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Abstract 
  
These working notes study an exploration of standing waves, from basic wave theory to its 
applications and computational simulations that incorporate realistic noise modeling. The work 
uses a structured three-phase approach: (1) foundational research, (2) mathematical 
derivations, and (3) Python-based simulations. The foundational research broadly includes the 
mathematical principles behind wave interference, how stationary patterns form through 
superposition, and their importance across multiple areas of science such as musical acoustics, 
material science (phonons in crystals), quantum mechanics (electron wave functions in atomic 
orbitals), advanced optics (laser cavity modes and LiDAR), and spectroscopy. Next, the 
mathematical analysis shows the boundary conditions that govern wave confinement. Finally, 
we use computational python code enhanced with Gaussian noise to create realistic 
visualizations that connect theory with physical behavior. 
  
  
Introduction 
  
Waves are one of the most fundamental natural phenomena, appearing across nearly every 
branch of science and engineering. A wave can be defined as a disturbance or oscillation that 
moves through a medium or space, transferring energy without carrying matter along with it. 
Waves can take many forms, including mechanical waves (such as sound and water waves), 
electromagnetic waves (such as light and radio waves), and matter waves described by 
quantum mechanics. This study focuses on standing waves, which represent a unique type of 
wave pattern that forms when two identical waves travel in opposite directions and interfere with 
each other. 
  
Standing waves or stationary waves occur when two waves of the same amplitude and 
frequency, travel in opposite directions through the same medium. Their interference creates 
nodes (points of zero amplitude) and antinodes (points of maximum amplitude). This generates 
a oscillatory pattern instead of propagating through space. Unlike traveling waves that move 
energy forward, standing waves represent an ongoing exchange between kinetic and potential 
energy at fixed points. Thus, they are important for understanding resonance, vibration modes, 
and wave confinement in systems ranging from musical instruments to quantum mechanical 
orbitals. 
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In this study, we do a fundamental understanding of standing waves and then we look at some 
computational simulations where we see how the noise affects the presence of standing waves. 
We see that in standing waves with gaussian noise, we can force the nodes to be fixed and this 
gives us standing waves with gaussian noise. 
  
Theoretical Background 
  
Wave Fundamentals 
  
Wave motion is the process by which energy is transferred through oscillating disturbances in a 
medium or field. Despite their differences, all types of waves share similar mathematical 
descriptions defined by the following wave parameters: 
  

●  ​Amplitude (A): Maximum displacement from equilibrium position, directly proportional 
to energy content 

●  ​Wavelength (λ): Spatial distance between consecutive identical points in the wave 
pattern 

●  ​Frequency (f): Number of complete oscillations per unit time, measured in Hertz (Hz) 
●  ​Period (T): Time required for one complete oscillation, where T = 1/f 
●  ​Wave speed (v): Rate of wave pattern propagation, given by the fundamental 

relationship v = fλ 
●  ​Phase: Position within the oscillation cycle at any given time and location 

  
The basic wave propagation equation represents the fundamental partial differential equation: 
  

∂²u/∂t² = v² ∂²u/∂x² 
  

where u(x,t) describes the displacement at position x and time t, and v represents the wave 
speed in the medium. 
  
Standing Wave 
  
Standing waves are formed by the superposition of two waves moving in opposite directions 
through the same medium with the same amplitude, frequency, and wavelength. This 
interference creates a distinct stationary pattern. 
  
The mathematical description starts with two sinusoidal waves as follows: 
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Wave 1 (rightward propagation): u₁(x,t) = A sin(kx - ωt)​
Wave 2 (leftward propagation): u₂(x,t) = A sin(kx + ωt) 

where, 
●  ​A = amplitude of each wave 
●  ​k = 2π/λ = wave number 
●  ​ω = 2πf = angular frequency 
●  ​x = spatial position 
●  ​t = time 

  
Applying the superposition principle: 
  

u(x,t) = u₁(x,t) + u₂(x,t) = A sin(kx - ωt) + A sin(kx + ωt) 
  
Using the trigonometric identity sin(α) + sin(β) = 2sin[(α+β)/2]cos[(α-β)/2]: 
  

u(x,t) = 2A sin(kx) cos(ωt) 
  

This equation describes the fundamental characteristic of standing waves: complete separation 
of spatial and temporal dependencies. The spatial function 2A sin(kx) determines the amplitude 
envelope, and cos(ωt) governs the temporal oscillation. 
  

