult due to market volatility and the
influence of numerous external factors. This study develops a machine learning framework that
leverages historical opening prices to forecast short-term stock prices for selected publicly
traded companies. Using five years of daily data, the model incorporated features from three
consecutive opening prices to predict the subsequent day’s opening price. Four machine
learning models were trained and evaluated: Linear Regression, Decision Tree, Random Forest,
and Neural Network. Performance was assessed using mean squared error (MSE), with the
Random Forest model achieving the lowest error, followed closely by the Neural Network. An
ensemble approach that combined model predictions yielded a slight further reduction in error.
To illustrate potential applications, a simple trading simulation was conducted using linear
regression predictions, which showed that under ideal conditions a $500 investment in Microsoft
stock could grow substantially. While the models demonstrated only modest predictive accuracy,
the limited feature set constrains their ability to generalize. Future research should investigate
richer input features, advanced validation techniques, and hyperparameter optimization to
improve forecasting reliability.

Introduction

The stock market is a highly complex and dynamic system where prices fluctuate due to
factors such as company performance, investor sentiment, and macroeconomic events.
Predicting short-term stock prices remains a significant challenge for investors and researchers
seeking to maximize returns and manage risk. With the rise of machine learning, there is
growing interest in applying predictive models to historical data in order to forecast price
movements.

This study investigates whether a minimal and flexible feature set, can provide
meaningful predictive power in forecasting the next day’s opening price. Unlike many prior
studies that incorporate a wide range of technical indicators or external data, our approach
emphasizes simplicity and broad applicability. The method is implemented using the yfinance
Python library, allowing users to specify any publicly traded company ticker symbol.

Four models were evaluated: Linear Regression, Decision Tree Regressor, Random
Forest Regressor, and a Neural Network. The linear regression model predicts outcomes as a
weighted sum of inputs; the decision tree uses nested if statements to partition data, with max
depth controlling complexity; the random forest averages predictions from multiple decision

1

trees, balancing variance and overfitting; and the neural network maps inputs to outputs through
layers of neurons, allowing for the capture of non-linear relationships.

To explore practical implications, we conducted a stock trading simulation using model
predictions. In the most optimistic case, an initial $500 investment in Microsoft stock, guided by
linear regression forecasts, grew to approximately $8,973 over five years. While this outcome
illustrates the potential financial impact of predictive modeling, it also assumes idealized trading
conditions and does not account for transaction costs, market shocks, or broader portfolio risks.

We hypothesized that models capable of capturing non-linear relationships, such as
random forests and neural networks, would outperform linear regression and decision trees.
Results support this hypothesis: the Random Forest achieved the lowest mean squared error
(MSE), followed closely by the Neural Network, whereas the simpler models performed less
effectively. Although predictive accuracy was modest, findings suggest that even minimal
historical price data contain exploitable patterns, but richer feature sets are likely necessary for
stronger performance.

Prior research has similarly demonstrated the value of machine learning in stock
prediction using historical prices. Patel et al. (2015) showed that advanced models such as
random forests and support vector machines outperform simpler approaches in the Indian
market. Fischer and Krauss (2018) applied deep learning (LSTM) to the S&P 500 and
demonstrated the ability to uncover complex temporal patterns. Kara et al. (2011) found that
neural networks could identify relationships that logistic regression missed in the Istanbul Stock
Exchange. Selvin et al. (2017) further demonstrated that deep learning models like CNNs and
RNNs can achieve strong performance even with limited historical data. Collectively, these
studies suggest that the choice of model architecture is often more critical than the inclusion of
extensive external variables. Our study aligns with this stream of research by confirming that
historical price information alone contains predictive value, but it differs by testing the limits of an
extremely minimal input set, thereby highlighting both the potential and the constraints of such a
simplified framework.

Materials and Methods

Data Collection
Historical stock data were retrieved using the yfinance Python library, which allows easy

access to Yahoo Finance data by specifying any publicly traded company’s ticker symbol. For
this study, data for Apple Inc. (AAPL), Microsoft Corp. (MSFT), and Tesla Inc. (TSLA) were
used, spanning five years of daily stock prices. After retrieval, all columns except the opening
price (“Open”) were dropped to simplify analysis.

