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Abstract:  
Brain-computer interfaces, or BCIs, are a new technology with a promising trajectory in the field 
of neuroscience and biomedical engineering. Neurological disorders such as Parkinson’s 
disease, stroke, epilepsy, spinal cord injuries and disorders of consciousness affect the nervous 
system and can impair motor control, communication, sensory function, or cognition. BCIs help 
restore or compensate for lost functions by enabling movement through prosthetics or restoring 
communication. Brain-computer interfaces hold the potential to improve patients’ quality of life 
and help them reclaim independence. BCIs can assist in symptom management such as 
reducing tremor in patients with Parkinson’s disease. Despite brain-computer interfaces still 
being in the early stages of development, they show great potential in transforming treatment for 
neurological disorders. Research on BCIs pushes the development of new and innovative 
medical devices that can transform the medical field and lead to more effective treatments for 
neurological disorders. The research also raises important questions about privacy, autonomy 
and ethics in biomedical innovation which is an impactful part of making sure new technology is 
developed responsibly. 
Introduction:  
What is a BCI? 
​ In 2023 the National Center for Health found that strokes,along with other neurological 
disorders, were the fourth most common cause of death in the U.S. A new study released by 
The Lancet Neurology, showed that more than 3 billion people worldwide were living with a 
neurological condition. The World Health Organization stated that 1 in 3 people are affected by 
neurological conditions becoming the leading cause of disability worldwide. 
​ This rise in this rate of disability called for needed improvement in treatment to increase 
quality of life. As the need for improved treatment arose, the BCI was found. 

The idea of a BCI was long-established but had only begun to gain significant popularity 
in the 21st century. Research began in 1973 by Jacques Vidal ending only in 1977 proving the 
concept of a BCI but failing to create one. The first BCI was implanted in the late 1990s as the 
field began to see advancements in neural signal processing and machine learning.  
What is EEG? 
​ The groundwork for electroencephalogram or EEG was laid by early researchers such as 
Luigi Galvani in the late 18th century, who discovered “animal electricity.” By the 19th century, 
Richard Caton had built on Galvani’s research and recorded electrical activity from the exposed 
brains of an animal. In 1924, Hans Berger, a German psychiatrist, recorded the first human 
electroencephalogram (EEG) from the scalp. At first, his findings were met with disbelief and 
doubt due to the primitive technology during the time, but after different researchers began to 
replicate Berger’s findings in 1934, the scientific community started to accept EEGs.  
​ An electroencephalogram or EEG is a test that measures electrical activity in the brain. 
Electrodes are attached to the scalp and detect electrical charges produced by brain cells. 
These charges are then amplified and displayed as brain waves on a computer or paper. 
The “argument.” 
​ This review intends to highlight the evolution in scientific studies of EEG based BCIs.  
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Methodology: 
1977: Jacques J. Vidal demonstrated the first EEG-based control of a cursor. 

The intention of Vidal’s experiment was to find out if brain activity (EEG signals) could be 
used to detect specific mental responses in real time. He aimed to use this disovery to control 
computers or devices. The results will be explained later on in the review. 

In the experiment, he placed the subjects in front of a display of diamond-shaped red 
checkerboards that flashed briefly with fixation points. Electrodes were placed on the scalp of 
the subjects in five locations, mostly in the areas where the occipital/parietal lobes are found in 
addition to the earlobes. The event-related potential, ERP, data was collected every 4 
milliseconds and was analyzed within 400 milliseconds after each flash. This setup allowed the 
researchers to capture ERPs associated with the brain's response to each stimulus. 

To classify the stimulus each participant was focusing on, the system processed the live 
EEG data in real time. This involved rapidly recording and preprocessing the signals, then 
applying machine learning algorithms to identify which fixation point triggered the response. 
1991: Cheng et al introduced motor imagery based control where users adjust mu 
rhythms to move cursor vertically in real-time 
​ The goal of the experiment was to determine whether EEG signals (specifically the mu 
rhythm 8-12 Hz) could be used to move a cursor accurately among four possible targets on a 
screen.  
​ Subjects sat in front of a screen with 4 vertical targets. EEG data was recorded from 64 
scalp electrodes, referenced to the right ear, sampled at 160 Hz. Data was collected from 3 
subjects for over 10 sessions where the first 6 consisted of training. Each trial lasted 
approximately 2.3 seconds. 
​ The EEG data was analyzed using a three stage algorithm: spatial filtering, feature 
extraction and classification. The spatial filtering consisted of Common Average Reference 
(CAR) to reduce noise common across all EEG channels and enhance localized brain activity, 
and Common Spatial Subspace Decomposition (CSSD) to isolate and enhance brain signal 
components to identify which target the subject focused on. Feature extraction involves two 
components, a power feature and a time feature, that are independent but work together to 
improve classification accuracy. The power feature measures the strength of mu rhythm in 
specific frequency bands using spectral analysis to capture how much mu rhythm activity is 
present. The time feature tracked how mu rhythm changed over time during a trial based on an 
energy accumulation function based on the Fisher ratio and was designed to be independent of 
the power feature. Lastly, a 2-dimensional linear classifier was adopted in the algorithm to 
minimize the number of trials misclassified.  
2022: Pan et al proposed an LSTM-based network to decode continuous 2-D velocity​
​ The goal of this experiment was to develop a real-time brain-computer interface system 
that allows users to control a 2D cursor noninvasively using EEG signals. They integrated both 
active (motor imagery) and passive (P300 error-related) brain signals for improved control 
accuracy. 
​ Ten subjects participated in the study and a 64-channel cap, focused on 10 
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motor-related channels, were placed on their heads. The participants were instructed to 
imagine moving the cursor left, right, up, or down based on the on-screen cues. These 
imagined movements generated specific brainwave patterns (specifically mu rhythms), which 
the system used to move the cursor in real time. If the cursor moved incorrectly, P300 signals 
(passive error detection) were triggered causing the system to recognize its mistake and 
correct the control. 
​ The EEG patterns were used by a deep learning model (stLSTM) to decode intended 
movement direction and velocity that contained two feature extractions: spectral features and 
temporal features. The spectral features focused on mu rhythm and were extracted using 
autoregressive (AR) modeling. The temporal features captured P300 components that were 
enhanced using wavelet convolution to emphasize event-related potentials.  
2025: Forenzo et al used deep learning to help subjects control a robotic arm  