·   ​Nodes: Positions where sin(kx) = 0, occurring at x = nπ/k = nλ/2 (where n = 0, 1, 2, 
...). These points maintain zero displacement for all time due to the destructive 
interference. 

  
·   ​Antinodes: Positions where |sin(kx)| = 1, occurring at x = (2n+1)π/2k = (2n+1)λ/4. 

These points show maximum amplitude oscillation due to the constructive 
interference. 

  
·   ​The spatial separation between adjacent nodes is λ/2. Similarly, the spatial separation 

between adjacent antinodes is λ/2. 
  
Standing waves often occur in systems with boundaries such as a string fixed at both ends. 
These boundaries cause restrictions that lead to quantized wavelengths and frequencies. 
  
For a string of length L with fixed ends: 

●  ​Boundary conditions: u(0,t) = 0 and u(L,t) = 0 
●  ​These requirements demand sin(kL) = 0 
●  ​Solutions exist when kL = nπ (where n = 1, 2, 3, ...) 
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This quantization condition yields: 
●  ​Allowed wavelengths: λ� = 2L/n 
●  ​Allowed frequencies: f� = nv/2L = nf₁, where f₁ = v/2L represents the fundamental 

frequency. 
  
Thus, the quantized standing wave solutions can be expressed as: 
  

u�(x,t) = 2A sin(nπx/L) cos(ω�t) 
  

Here, each mode n: 
●​ Contains n-1 internal nodes (points of zero displacement). 
●​ Contains n antinodes (points of maximum displacement). 
●​ Produces unique spatial patterns that correspond to harmonic frequencies. 

  
Applications of Standing Waves   
  
Musical Instruments: 
  
The physics of standing waves is important to the sound produced by musical instruments. It 
governs both pitch as well as tone quality. 
  
String Instruments 
Instruments like guitars, violins, and pianos rely on vibrating strings that form standing wave 
patterns. Here, nodes occur at the fixed ends of the string, and antinodes occur along the 
string’s length, depending on the harmonic mode. The fundamental frequency (the lowest pitch 
a string can produce) is given by: 

f₁ = (1/2L)√(T/μ) 
where, 

●​ T = string tension 
●​ μ = linear mass density (mass per unit length) 
●​ L = string length 

  
Musicians can change pitch in several ways: 

●​ Fretting: Shortening the string length (L), which increases frequency. 
●​ Tuning: Adjusting the tension (T) of the string. 
●​ String choice: Using different materials or thicknesses (μ) for varied pitch ranges. 

  
Wind Instruments 
Air columns inside flutes, clarinets, and organ pipes also sustain standing waves, but the 
boundary conditions depend on whether the pipe is open or closed: 
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●  ​Closed pipes (one end closed): Fundamental frequency f₁ = v/4L 
●  ​Open pipes (both ends open): Fundamental frequency f₁ = v/2L 
  

where v is the speed of sound in air (~343 m/s at room temperature). 
  
Harmonics and Timbre 
Higher-order standing waves (harmonics) enrich the sound. The relative strength of 
harmonics gives each instrument its characteristic timbre. For instance, a violin and a flute 
may play the same fundamental frequency, but their harmonic content makes them sound 
distinct. 
  
  
Material Science and Phonons: 
  
In crystalline solids, atoms vibrate in well-ordered patterns that form standing waves also 
known as phonons. These phonons play an important role in determining the thermal, 
electrical, and mechanical properties of materials. 
  
Thermal Conductivity 
Phonons are the primary carriers of heat in insulators and semiconductors. By understanding 
and controlling phonon standing waves, scientists can: 

·   ​Design thermoelectric materials 
·   ​Develop thermal barrier coatings 
·   ​Improve heat spreaders 

  
Mechanical Properties 
Phonon interactions also impact the following mechanical properties: 

·   ​Elastic constants: how a crystal responds to applied stress. 
·   ​Thermal expansion: how a material’s dimensions change with temperature. 
·   ​Sound velocity: the speed of acoustic waves traveling through the material. 

