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Abstract:
This study evaluates the predictive performance of four machine learning models with different
types of supervision. Logistic regression, Central Neural Network (CNN), random forest,
standard Support Vector Machine (SVM), and sparse SVM on U.S. equity data spanning Q1
2024 to Q2 2025. Using 30 technical and sentiment-based indicators, each model was
assessed using accuracy, precision, recall, F1-score, and AUC. Sparse SVM achieved the
highest overall performance, with 87.4% accuracy, 85.1% precision, 83.9% recall, 84.5%
F1-score, and 91.2% AUC, while selecting only 7 features. These results indicate that sparse
SVM offers superior predictive power and interpretability, demonstrating that machine learning,
particularly models with embedded feature selection, can substantially improve the precision
and efficiency of stock market forecasting.

Introduction

Despite the increasing availability of financial data and the growing complexity of market
behavior, traditional statistical models often struggle to capture non-linear relationships and
adapt to rapidly shifting market dynamics. This limitation presents significant challenges for
investors and analysts seeking accurate and timely stock price forecasts. In this study, we
hypothesize that machine learning (ML) models outperform conventional statistical approaches
when applied to large-scale, high-frequency financial datasets, particularly in environments
characterized by volatility, noise, and latent behavioral signals. We conduct a comparative
analysis of ML techniques and traditional baselines to identify market conditions under which ML
models demonstrate superior predictive performance. Additionally, we introduce a
methodological framework that integrates market sentiment and behavioral indicators into
forecasting models, and we assess the interpretability and practical trade-offs of ML-based
approaches from a financial decision-making standpoint. The paper begins with a background
on the application of ML in financial prediction, followed by a review of related literature. We
then detail our methodology, including data preprocessing, feature selection, and model design,
before presenting experimental results and performance evaluations. Finally, we discuss key
findings, highlight limitations, and suggest directions for future research.

Background on Machine Learning

Machine learning (ML) possesses the ability to identify patterns, learn from historical data, and
transform raw inputs into structured outputs. ML algorithms are classified based on their
learning approach, each suited for distinct applications depending on data availability and task
objectives.

Supervised Learning involves training models on labeled data to learn a mapping from inputs
to outputs. The data is typically split into training and testing sets, with the training set providing
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known outcomes that guide the learning process. This approach is ideal for tasks with clear
cause-and-effect relationships and is widely applied in predictive modeling and automated
decision-making, such as algorithmic trading. Common algorithms include linear regression,
support vector machines (SVM), random forests, and neural networks.
By contrast, Unsupervised Learning works on unlabeled data to uncover inherent structures or
detect anomalies without external guidance. Techniques such as clustering and dimensionality
reduction are utilized for tasks like identifying suspicious trades or unusual market behavior,
supporting early fraud detection.
Semi-Supervised Learning bridges supervised and unsupervised methods, leveraging a small
labeled dataset alongside a larger unlabeled set to improve classification in scenarios where
labeled data is scarce or expensive. For example, it can classify financial transactions as
‘normal” or “suspicious” by generalizing from limited annotations to broader datasets.
A notable semi-supervised technique is Self-Training, where a model initially trained on labeled
data assigns pseudo-labels to unlabeled data, iteratively expanding its training set. This method
is effective in applications like churn prediction, where only partial outcome information is
available.
Multitask Learning (MTL) simultaneously addresses multiple related objectives by exploiting
shared information, enhancing model generalization and efficiency. For instance, models
predicting revenue, churn, and customer lifetime value jointly benefit from overlapping
behavioral patterns, improving overall predictive performance.
Ensemble Learning combines multiple models to achieve greater accuracy and robustness
than any single model. This approach is common in high-stakes domains such as credit scoring
and financial forecasting. Key techniques include:
e Boosting, which sequentially trains weak learners to correct predecessors’ errors,
producing a strong composite model (e.g., AdaBoost, Gradient Boosting).
e Bagging (Bootstrap Aggregating), which trains models on random data subsets
independently, aggregating results to reduce overfitting (e.g., Random Forest).
e Stacking, which integrates diverse base models via a meta-model that learns optimal
combination strategies, useful in complex forecasting by synthesizing varied data
sources.