Forenzo and his team aimed to investigate whether adding a “click” signal to a motor 
imagery based EEG BCi system could enable users to perform more complex tasks such as 
reaching, grasping, and placing objects with a robotic arm. They evaluated whether healthy and 
stroke-affected individuals could simultaneously control movement and clicking using only 
motor imagery. 

Seven healthy and 3 stroke-survivors participated in the study. EEG data was recorded 
using a 64-channel Neuroscan Quik-Cap and data was placed according to a modified 
international 10/20 system. The subjects performed motor imagery tasks to generate brainwave 
patterns: imagining left hand movement to move left, right hand for right, both hands for up, rest 
for down, and foot movement for clicking. The subjects were tasked with moving a cursor to a 
target and clicking using foot motor imagery, moving a robotic arm using the same “click”, and 
using the robotic arm to move physical cups across vertical shelves. 

To interpret the EEG signals, the system used deep learning models based on EEGNet. 
This system also included two decoders. One was used for predicting 2D movement velocities 
and the other was used for detecting a Boolean click signal. Both models were calibrated to fit 
the subject 
Results: 
1977: Jacque J. Vidal 

Vidal was able to observe that when a subject looked at flashing visual stimuli (the 
checkerboard), distinct EEG responses (visual evoked potentials or VEPS) appeared in the 
occipital region. These VEPS occurred consistently but varied depending on where the subject 
focused their attention. This supported his hypothesis that if different stimuli could produce 
these distinguishable EEG signals, the computer could interpret those signals and determine 
user intent. 

Vidal also explored slow cortical potentials (slow shifts in EEG voltage) that were 0.5 Hz 
or less. These are known to be related to motor preparation and intention. Vidal found that 
these SCPs could be changed by the subject, highlighting that a subject could learn to produce 
a specific SCP pattern to correlate with a particular movement. If the subject could learn to 
control these SCPs intentionally, these patterns could be input into a computer interface to 
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allow them to move as wanted. 
Lastly, Vidal found that event-related potentials or ERPs changed based on task 

demands and mental focus. When subjects were told to expect a stimulus their ERP responses 
were stronger meaning the brain’s response was influenced by attention and anticipation.  

Overall, Vidal successfully used EEG features to trigger computer responses proving 
that it was possible to “speak” to a machine using only brain signals. He coined the term “BCI” 
and proved the feasibility of a BCI system proving that EEG signals could be used to control 
devices. 
1991: Cheng et al  

Cheng observed that when subjects attempted to move the computer cursor, the mu 
rhythm exhibited distinct patterns based on which target they were aiming for. Using spectral 
analysis they found that different target choices produce distinguishable changes in mu rhythm 
power, particularly in the 12-14 Hz and 24-25 Hz frequency bands. These variations in power 
confirmed that mu rhythm amplitude could accurately reflect the subject's intent in the direction 
of the cursor. 

Cheng also explored the time course of mu rhythm activity and how the amplitude 
changes over time during a trial. This was specifically shown in the intermediate targets (2 and 
3) where subjects would actively change the rhythm. This observation supported the idea that 
subjects could learn to produce distinct patterns of brain activity to move where intended. 

Additionally, Cheng found that spatial filtering techniques improved classification 
accuracy. By applying CSSD, they enhanced task-specific EEG signals and reduced noise, 
resulting in unclear values for different targets. When both power and time features were 
combined in a two-dimensional linear classifier, accuracy increased notably in the training data 
for some subjects.  