  
  
Quantum Mechanics: 
  
Standing waves are extremely important to understand the matter waves and atomic 
structure. 
  
Atomic Orbitals 

5 



Electrons in atoms behave like standing waves such that their behavior is described by the 
solutions to the Schrödinger equation. The wave function ψ(r) determines electron probability 
distributions, with |ψ(r)|² representing probability density. For hydrogen-like atoms, the radial 
wave functions exhibit standing wave characteristics with: 
  

●  ​Nodes: Positions where ψ(r) = 0, representing zero electron probability 
●  ​Antinodes: Regions of maximum |ψ(r)|², where the electron is most likely to be found. 

  
Because the wave function must satisfy boundary conditions (approaching zero at infinity), 
electrons occupy only certain energy levels: 

E� = -13.6 eV/n² (for hydrogen) 
where n is the principal quantum number. This explains the discrete energy levels observed in 
atomic spectra. 
  
Quantum Wells, Wires, and Dots 
Engineered nanostructures confine electrons, creating artificial standing wave systems: 

·   ​Quantum wells: One-dimensional confinement, widely used in laser diodes and 
LEDs. 

·   ​Quantum wires: Two-dimensional confinement that enhances electrical conduction. 
·   ​Quantum dots: Three-dimensional confinement that acts like “artificial atoms” with 

tunable electronic and optical properties. 
  
  
Laser Physics and Optical Cavities: 
  
The functioning of a laser relies on the creation of standing electromagnetic waves within an 
optical cavity, which is typically formed by two reflecting mirrors. These standing waves set the 
allowed modes of oscillation and, therefore, the laser’s possible frequencies. 
  
For a cavity of length L, resonance occurs when the round trip produces constructive 
interference, which requires L=mλ/2, where m represents the longitudinal mode number. The 
corresponding frequency of the m-th mode is given by: νₘ = mc/2nL 
where, 

●​ c = speed of light 
●​ n = refractive index of the medium inside the cavity 

  
The separation between adjacent longitudinal modes, known as the free spectral range (FSR), 
is given by Δν = c/2nL. For instance, in a typical He–Ne laser (L ≈ 30 cm) filled with air (n ≈ 1), 
this spacing is Δν = (3.00×10⁸ m/s)/(2×1×0.30 m) = 500 MHz. 
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When the cavity contains different sections, each with its own refractive index, the effective 
optical length becomes n₁L₁ + n₂L₂. For example, in a composite cavity made of a 10 cm laser 
rod (L₁ = 10 cm, n₁ = 1.82) and a 20 cm air gap (L₂ = 20 cm, n₂ = 1.00), the effective optical 
length is: n₁L₁ + n₂L₂ = (1.82)(0.10) + (1.00)(0.20) = 0.382 m. This leads to a reduced mode 
spacing of Δν = (3.00×10⁸)/(2×0.382) = 393 MHz. This simple calculation illustrates how cavity 
design directly shapes the frequency spectrum and operating characteristics of a laser. 
  
  
LiDAR Remote Sensing: 
  
Light Detection and Ranging (LiDAR) uses pulsed laser light to make precise distance 
measurements and create detailed environmental maps. While LiDAR primarily operates with 
traveling pulses, standing wave principles are crucial in laser design and signal processing. 
  