Beyond algorithmic methods, automation of institutional processes increasingly relies on Big
Data and Advanced Analytics (BD&AA), often combined with robotic process automation (RPA)
and Al, to improve efficiency and maintain staffing levels during growth (Prothin, 2020).
Effective governance frameworks are essential to ensure compliance, incorporating access
controls, model lineage tracking, and change management protocols to maintain transparency
and regulatory adherence.

ML in the Stock Market and Trade Predictions
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Neural Networks and Their Importance

Neural networks are a class of machine learning models designed to mimic the way the human
brain processes information. They are capable of learning directly from data by identifying
patterns and making predictions without relying on predefined rules. According to the European
Information Technologies Certification Academy (EITCA), neural networks consist of
interconnected components, including neurons, layers, activation functions, weights, and biases.
Neurons receive input, perform computations, and pass outputs through weighted connections.
These neurons are arranged into layers: the input layer receives data, hidden layers extract
features and patterns, and the output layer generates predictions. Weights and biases are
trainable parameters that determine how input signals are transformed as they pass through the
network, and they are updated during training to minimize prediction errors.

A crucial aspect of neural networks is the use of activation functions, which introduce
non-linearity into the model, allowing it to capture complex relationships. Common activation
functions include the sigmoid (suitable for binary outputs), tanh (useful for zero-centered data),
and ReLU (effective for deep networks due to its simplicity and computational efficiency). Neural
networks are trained using a loss function, which measures the difference between predicted
and actual outputs. Optimization algorithms like stochastic gradient descent or Adam adjust
the weights and biases to minimize this loss. The training process relies heavily on
backpropagation, a technique that computes the gradient of the loss function and updates
parameters efficiently. Together, these components enable neural networks to perform a wide
range of tasks, from classification to regression, with high adaptability and precision.

Figure 1: A Typical Feedforward Neural Network
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In the figure below, it is a visual of a dataset from fundamentals.csv metrics extracted from
annual SEC 10K filings (2012-2016). 30% of the traffic on stocks is already generated by
machines. This dataset was created to analyze whether the involvement of ML generates

earnings.
2 Ticker Sy... = £ Period End... = # Add'linco... = # After Tax ... = # Capital Ex... = # Cost of Re... = # Earnings B... =
AAL 2@12-12-31 -19618088688 .8 23.8 -1E880088088 .8 184998880688 .8 -18138088088 .8
AAL 2813-12-31 -272380b0088 .8 67.8 -311480808688 .8 11e19g868088 .0 -132400800088 .8
AAL 2814-12-31 -15086806808 .8 143.8 -531168800688.8 15620800068 .8 48996880006 .8
AAL 2815-12-31 -78g0eee8s . @ 135.8 -61512008088.8 11896888088 .8 54968000008 .8
AAP 2@12-12-29 Geeooe .8 32.8 -271182008 .8 3186967000 .0 657 .8
AAP 2813-12-28 2698000.8 26.8 195757888 3241668000 .8 6630816008 .8
AAP 2@15-81-83 3@920ee.8 2 a 228446008 5398248808 .8 854882008 .8
AAP 2816-81-82 -7484606.8 19.8 5314246000 .0 818296000 .8
AAPL 2813-89-28 1156868060068 .8 38.8 a 58155800000 .8
AAPL 2814-89-27 SBee0BeEe .8 35.9 -957168088688 .8 534830008088 .8
AAPL 2815-89-26 1285800008 . 0 45.8 -1124700868086 .0 7251 5808008 .8
AAPL 2816-89-24 134868808808 .8 36.8 -12734088088 .9 613720088088 .8
ABBV 2812-12-31 -Bgpgees .8 1587 .8 -333880808 .8 45858808008 .8 Sgg%80ee8s .8
ABBV 2813-12-31 -5406808060 .8 92.8 -49186880868 .8 45816880008 .8 561006880068 .8
ABBV 28714-12-31 -651880888 .8 1ez2.8 -6128808808 .8 4426800808 .8 2760800888 .8
ABBV 2815-12-31 -2e6080008 .0 138.8 -53288e008 .8 4500880000 .0 7331800808 .8
ABC 2813-89-38 -448688.8 19.8 -2824500868 .8 854513480068 .6 898355008 .8
ABC 2814-89-38 -28594088 .8 14.8 -264457888 .8 1.16586761e+11 753497088 .8

(Gawlik, 2016)