2

Feature Engineering
Features were constructed using a sliding window approach, where each input example

consisted of the last three consecutive opening prices (at 9:30 am EST) used to predict the next
day’s opening price.

This resulted in a dataset of 1,257 samples.

Data Splitting
The dataset was split into training (67%) and testing (33%) sets. Time-series

cross-validation with a rolling window was used to train on earlier periods and test on later ones,
ensuring that no future information leaked into the past.
​
Machine Learning Models

1.​ Linear Regression:​
 A linear regression model assumes the output is a weighted sum of inputs, formulated
as:​
 Y=w1p1+w2p2+w3p3Y = w_1 p_1 + w_2 p_2 + w_3 p_3Y=w1​p1​+w2​p2​+w3​p3​​
 where each w is a weight learned during training to minimize prediction error.

​
Figure 1: Graphical representation of a linear regression model.

2.​ Decision Tree Regressor:​
 A decision tree consists of nested if statements, each representing a decision rule that
splits data into subsets. The max depth parameter controls the maximum number of
nested splits; deeper trees can model more complex relationships but risk overfitting.
Here, max_depth=5 was chosen based on experimental tuning.

3

Figure 2: Graphical representation of decision tree model.​

3.​ Random Forest Regressor:​
 A random forest combines multiple decision trees, averaging their predictions to reduce
variance and improve robustness. Key parameters include max_depth=10 and
n_estimators=100 (number of trees). Larger max depth allows each tree to grow more
complex but may increase risk of overfitting.

Figure 3: Graphical representation of a random forest model.​

4.​ Neural Network (MLP Regressor):​
 A neural network models nonlinear relationships between inputs and outputs by passing
data through layers of interconnected neurons. Important parameters include the number
of neurons per layer and the number of training iterations (max_iter=1000). This model
was trained using the default network structure from scikit-learn.

4

Figure 4: Graphical representation of a neural network model.​

Evaluation Metric
To find the most accurate model, the mean squared error was used for each one. The

mean squared error is the average squared distance between the predicted value and the actual
value. MSE = (1/n) * Σ (yi - ŷi)²

Model Training and Evaluation
All models were trained on the training set and evaluated on the test set with mean

squared error (MSE) as the metric. Additionally, ensemble predictions were formed by averaging
outputs from all models, both equally weighted and weighted inversely proportional to their
individual MSEs.

Model weighting​

Each model’s prediction was combined into an average using a weightage based on the
model’s predictive power. This was to favor the models with a higher accuracy over the ones
with a lower accuracy. To do this, first it will take the MSE of each model and invert it. This was
to make the metric in ascending order. Then we added these up to find the sum of the weights.
Finally we used normalization to find the weight of each model. Normalization was done by
dividing each weight by the sum of the models. The higher the number, the more weightage and
accuracy the model has.

Trading Simulation

A simple trading simulation was implemented using predictions from the Linear
Regression model. Rather than predicting raw prices, the models were trained to predict daily
returns (the percentage change from one day’s opening price to the next). This approach avoids
scale drift and better captures directional signals. The rules were straightforward: if the predicted

5

next day’s opening price was higher than today’s actual opening price, the algorithm bought
shares (limited by available cash), while lower predictions triggered sales. Three variations were
tested: trading one share, two shares, or a variable number k of shares. Starting with $100, the
one share strategy grew the account to $8,973 in Microsoft stock. However, a simple buy and
hold baseline would also have produced significant gains. Since markets trend upward and no
benchmarks, transaction costs, or risk measures were included, the results cannot be taken as
evidence of profitability. Future work should incorporate benchmarks, risk-adjusted metrics, and
realistic trading constraints.

​

Results
To assess the ability of different machine learning models to predict short-term stock

prices, we conducted experiments on historical opening price data for three companies: Apple
Inc. (AAPL), Microsoft Corp. (MSFT), and Tesla Inc. (TSLA). For each company, five years of
daily opening prices were collected via the yfinance API, and features were engineered using
three consecutive opening prices to predict the next day’s opening price.

Decision Tree Max Depth Selection
The Decision Tree model was tested with various max_depth parameters to find an

optimal balance between underfitting and overfitting. A max depth of 5 was chosen as it
provided the lowest test MSE across companies without excessive model complexity.