System Operation: LiDAR emits short laser pulses and measures return times from reflected 
surfaces: 

●​ Time-of-flight measurement: Distance = (speed of light × time)/2 
●​ Multiple returns: Single pulses can reflect from different heights (vegetation canopy, 

understory, ground) 
●​ Waveform analysis: Return signal shape provides information about reflecting surface 

characteristics 
  
Applications: 

●​ Topographic mapping: High-resolution elevation models with centimeter accuracy 
●​ Forest structure analysis: Canopy height, biomass estimation, vertical vegetation 

distribution 
●​ Atmospheric studies: Aerosol and cloud particle detection using backscatter 

measurements 
●​ Autonomous vehicles: Real-time obstacle detection and navigation 

  
Standing Wave Relevance: While LiDAR primarily involves traveling electromagnetic pulses, 
standing wave physics applies to: 

●​ Laser cavity design: Ensuring stable, coherent light sources for measurement precision 
●​ Interference effects: Multiple reflections creating standing wave patterns affect 

measurement accuracy 
●​ Signal processing: Understanding wave interference helps optimize detection algorithms 

  
  
Methodology 
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Computational Simulation and Noise Modeling 
  
The final phase transitioned from theoretical analysis to practical computational implementation, 
developing Python-based simulations for dynamic visualization and realistic environmental 
modeling. 
  
Simulation Framework: The implementation utilized key Python libraries: 

●  ​NumPy: Efficient numerical array operations and mathematical functions 
●  ​Matplotlib: Dynamic visualization and animation capabilities 

  
Gaussian Noise Implementation: 
  
Realistic environmental effects were incorporated through Gaussian noise modeling because 
real standing wave systems experience perturbations. These sources can be from Thermal 
fluctuations causing microscopic displacement variations, Environmental vibrations transmitted 
through mounting systems, Material property variations along the medium, Measurement 
uncertainties and instrumental limitations and Damping effects from air resistance and internal 
friction. 
  
Implementation Details: 
  
Numerically, we discretized the string along x on the interval [0, L] with 500 points and simulated 
six fundamental periods using a stable time step equal to one-eight-hundredth of the 
third-harmonic period. The displacement field was built as a sum of fixed-end normal modes, 
then perturbed with Gaussian (zero-mean) noise whose local standard deviation scaled with the 
absolute displacement (a×|u(x,t)|). To mimic slow environmental drift, we added a weak 
separable exponential correlation in space and time. Light damping was applied with an 
exponential envelope so that each period reduces amplitude by a fixed fraction, emulating a 
finite quality factor (Q). For validation, node locations were obtained from the spatial RMS 
minima of the displacement and matched theory within a few millimetres, while spectral peaks 
from an antinode time series appeared at integer multiples of the fundamental frequency (which 
equals v divided by 2L). 
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Figure 1: This shows the temporal evolution of the wave with noise. The nodes remain constant 
but there is noise superimposed in it. In the following figures we see for t=0.010s and t=0.057s. 
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Figure 2: Space–time heatmap of displacement for a fixed string with modes n = 1–3 (x on the 
horizontal axis, time on the vertical). Dark bands mark nodes (persistent at x = 0 and x = 1 and 
internally from modal superposition); bright bands mark antinodes. Gaussian, 
amplitude-proportional noise adds mild jitter without obscuring the standing-wave pattern. 
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Figure 3: Amplitude spectrum at an antinode (x ≈ 0.79 m). Peaks at 50, 100, and 150 Hz align 
with the predicted harmonics n × f₁ (f₁ = v/2L = 50 Hz); dashed lines mark the theoretical 
frequencies. The low broadband floor reflects added Gaussian noise. 

  
Conclusion 
  
This study provided a thorough understanding of standing wave phenomena. The three-phase 
methodology worked efficiently as the foundational research provided a conceptual framework. 
Next, the mathematical derivations established clear analytical understanding. Finally, the 
computational simulations linked theory with observable behavior. Also, adding Gaussian noise 
modeling brought important realism and prepared for experimental applications, where ideal 
conditions do not exist. 
  