However, when the same models were applied to test setting, classification accuracy 
dropped revealing variability in EEG signal strength. Despite this, Cheng’s work demonstrated 
that users could intentionally generate distinguishable mu rhythm patterns to control a cursor 
with success. 
2022: Pan et al 
​ Pan observed that users could continuously and intuitively control the 2D cursor using 
only motor imagery showing that the BCI system enabled reliable and accurate real-time 
control using noninvasive EEG. The system was able to successfully separate horizontal and 
vertical directions, by using a velocity-constrained loss function, allowing precise control.  
​ When the cursor moves incorrectly, the subject's brain automatically generates P300 
signals in response to errors that were detected by the system without requiring additional 
commands from the users.  
​ The spectral-temporal LSTM model accurately decoded both movement intentions and 
error signals, and by combining mu rhythm features with P300 responses, the system achieved 
adaptable control over time. Quantitative performance metrics, including Root Mean Square 
Error (RMSE), accuracy, and mean absolute ratio showed marked improvements compared to 
baseline linear regression model. ​
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​ Overall, by integrative active motor imagery and passive error-related brain signals Pan 
was able to enhance accuracy, stability allowing noninvasive BCIs to control a 2D cursor in 
real-time. 
2025: Forenzo et al 

Forenzo and his team observed that users could continuously and simultaneously 
control a robotic arm’s 2D position and initiate grasping actions using only motor imagery. 
However, performance varied widely between subjects and variability was also observed within 
and between sessions for a single subject, a known issue in BCI research.  

When users performed foot motor imagery, the BCI detected this as the “click” signal, 
replacing older methods. The click-based paradigm allowed users more natural interaction with 
physical targets. 

The deep learning models effectively decoded both continuous movement and click 
commands. By adjusting models mid-session for EEG variability, the system maintained 
consistent performance. Quantitative performance metrics, including hit count and hit-to-click 
ratio, showed subjects could move up to 7 cups in 5 minutes. 

Overall, by integrating voluntary movement and action control into a single BCI 
framework, the system enhanced accuracy and usability of noninvasive EEG based control, 
bringing BCI assisted robotics closer to clinical and daily applications. 
Discussion:  
​ Vidal’s experiment served as a proof of concept for BCI technology by being able to 
translate EEG data to the computer proving that EEG signals could be used to control devices. 
Cheng took Vidal’s findings one step further by demonstrating that users could intentionally 
generate specific EEG signals (mu rhythm patterns) to control a device. Pan also added on by 
integrative active motor imagery and passive error related brain signals to enhance BCIs. 
Lastly, Forenzo integrated all this research into building a BCI to control a robotic arm and 
adding to it by integrating voluntary movement and action control.  
​ These results highlight the evolution of EEG based BCIs. From the discovery of EEG 
signals in humans in the late 20th century, the usage of EEG signals has evolved to allow 
people to use these signals to control an object.  
​ In Vidal’s demonstration of EEG-based control he acknowledges the problem that the 
BCI system is not generalizable and what works for one subject may not for another. However, 
Vidal does not address this further, emphasizing there may be an issue with BCI development. 
Technology was rudimentary when the paper was written in 1977, causing the EEG data to be 
“noisy” and not as clear.  
​ Additionally, in Cheng’s experiment EEG signals varied not only between people but over 
time as well. Factors such as electrode placement, mental fatigue and even small movements 
can cause shifts in the signal's amplitude, proving to be a problem.  
​ Also, in Pan’s paper, the deep learning model (stLSTM), requires careful tuning of 
multiple parameters for different datasets and subjects, which limits its practicality and 
generalizability in real-world BCI applications. This is also seen in Forenzo’s work that relies 
heavily on controlled lab conditions that are not viable due to the real world’s variability, making 
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it impractical to replicate his experiments outside of a laboratory setting.  
Conclusion: 
​ From Vidal’s early EEG-controlled cursor to modern deep learning powered robotic 
control, BCI research has developed significantly. The accuracy, complexity and usability has 
improved throughout the years bringing BCI technology one step forward in becoming a 
practical tool for everyday use and a viable solution for assisting people with neurological 
conditions. 
​ However, challenges still exist today. Signal variability and user-specific calibration limit 
real-world practicality. Along with these challenges comes neuroethics, which raises concerns 
about privacy, autonomy and the responsible use of brain data, prompting important questions. 
​ Despite challenges, these systems hold immense potential to restore communication 
and mobility for people with neurological disorders in addition to opening doors for mental 
health monitoring.  
​ Currently, EEG based BCI’s are widely used for non-invasive brain signal monitoring, 
including assistive communication, neurofeedback therapy, gaming, cognitive monitoring and 
research purposes. Two widely recognized EEG-based BCIs include the Muse Headband and 
the Emotiv Epoc X. The Muse Headband is a consumer-friendly, wearable EEG device used for 
meditation. The Emotiv Epoc X is a wireless EEG headset used for research, neurogaming, 
and assistive technology and provides professional-grade data.  

Emerging BCI technology includes AI-driven decoding algorithms allowing deep learning 
models to adapt to users in real time, reducing calibration time. Several companies and 
research groups are actively working on achieving this. These advancements bring us closer to 
a future where BCIs are not only more accurate and user friendly but also seamlessly integrate 
into daily time, restoring independence and enhancing human capabilities.  
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