Model Performance

Table 1: Summarizes the test MSE values for each model across the three companies.

Compan
y

Linear
Regression

Decision Tree
(max_depth=5)

Random Forest
(max_depth=10,

n_estimators=100)

Neural Network
(max_iter=1000)

AAPL 1.54 1.42 1.18 1.21

MSFT 1.61 1.48 1.25 1.28

TSLA 2.05 1.90 1.68 1.72

Table 2: Test mean squared error (MSE) for different machine learning models across three
companies.

MSE Apple Microsoft Tesla

6

Linear regression 1.54 1.61 2.05

Decision tree (Max
depth 5)

6.00 25.62 13.75

Decision tree (Max
depth 10)

5.98 9.48 1.82

Decision tree (Max
depth 20)

6.10 9.53 1.65

Decision tree (Max
depth 50)

0.07 9.53 1.65

Random forest 0.09 0.41 0.25

Neural network 0.04 8.35 0.05

The Random Forest model consistently achieved the lowest MSE across all companies,
indicating the best predictive accuracy. The Neural Network model performed similarly but
slightly worse, while Decision Tree and Linear Regression had higher errors.

An ensemble approach averaging predictions from all models reduced the MSE marginally,
suggesting that combining model strengths can enhance accuracy. Performance was also
considered relative to simple baselines such as buy and hold and a random walk model.

Here are results from our trading simulation, this simulation was conducted as an illustrative
demonstration of model-driven strategies rather than as evidence of profitability:

Table 3: Results from trading simulation for 4 different companies with different starting prices

 Microsoft Starbucks Apple Mcdonalds

Start at 100 $100 $2162 $4684 $100

Start at 200 $7767 $2405 $5395 $3766

Start at 500 $8973 $2742 $6014 $5142

Discussion

Our experiments demonstrate that machine learning models can extract meaningful
patterns from short term historical stock data to predict next day opening prices. Of the four

7

models tested, the Random Forest Regressor consistently achieved the lowest mean squared
error (MSE), indicating the strongest predictive performance within the scope of our dataset.
This supports our hypothesis that models capable of capturing nonlinear relationships, such as
random forests and neural networks, are better suited for stock prediction tasks than linear
models.

The decision tree model served as a useful baseline, with a max depth of 5 yielding a
good balance between accuracy and model simplicity. Its nested if else logic allows for
interpretability but risks overfitting when overly complex. The random forest model improved on
this by averaging predictions from 100 trees, each trained on different subsets of the data,
reducing variance and increasing overall stability. Linear regression, which assumes a purely
linear relationship between input and output variables, performed the worst, likely because stock
price movement patterns are rarely linear and may involve interactions that linear models cannot
capture. The neural network, a multilayered nonlinear model, performed slightly less accurately
than the random forest. This may be due to the limited number of input features or insufficient
training time, both of which may have constrained its learning potential.

There are several limitations to consider. First, the feature set used was intentionally
minimal, relying solely on the three most recent opening prices to make predictions. This
approach excludes other potentially important indicators such as volume, price volatility, or
market sentiment, which could improve model accuracy. Second, our trading simulation
assumed perfect execution with no transaction costs, market slippage, or liquidity issues,
making the results less applicable to real world scenarios. Although human error is always a
possibility, no specific errors were identified that would disproportionately affect one model over
another.

The findings suggest that more complex models, particularly ensemble methods like
random forests, are more effective for short term stock price prediction when trained on simple
input features. It should be noted that using raw stock prices rather than price differences can
lead to overfitting, as large variations over time may reduce model generalizability beyond the
training period. However, further research is needed to confirm whether this result holds under
broader conditions. Future work could expand the feature set to include technical indicators,
fundamental analysis metrics, or even sentiment data from news or social media platforms.
Additionally, testing on different types of stocks, such as small cap, large cap, or across different
industries, could help evaluate model generalizability. Advanced models like LSTM networks,
which are designed to handle sequential data and time dependencies, may offer improved
performance over traditional architectures. This study presents a flexible framework that can be
built on for future development.