Overall, standing waves play a crucial role in understanding resonance, vibration modes, wave 
confinement, and energy distribution. This study clearly shows that standing waves support 
various technologies, including musical instruments, laser systems, quantum devices, and 
advanced materials. This knowledge builds a strong foundation for further study in physics, 
engineering, and materials science. It also demonstrates the interconnected nature of scientific 
knowledge and the importance of theoretical foundations for technological progress. 
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Appendix A: Code 

 

# Standing wave simulation with Gaussian noise + diagnostics (1D string, fixed ends) 

# Outputs: 

#   - standing_wave_spacetime.png 

#   - standing_wave_rms_nodes.png 
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#   - standing_wave_spectrum.png 

#   - standing_wave_animation.gif 

#   - standing_wave_freq_analysis.csv 

#   - standing_wave_node_analysis.csv 

  

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib.animation import FuncAnimation, PillowWriter 

from scipy.signal import find_peaks 

import pandas as pd 

  

# ---------------------------- 

# Physics helpers 

# ---------------------------- 

def standing_wave(x, t, n, L, A, v): 

​ """Ideal standing wave for a string fixed at both ends: 

   ​ u_n(x,t) = 2A sin(nπx/L) cos(ω_n t), ω_n = nπ v / L""" 

​ k = n * np.pi / L 

​ omega = k * v 

​ return 2 * A * np.sin(k * x) * np.cos(omega * t) 

  

def add_realistic_noise(y, noise_scale, rng): 

​ """Gaussian noise proportional to local amplitude: largest at antinodes, ~0 at nodes.""" 
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​ return y + (noise_scale * np.abs(y)) * rng.standard_normal(y.shape) 

  

def add_spatiotemporal_correlated_noise(u, corr_space=0.02, corr_time=0.01, rng=None): 

​ """ 

​ Weakly correlated noise via separable exponential smoothing in x and t. 

​ u: (T, X) array used only for sizing. 

​ """ 

​ if rng is None: 

    ​ rng = np.random.default_rng(42) 

​ T, X = u.shape 

​ eta = rng.standard_normal((T, X)) 

​ # kernel lengths (odd) 

​ kx_len = max(3, int(X * corr_space)); kx_len += 1 - kx_len % 2 

​ kt_len = max(3, int(T * corr_time)); kt_len += 1 - kt_len % 2 

​ x_idx = np.arange(-(kx_len//2), kx_len//2 + 1) 

​ t_idx = np.arange(-(kt_len//2), kt_len//2 + 1) 

​ kx = np.exp(-np.abs(x_idx) / (kx_len/6)); kx /= kx.sum() 

​ kt = np.exp(-np.abs(t_idx) / (kt_len/6)); kt /= kt.sum() 

​ # convolve separably 

​ eta_x = np.apply_along_axis(lambda v: np.convolve(v, kx, mode='same'), axis=1, 
arr=eta) 

​ eta_xt = np.apply_along_axis(lambda v: np.convolve(v, kt, mode='same'), axis=0, 
arr=eta_x) 

​ return eta_xt 
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def damp(u, gamma_per_period, periods_elapsed): 

​ """Exponential amplitude decay ~ (1 - gamma) per period.""" 

​ alpha = -np.log(max(1e-9, 1 - gamma_per_period)) 

​ return u * np.exp(-alpha * periods_elapsed) 

  

# ---------------------------- 

# Config 

# ---------------------------- 

L = 1.0             ​ # string length (m) 

v = 100.0           ​ # wave speed (m/s) 

A = 1.0             ​ # single traveling-wave amplitude (arb.) 

modes = [1, 2, 3]   ​ # harmonics to superpose 

noise_scale = 0.05  ​# relative noise amplitude 

use_correlated_noise = True 

corr_strength = 0.15​# mix of correlated noise vs proportional noise 

gamma_per_period = 0.02 # 2% amplitude loss per period (light damping) 

  

Nx = 500                          ​ # spatial resolution 

duration_periods = 6.0            ​ # simulate N fundamental periods 

dt_factor = 800                   ​# samples per period of highest mode 

rng = np.random.default_rng(7) 
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# ---------------------------- 

# Discretization 

# ---------------------------- 

x = np.linspace(0, L, Nx) 

n_ref = max(modes) 

f1 = v / (2 * L)           ​ # fundamental frequency 

f_ref = n_ref * f1         ​ # highest included frequency 

T_ref = 1.0 / f_ref 

dt = T_ref / dt_factor 

T_total = duration_periods * (1.0 / f1)   # simulate same number of FUNDAMENTAL periods 

t = np.arange(0, T_total, dt) 