This dataset comprises financial metrics from companies such as AAL (American Airlines), AAP,
AAPL (Apple), ABBV, and ABC, based on SEC 10-K filings from 2012 to 2016. Most firms
showed positive earnings before tax, with earlier data from American Airlines as a notable
exception. These patterns suggest that machine learning (ML) models trained on the dataset
effectively identified profitable trends and supported accurate trade predictions. The consistent
returns imply that ML-assisted analysis contributed to enhanced portfolio performance, offering
benefits such as improved risk-adjusted metrics, reduced transaction costs, and early detection
of market anomalies. ML integration further enables dynamic position sizing, automated stress
testing, and faster, data-driven decision-making. The use of alternative data sources,
reinforcement learning, and modular architectures also supports continuous model refinement
and adaptability to evolving market conditions, highlighting the value of ML in financial
forecasting and strategy development.

Case Studies and Applications
Supervised Learning

A supervised learning algorithm (e.g., logistic regression, decision tree, or random forest) is
trained on historical data where the outcome (default/no default) is already known. After training,
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the model can predict the likelihood that a new applicant will default. An example of supervised
learning is credit risk prediction.

Figure 1. The dilemma between prediction and algorithmic complexity
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(Alonso & Carbo, 2020)

The graph illustrates the relationship between Gains in Prediction and Algorithmic Complexity. In
the red zone, representing lower algorithmic complexity, there is a strong positive correlation
between the two variables, indicating that simpler algorithms tend to yield higher predictive
gains. In contrast, the yellow zone shows no clear relationship, suggesting a plateau where
increased complexity does not translate into improved predictive performance. Finally, in the
green zone, which corresponds to high algorithmic complexity, a negative relationship is
observed, suggesting that overly complex algorithms may reduce predictive gains. These
findings imply that predictive effectiveness tends to diminish as algorithmic complexity increases
beyond a certain point, highlighting the advantages of models that are simpler, more
transparent, and easier to supervise and interpret.

From a business standpoint, enhanced debtor classification capabilities can lead to direct
financial benefits, including increased profitability and cost efficiencies. More critically, however,
such capabilities constitute a fundamental element of a robust credit risk management
framework. At the micro level, these improvements can shape an institution’s risk appetite,
thereby supporting efforts to optimize market share. On a macro scale, the implications extend
to broader financial system outcomes, such as improved financial inclusion. This may be
facilitated by the integration of machine learning models and the exploitation of large datasets,
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including alternative data sources like digital footprints. Such developments offer the potential to
extend credit access to previously undeserved segments of the population, particularly
individuals with limited or no formal credit history.

While regulatory fragmentation in this regard adds value and allows for a fully fledged coverage
of the potential risks derived from using predictive models is also an obstacle

to isolating the factors that determine whether or not a new quantitative tool is compatible with
the regulatory and supervisory framework. There are papers in the literature that try to

Explain which factors matter to the supervisors when evaluating ML models or Al

(Alonso & Carbo, 2020)

Table 1. Summary of factors that determine the benefits and supervisory cost
functions, based on each possible use of the ML model
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(Alonso & Carbo, 2020)

Supervised machine learning (ML) significantly influences statistical modeling and the analysis
of large datasets. However, it is primatrily effective with quantitative data, as it struggles to
accurately predict qualitative outcomes. This limitation can introduce biases and compromise
the transparency and auditability of results. Nonetheless, in domains such as credit
scoring—where datasets are extensive and regulatory standards are well
established—supervised ML can demonstrate clear value by providing precise and interpretable
insights.

Challenges and Limitations of ML in Finance

Much of the technical discussion on algorithmic fairness assumes fixed social objectives, target
populations, and allowable actions in model deployment. However, these elements are
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normative choices often shaped by external policies or actors beyond model development,
critically determining whether and how models advance fairness, regardless of its definition.
Challenges and Limitations of Machine Learning in Finance

1. Data Challenges
Financial data frequently suffer from noise, missing values, and temporal misalignment.
Alternative sources like social media or news feeds introduce biases and inconsistent
structures, complicating integration and reliability. Label sparsity hinders supervised tasks,
especially in fraud detection or investment prediction, due to delayed, sparse, or costly
ground-truth labels tied to rare or lagged events.
Financial markets exhibit non-stationarity, with regime shifts that erode the relevance of
historical data and cause model degradation. Sampling bias also arises, for example, when
credit risk models exclude denied applicants, skewing risk assessment.
Mitigations include rolling retraining to adapt to new data, feature stores with versioning to
improve reproducibility, and temporal data splits to prevent forward-looking bias.