Looking ahead, stock prediction models are likely to grow more advanced, using larger
datasets and more powerful algorithms that factor in global events, market sentiment, and real

8

time data. In five years, we may see models that can adapt instantly to breaking news,
government decisions, or geopolitical conflicts. However, this also raises challenges. Political
instability, sudden policy changes, international conflicts, or even elections can all dramatically
affect stock prices in ways that are difficult to predict using historical data alone. Machine
learning models may struggle to keep up with the emotional or irrational side of the market,
especially during major world events. As we move forward, combining financial data with
political awareness and real time sentiment tracking may be the key to building models that are
not only accurate but also resilient in an unpredictable world.

Among the stocks tested in our simulated trading environment, Apple delivered the
highest return. This simulation is provided only for illustrative purposes; performance was not
compared against rigorous baselines like buy and hold or random walk models, and therefore
cannot be taken as evidence of practical profitability. With an initial investment of $500, the
model-based trading strategy yielded a final value of $6014, outperforming all other stocks in the
test group. This result highlights Apple’s strong short-term price momentum and the model’s
ability to effectively capture patterns in its movement. The high profitability may also reflect
Apple’s liquidity and regular price fluctuations, which provide more opportunities for predictive
models to identify actionable trends.

However, while these results are promising, it is important to recognize the limitations of
relying solely on past price data. Stock movements are influenced not only by historical prices
but also by broader economic and political events. For example, unexpected interest rate hikes
by the U.S. Federal Reserve can immediately shift market direction, making previous patterns
less reliable. Election outcomes can also bring sudden changes in investor confidence, as
observed during the 2024 U.S. presidential election, when energy and technology stocks
reacted sharply. Similarly, global trade tensions, such as disputes between the U.S. and China,
can impact major companies like Apple and Microsoft, particularly when tariffs or export
restrictions are imposed. Conflicts in regions such as the Middle East or the implementation of
international sanctions can cause sudden price shifts across global markets. These examples
illustrate that while machine learning models can capture short-term patterns, more robust
predictions may require integrating technical data with political and economic information.
Consequently, this study focuses on evaluating model performance in a controlled experimental
setting rather than asserting real-world trading success.

9

References

1.​ Fischer, Thomas, and Christopher Krauss. “Deep Learning with Long Short-Term Memory
Networks for Financial Market Predictions.” European Journal of Operational Research,
vol. 270, no. 2, 2018, pp. 654–669. Elsevier, doi:10.1016/j.ejor.2017.11.054.

2.​ Kara, Yakup, Melek A. Boyacioglu, and Ömer K. Baykan. “Predicting Direction of Stock
Price Index Movement Using Artificial Neural Networks and Support Vector Machines:
The Sample of the Istanbul Stock Exchange.” Expert Systems with Applications, vol. 38,
no. 5, 2011, pp. 5311–5319. Elsevier, doi:10.1016/j.eswa.2010.10.027.

3.​ Patel, Jigar, et al. “Predicting Stock and Stock Price Index Movement Using Trend
Deterministic Data Preparation and Machine Learning Techniques.” Expert Systems with
Applications, vol. 42, no. 1, 2015, pp. 259–268. Elsevier,
doi:10.1016/j.eswa.2014.07.040.

4.​ Selvin, Sreelekshmi, et al. “Stock Price Prediction Using LSTM, RNN and CNN-Sliding
Window Model.” 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2017, pp. 1643–1647. IEEE,
doi:10.1109/ICACCI.2017.8126078.

10

	Abstract​
	Predicting stock price movements is inherently difficult due to market volatility and the influence of numerous external factors. This study develops a machine learning framework that leverages historical opening prices to forecast short-term stock prices for selected publicly traded companies. Using five years of daily data, the model incorporated features from three consecutive opening prices to predict the subsequent day’s opening price. Four machine learning models were trained and evaluated: Linear Regression, Decision Tree, Random Forest, and Neural Network. Performance was assessed using mean squared error (MSE), with the Random Forest model achieving the lowest error, followed closely by the Neural Network. An ensemble approach that combined model predictions yielded a slight further reduction in error. To illustrate potential applications, a simple trading simulation was conducted using linear regression predictions, which showed that under ideal conditions a $500 investment in Microsoft stock could
	Introduction
	Materials and Methods
	Data Collection
	Feature Engineering
	Data Splitting
	Model Training and Evaluation
	Trading Simulation

	Results
	Decision Tree Max Depth Selection
	Model Performance

	Discussion