Nt = len(t) 

  

# ---------------------------- 

# Simulate ideal + noise + damping 

# ---------------------------- 

u_ideal = np.zeros((Nt, Nx), dtype=float) 

for n in modes: 

​ u_mode = np.array([standing_wave(x, ti, n, L, A, v) for ti in t]) 

​ periods_elapsed = t * n * f1   # = t / T_n 

​ u_ideal += damp(u_mode, gamma_per_period, periods_elapsed[:, None]) 

  

# proportional noise per frame 
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u_noisy = np.empty_like(u_ideal) 

for i in range(Nt): 

​ u_noisy[i] = add_realistic_noise(u_ideal[i], noise_scale, rng) 

  

# add weak correlated component 

if use_correlated_noise: 

​ eta_xt = add_spatiotemporal_correlated_noise(u_ideal, corr_space=0.02, 
corr_time=0.01, rng=rng) 

​ scale_field = np.maximum(1e-8, np.abs(u_ideal)) 

​ u_noisy += corr_strength * noise_scale * eta_xt * scale_field 

  

# ---------------------------- 

# Diagnostics & analysis 

# ---------------------------- 

# Spatial RMS over time → antinode peaks, node minima 

rms_space = np.sqrt((u_noisy**2).mean(axis=0)) 

  

# Node estimation: minima of RMS profile (use peaks on the negative) 

inv = -rms_space.copy() 

inv[0] = inv[-1] = inv.mean()  # avoid boundary artifacts 

peaks, _ = find_peaks(inv, prominence=np.std(inv) * 0.15, distance=round(Nx * 0.08)) 

x_nodes_est = x[peaks] 
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# Theoretical union of nodes for the included modes (including ends) 

theory_nodes = np.unique(np.concatenate([np.linspace(0, L, n+1) for n in modes])) 

theory_nodes = np.unique(np.round(theory_nodes, 6)) 

  

# Frequency estimate at strongest antinode (max RMS) 

ix_antinode = int(np.argmax(rms_space)) 

signal = u_noisy[:, ix_antinode] 

fs = 1.0 / dt 

win = np.hanning(len(signal)) 

fft = np.fft.rfft(signal * win) 

freqs = np.fft.rfftfreq(len(signal), d=dt) 

mag = np.abs(fft) 

  

pk_idx, _ = find_peaks(mag, prominence=mag.max()*0.02, distance=5) 

freq_peaks = freqs[pk_idx] 

freq_peaks = freq_peaks[freq_peaks > 0] 

  

theory_freqs = np.array([n * f1 for n in modes]) 

  

def nearest(theory, measured): 

​ if len(measured) == 0: return np.array([], dtype=int) 

​ return np.argmin(np.abs(theory[:, None] - measured[None, :]), axis=0) 
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if len(freq_peaks) > 0: 

​ idx_map = nearest(theory_freqs, freq_peaks) 

​ matched = theory_freqs[idx_map] 

​ freq_df = pd.DataFrame({ 

    ​ "Measured_peak_Hz": np.round(freq_peaks, 3), 

    ​ "Nearest_theory_Hz": np.round(matched, 3), 

    ​ "Abs_error_Hz": np.round(np.abs(freq_peaks - matched), 3), 

    ​ "Rel_error_%": np.round(100*np.abs(freq_peaks - matched)/(matched+1e-12), 3), 

​ }).sort_values("Measured_peak_Hz") 

else: 

​ freq_df = 
pd.DataFrame(columns=["Measured_peak_Hz","Nearest_theory_Hz","Abs_error_Hz","Rel_error
_%"]) 

  

def pair_nodes(est, theo, tol=2e-3): 

​ rows = [] 

​ for xe in est: 

    ​ idx = np.argmin(np.abs(theo - xe)) 

    ​ rows.append((xe, theo[idx], np.abs(theo[idx]-xe), np.abs(theo[idx]-xe) <= tol)) 

​ return pd.DataFrame(rows, 
columns=["Estimated_x","Nearest_theory_x","Abs_error","Within_2mm?"]) 