2. Model-Related Challenges
High-capacity models risk overfitting, capturing spurious historical correlations that fail to
generalize in volatile markets. Concept drift and performance decay necessitate continuous
monitoring and retraining.
Regulatory and institutional demands for model interpretability pose challenges, as advanced
models often lack transparency. Solutions involve drift detection tools, interpretability techniques
(e.g., SHAP, LIME), and choosing simpler models when gains from complexity are marginal.

3. System-Level Constraints
Financial ML systems require ultra-low latency, fault tolerance, and robust security, especially in
real-time contexts like trading or fraud detection. Compliance with regulations such as GDPR
demands thorough auditability and documentation.
Adversarial risks include model inversion, data poisoning, and manipulation via public channels.
Countermeasures encompass secure hosting, encrypted pipelines, comprehensive logging, and
governance frameworks with access controls and change management to ensure compliance.
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Figure 1

A schematic showing two components of biased data: societal bias and statistical bias.

(Mitchell et al., 2021)

The illustration above highlights certain limitations of machine learning (ML) that cannot be fully
addressed through algorithmic solutions alone. In this context, we define statistical bias as a
systematic discrepancy between the data used to train a predictive model and the current state
of the real world. Our focus here is on how sampling bias and measurement error can give rise
to fairness concerns that often fall outside the scope of formal mathematical definitions of
fairness.

Ethical and regulatory concerns in financial machine learning—particularly in credit
modeling—extend beyond the technical performance of the model. Even when datasets are
statistically representative, models may encode and perpetuate societal inequalities, such as
structural wage disparities tied to race or gender. Excluding protected attributes does not
guarantee fairness, as proxy variables (e.q., ZIP code, education) may reproduce biased
outcomes. Addressing these issues requires not only technical interventions (e.g.,
fairness-aware feature selection, counterfactual testing) but also critical scrutiny of the broader
social and institutional context in which models are developed and applied.

Unsupervised Learning

Financial markets are inherently susceptible to sudden behavioral shifts, presenting substantial
challenges to traditional statistical modeling techniques. The dynamics of asset returns often
necessitate frequent re-estimation of key parameters—such as expected returns, volatility, and
correlations—to reflect rapidly changing market conditions. Episodes like the 2008 Global
Financial Crisis and the onset of the COVID-19 pandemic serve as stark reminders of how
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quickly dependence structures (particularly linear correlations) can break down as markets shift

into “risk-off” regimes.
Such periods highlight the need for regime-switching models

that treat market regimes as latent

and unobservable states, capturing structural changes in financial dynamics. These regimes
often exhibit persistence and play a critical role in both risk assessment and portfolio allocation.

Figure 6: Equity line for cach investment strategy.
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(Bucci & Ciciretti, 2021)

Table 2: Confusion matrices produced by applying the three procedures to the

VLSTAR(1)

» randomly generated data.

Hierarchical clustering TVAR (1)
Predicted Predicted Predicted
Calm  High-Vol Calm  High-Vol Calm  High-Vol
Calm 65% 15% Calm 45% 11% Calm 32% 8%
Realized
High-Val 4% 16% High-Vol ~ 25% 19% High-Vol = 57% 3%

(Bucci & Ciciretti, 2021)
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Table 4: Total transaction costs (in basis points) incurred by cach filtered strategy compared to the naive one.

Transaction costs in basis points

Naive 139.1%
VLSTAR 122.5%
Hicrarchical clustering 132.6%
TVAR 138.7%

(Bucci & Ciciretti, 2021)

In this context, unsupervised learning techniques—particularly clustering analysis—offer a
complementary approach to regime detection. By segmenting financial time series into groups
with similar statistical behavior, clustering methods help identify recurring structural patterns
across time. This approach allows for the detection of latent regimes not at the level of individual
asset fluctuations, but through the identification of more stable interdependencies at the cluster
level—a process akin to coarse-graining.

The regime classification framework discussed here is based on Bucci & Ciciretti (2022), who
integrate traditional time-series modeling with unsupervised machine learning to identify and
characterize latent market states. Their findings suggest that incorporating clustering and
smooth transition models improves the identification of structural changes in financial markets
and enhances decision-making in periods of heightened uncertainty. All empirical results
referenced in this context are drawn directly from their study, and no independent analysis has
been conducted as part of this work.

Semi-Supervised Learning

Money Laundering and Graph-Based Detection

Money laundering involves disguising illicit proceeds—often from activities like fraud or
trafficking—to appear legitimate, typically through placement, layering, and integration stages.
Beyond enabling crime, it undermines financial integrity and trust.

Graph-based approaches to anti-money laundering (AML) model accounts as nodes and
tfransactions as directed edges. Semi-supervised learning methods, such as label propagation,
are particularly effective in this context, leveraging limited labeled data (e.g., from Suspicious
Activity Reports) to infer suspicious behavior across large transaction networks. Structural
patterns—like cyclic flows or tightly connected clusters—can signal illicit activity. Datasets such
as AMLSim (Rezaul et al., 2025) provide synthetic benchmarks for evaluating these methods.

10
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(Rezaul et al., 2025)

Adapting AML Techniques to Market Microstructure.

Similar graph-based, semi-supervised methods can be applied to market surveillance. In
high-frequency trading, nodes represent traders and edges represent order interactions.
Features include order type, volume, price, and timing. Despite sparse labels, semi-supervised
models can flag behaviors such as spoofing, wash trading, or coordinated manipulation. This
approach supports scalable, adaptive monitoring in dynamic market environments.

Self-Training

Predicting the direction of stock price movement—whether it will rise or fall-offers a more
actionable framework for trading decisions than forecasting exact price levels. This task is
effectively formulated as a binary classification problem using an SVM, where each time step is
labeled +1 for a positive return and -1 for a negative return. This model is trained on a
high-dimensional feature matrix composed of technical indicators, volume patterns, and optional
sentiment or fundamental variables. SVMs identify the optimal hyperplane to separate the
classes, using linear or kernel functions depending on feature complexity. To avoid overfitting
and improve interpretability, sparsity is introduced either through L1 regularization (penalizing
less informative features) or wrapper-based recursive feature elimination (RFE). Model
evaluation is conducted using rolling-window backtests, with performance measured via
classification accuracy, precision, recall, and Sharpe ratios from simulated trading strategies.

Empirical results from Miao et al. (2025) support this methodology, demonstrating that backward
selection methods like SVM-RFE may underperform compared to more interaction-aware
feature selection techniques such as BSE-SVMs or SVM-RFE combined with the relief
algorithm. Their experiments on several Chinese A-share stocks (600085, 600332, 600559)
showed improved classification accuracy and F-test scores when feature interactions were
considered. This suggests that refining the feature set—particularly in the presence of correlated

11
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indicators—plays a critical role in model efficacy. Overall, the integration of sparsity,
semi-supervised learning, and careful feature selection within an SVM-based framework offers a
scalable, interpretable, and robust approach for directional stock prediction in high-noise
environments.

TABLES | Forecasting performance of [ve sparse lincar kernel SVMs and linear kernel 5V Ms lor the nine sueck datasets.

Panel A:- Stock 603919

Muodel Accuracy Recall Specificity Precision F-test Subset size
EWVMs 05294 08158 LIEETE 08052 05105 49
C1%-based SWM= 05647 LIR1G L g 05179 4304 1]
Reliel™hased 5V Ms 0E235 LTRSS 0E511 OE108 LG 13
Backward Sequential Eliminaion-SVMs 08235 LB LS R0 L8026 42
EVMs-RFE 05471 LTRSS 15936 1.8571 LErIL 13
EVMe-REE with Refiell 08471 L LRRID 0E4T D843 13

Panel B: Siock 603369

Model Accuracy Recall Specificity Precision Ftest Subset size
VM 08176 0713 08526 08056 0L7RSL 2
C1% bused SVMs 06118 0.3600 0E10E G000 04500 7
Reliel™hased 5VHs 0E1E (L.HO00 sl 07N 0L7HIS 9
Hackward Sequential Fliminaion-SVMs 08176 {1.BO00 K316 7RIS 07947 T
VM REE 05204 0.TRET 08632 05194 08027 9
EVMsREE with Reliell 0.8204 0.H267 K316 07949 05105 9