  

node_df = pair_nodes(x_nodes_est, theory_nodes) 
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freq_df.to_csv("standing_wave_freq_analysis.csv", index=False) 

node_df.to_csv("standing_wave_node_analysis.csv", index=False) 

  

# ---------------------------- 

# Plots 

# ---------------------------- 

# 1) Space–time heatmap 

plt.figure(figsize=(7, 4)) 

plt.imshow(u_noisy, aspect='auto', origin='lower', extent=[x.min(), x.max(), t.min(), t.max()]) 

plt.xlabel("x (m)"); plt.ylabel("t (s)") 

plt.title(f"Standing wave (modes={modes}) with Gaussian noise") 

cbar = plt.colorbar(); cbar.set_label("Displacement (arb.)") 

plt.tight_layout(); plt.savefig("standing_wave_spacetime.png", dpi=200); plt.close() 

  

# 2) RMS profile + estimated nodes + theoretical node lines 

plt.figure(figsize=(7, 3.5)) 

plt.plot(x, rms_space, label="RMS amplitude vs x") 

if len(peaks) > 0: 

​ plt.scatter(x_nodes_est, rms_space[peaks], marker='x', s=40, label="Estimated nodes") 

for xn in theory_nodes: 

​ if 0 < xn < L: 

    ​ plt.axvline(xn, linestyle='--', linewidth=0.8) 

plt.xlabel("x (m)"); plt.ylabel("RMS amplitude") 
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plt.title("Nodes from RMS minima (dashed = theoretical union)") 

plt.legend(loc="upper right") 

plt.tight_layout(); plt.savefig("standing_wave_rms_nodes.png", dpi=200); plt.close() 

  

# 3) Spectrum at an antinode 

plt.figure(figsize=(7, 3.5)) 

plt.plot(freqs, mag) 

for fth in theory_freqs: 

​ plt.axvline(fth, linestyle='--', linewidth=0.8) 

plt.xlim(0, theory_freqs.max() * 3.0) 

plt.xlabel("Frequency (Hz)"); plt.ylabel("|FFT|") 

plt.title(f"Spectrum at antinode (x≈{x[ix_antinode]:.3f} m); dashed = n f1") 

plt.tight_layout(); plt.savefig("standing_wave_spectrum.png", dpi=200); plt.close() 

  

# 4) Animation (GIF, ~120 frames) 

fig, ax = plt.subplots(figsize=(7, 3)) 

line, = ax.plot([], [], lw=2) 

ax.set_xlim(0, L) 

ax.set_ylim(1.2 * u_noisy.min(), 1.2 * u_noisy.max()) 

ax.set_xlabel("x (m)"); ax.set_ylabel("Displacement") 

ax.set_title("Standing wave with noise (snapshot animation)") 

  

frame_idx = np.linspace(0, Nt-1, 120, dtype=int) 
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def init(): line.set_data([], []); return (line,) 

def update(i): 

​ y = u_noisy[frame_idx[i]] 

​ line.set_data(x, y) 

​ ax.set_title(f"Standing wave with noise | t = {t[frame_idx[i]]:.5f} s") 

​ return (line,) 

  

anim = FuncAnimation(fig, update, init_func=init, frames=len(frame_idx), blit=True) 

anim.save("standing_wave_animation.gif", writer=PillowWriter(fps=30)) 

plt.close(fig) 

  

# ---------------------------- 

# Console summary 

# ---------------------------- 

print("Saved:", 

  ​ "standing_wave_spacetime.png,", 

  ​ "standing_wave_rms_nodes.png,", 

  ​ "standing_wave_spectrum.png,", 

  ​ "standing_wave_animation.gif,", 

  ​ "standing_wave_freq_analysis.csv,", 

  ​ "standing_wave_node_analysis.csv") 

print("Summary:", 

  ​ {"L": L, "v": v, "A": A, "modes": modes, "noise_scale": noise_scale, 
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   ​ "gamma_per_period": gamma_per_period, "duration_s": float(T_total), 

   ​ "dt": float(dt), "Nx": Nx, "Nt": Nt}) 
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