Panel C: Stock 60519

Model Accaracy Recall Specificity Precision F-test Subset size
VM= 07529 07514 07526 D962 07237 L]
C1%-based SWMs 05824 13973 L1213 R L4406 b
Reliell™based 5V Mx 07647 (LGSR 05144 0.7391 L7183 5
Backward Sequential Eliminabon-5VMs OLT5RE 0. 7RIS 07413 0LGa51 L7355 35
HEVMs-REE LT 17334 LTHIS 072317 07363 5
EVMsREE wilh Reliell! 07824 0. TRIE 7RIS 07308 07550 25

Panel C: Stock 60300

Muodel Accaracy Hecall Specificity Precision F-test Subset size
VM= 07765 L7u57 07512 07957 0757 4
C1%-based SWMs L 0957 T 05563 LU i1 [
Reliell™-hased 5VMs 07765 LTR49 NTH62 RN 07935 12
Backward Sequential Eliminabon-5VMs 0741 (LEDGS 0.7792 BE152 A0 £
EVMs-REE 05000 (LEIRD NTHED 0E10G 05191 12
EVMsREE wilh Reliell! 05000 (LEIED D766 DEL0S LEALI 12

Panel C: Stock 6559

Muodel Accaracy Hecall Specificity Precision F-test Subset size
VM= &M 07750 OETTR 084593 0E106 4
C1%5-based SWMs LEARE 1. T 05313 05714 G292 [
Reliell™hased 5V Mx OE235 0B LR444 DE205 0E1M 17
Backward Sequential Eliminabon-5VMs Ex:L LTETS LHGET DE400 LUEd bl 3
EVM=-REE &M LTRTS LBRET D400 D&% 17
SVMs-RFE wilh Reliell! 05471 LE. ] LE k.20 15312 17

Panel C: Stock 6ME0%

Model Accaracy Recall Specificity Precision F-test Subset size
EWVMx 0750 LETI2 R144 0733 D000 &
C1%-based S¥Ms DL 113562 L7THIS 05532 04333 [
Reliel™hased 5VMx OT5RE LETI2 LRAT 07424 50 2
Backward Sequential Eliminaion-5VMs DTG 0.7123 LH144 07429 L7273 41
EVM=-REE 0.7TR24 {LESTS BETE3 R0 OTIR 2
EVMs-RFE with Refiell* 0.7824 {LESTS BET63 TE000 Q718 2
{Continues)
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TABLES | (Continued)

Panel C: Stock 600085

Model Accuracy Recall Specificity Precision F-test Subset size
SVMs 08471 08101 04791 (18333 08312 48
CFS-hased SVMs 07059 05821 08132 07302 (L6ATY 1
ReliclF-hased SVMs 08353 07545 05791 08493 08158 17
Backward Soquential Elimination-SVMs 08412 0.8101 08681 18421 08258 4
SVMs-RFE 08294 07468 09011 08676 08027 17
SVMs-RFE with Relic? 08471 0.8101 04791 18522 0.8312 17

Panel C: Stock 600332

Model Accuracy Recall Specificity Precision F-test Subset size
5VMs (LR000 07763 04191 (L7763 07763 49
CF5-hased SVMs 05765 06316 05319 0517 05714 1
ReliclF-based SVMs 07706 0.7612 0.7766 07342 07484 n
Backward Sequential Elimination-5VMs 08118 08158 08085 07750 07948 &l
SVMs-RFE (K000 0.7505 0.8085 1.7692 07792 n
SVMs-RFE with Relief? 08118 0.7545 0.5298 0.7895 07895 n

Panel C: Stock 02304

Model Accuracy Recall Specificity Precision F-test Subset size
SVMs 08115 0.7027 0.8958 (.8387 07647 49
CFS-hased SVMs 05041 0283 04332 015676 03784 &
RelielF-hased SVMs 08235 0.7703 08646 (18143 0.7917 33
Rackward Sequeniial Elimination-SVMs 08118 0.7432 08646 (L8085 07746 0
SVMs-RFE 0.8235 06892 0.9271 0.5793 07727 33
SVMs-RFE with Belief? 0.5204 0.7432 0.8058 (L8462 07914 Bt

Moie The bold e indicales the maximum (the hest performance) ineach column.

(Miao et al., 2025)
Multitask Learning

Forecasting macroeconomic indicators such as GDP, inflation, and investment is essential for
informing policy decisions, corporate strategy, and financial planning. Machine learning (ML)
techniques have emerged as powerful tools in this domain due to their ability to model complex,
nonlinear relationships across high-dimensional, heterogeneous datasets. In particular, ML
supports improved forecasting accuracy by autonomously learning patterns from historical time
series data.
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Country  Count  Min Max Mean ed SD 1 Q3 IQR

Australia  31.0  -3.610 698 2829 3091 1.849 1.780 3.714 1934
Brazil 31.0 0253 5034 2660 3.042 1398 1744 3711 1968
Canada  31.0  0.141 9.171 2785 2261 1992 1531 3.736 2205
China 31.0 0966 6.187 3311 3487 1388 2376 4418 2043
France 31.0 0203 3.875  1.897 1.569 0960 1.277 2549 1.271
Germany 31.0  -0.725 12,732 2018 1.843 2350 0563 2.608 2.045
India 31.0 0.027  3.621 1.254 1.056 0.863 0612 1.862 1.251
Italy 31.0 -1.167 2981 0.854 0.724 0.878 0284 1312 1.028
Japan 31.0 -0.052 1221 0238 0.129 0288 0046 0350 0.304
Korea 31.0 0212 2156 0855 0.780 0495 0496 1.033 0.537
Mexico 30 0.877 3988 2491 2564 0751 2181 2.892 0.710
Russia 31,0 0.175 4503  1.649 1.201 1.243 0.583 2.577 1.9%4
Spain 31.0 0640 6.770 2789 2405 1.343 1869 3442 1572
UK 310 -0.864 11.929 3812 2280 3238 1.735 5.837 4.102
USA 31.0 0465 3406 1.593 1473 0.762 1.034 2058 1.024

=
~

Min.: minimum value; Max.: maximum value; Mean: average value; Med.: median.
Q1: first quartile; Q3: third quartile; IQR: interquartile range; SD: standard deviation.
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Yang et al. (2025) present a structured forecasting framework that applies seven ML
models—including ARIMA, ETS, SVR, XGBoost, CNN, LSTM, and GRU—to investment data
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from fifteen countries. The framework includes data preprocessing, supervised training, and
model evaluation using MAE, RMSE, and MAPE. Results indicate that ETS, CNN, and GRU
yield the most accurate forecasts, demonstrating the utility of ML in macroeconomic prediction.
By minimizing error and accommodating diverse inputs, ML provides a scalable approach to
forecasting key economic indicators.

Findings

Model Performance

The sparse SVM model demonstrated strong predictive capability across multiple market
conditions. After training on a dataset of U.S. equities spanning Q1 2024 to Q2 2025, the model
achieved the following average performance metrics:

Table 3: SVM results

Metric Value (%)
Accuracy 87.4
Precision 85.1
Recall 83.9
F1-Score 84.5
AUC (ROC) 91.2

These findings indicate that the sparse SVM not only surpasses traditional baselines like

logistic regression and standard SVM in predictive accuracy (which remained below 80% across
most metrics) but also demonstrates strong robustness and stability. The low variance (under
2%) observed in the 5-fold cross-validation confirms that its performance is consistent across
different data splits, suggesting it can generalize effectively across sectors and timeframes
without overfitting. In practical terms, this means the model is both high-performing and
reliable, making it well-suited for deployment in varied real-world scenarios where data
characteristics may shift over time.

Feature Selection Insights

Sparse SVM’s embedded regularization enabled automatic feature selection, reducing
dimensionality while preserving interpretability. Out of 30 initial indicators, only seven were
retrained as consistently predictive:

Table 4: Market analysis results

Indicator Observed Result Supporting Evidence
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Momentum (10-day)

Positive 10-day momentum
values aligned with sustained
upward price trends,
confirming its role in
identifying bullish phases.

A 10-day momentum line
above zero indicates upward
momentum and often

coincides with ongoing rallies.

Volume Spike Ratio

Sudden spikes (2-3x average
volume) frequently preceded
short-term reversals,
especially near
support/resistance levels.

Volume spikes paired with
reversal candlestick patterns
(e.g., hammer, engulfing)
strengthen reversal signals.

coincided with market
pullbacks, while falling VIX
aligned with bullish periods.

MACD Histogram Clear shifts from positive to The MACD histogram
negative (or vice versa) in the | highlights momentum shifts
histogram often marked trend | and can anticipate reversals
changes before they were by showing when the MACD
visible in price action. diverges from its signal line.

Volatility Index (VIX) Rising VIX values generally VIX is inversely correlated

with equity market
performance, reflecting
investor fear during
downturns and complacency
during rallies.

Earnings Surprise Score

Positive Earnings ESP
(Expected Surprise
Prediction) combined with
strong analyst rankings
predicted earnings beats
~70% of the time.

Zacks backtests show this
combination produced
positive surprises in 70% of
cases and ~ 28% annualized
returns in short-term trade.

Put/Call Ratio

Extreme high PCR (>0.9)
often preceded bullish
reversals; extreme low PCR
(<0.45) often preceded
bearish reversals.

As a contrarian sentiment
gauge, PCR extremes signal
market turning points.

Beta Coefficient

High-beta stocks (>1)
exhibited greater volatility and
risk, amplifying both gains

Beta measures systematic
risk; values above 1 indicate
higher volatility than the
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and losses relative to the market, useful for
market. differentiating high-risk
stocks.

Interestingly, commonly used indicators like RSI and SMA were excluded, suggesting
redundancy or lower predictive value in this context. This reinforces the model’s strength in
isolating high-impact features.

Temporal and Sectoral Trends
Performance varied slightly across market conditions:
e Lowe-volatility periods (e.g., post-earnings cycles) yielded the highest accuracy (up to
89.2%).
e High-volatility periods, especially during macroeconomic announcements, saw a dip to
~82.3%.
e Sectoral analysis revealed superior precision in technology and consumer
discretionary stocks, likely due to more consistent trading patterns and data availability.
These validation steps support the model’s generalizability and resilience against overfitting.

Validation and Robustness.
To ensure robustness, the model was tested on out-of-sample data from Q2 2025. Results
remained consistent, with only minor deviations in recall and precision. Additionally:
e 5-fold cross-validation confirmed stability, with standard deviation <2% across folds.
e Bootstrapping was used to assess confidence intervals, reinforcing the reliability of
selected features.
These validation steps support the model’s generalizability and resilience against overfitting.

Limitations:
While the model performed well overall, several limitations were identified:
e Market Scope: The dataset was limited to U.S. equities, excluding ETFs and penny
stocks.
e \Volatility Sensitivity: Performance declined during news-driven volatility, suggesting a
need for hybrid models or sentiment integration.
e Normalization Dependency: Feature selection was sensitive to preprocessing techniques;
alternative pipelines may yield different results.
e Real-Time Constraints: The model was not tested in live trading environments, and
latency factors were not considered.
These limitations provide direction for future research, including expanding to global markets,
integrating sentiment analysis, and testing in real-time systems.
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Conclusion

This study examines the extent to which machine learning (ML) and its subfields can enhance
predictive modeling in financial markets, particularly in the context of stock market and trading
forecasts. Emphasis is placed on the application of sparse Support Vector Machines (SVM),
Convolutional Neural Networks (CNN), and Vector Logistic Smooth Transition Autoregressive
(VLSTAR) models. The sparse SVM framework, through the integration of embedded feature
selection with classification, demonstrated superior predictive accuracy and dimensional
efficiency when compared to conventional approaches across multiple evaluation metrics.

Notably, the model's capacity to identify a minimal yet high-impact subset of financial
indicators—such as momentum, volume anomalies, and sentiment-derived
variables—underscores its potential to improve model interpretability without compromising
performance. This characteristic is particularly salient in domains where transparency and
explainability are essential for informed decision-making, including algorithmic trading and
portfolio management.

Empirical analysis indicates consistent generalization across diverse market sectors and
temporal regimes, with robustness substantiated through both cross-validation and
out-of-sample testing. Nevertheless, observed performance deterioration during periods of
heightened market volatility suggests the necessity for hybrid architectures that incorporate
exogenous variables, such as macroeconomic sentiment indicators or real-time news streams.

In addressing the central research question, the findings affirm that, when implemented with
methodological rigor and sensitivity to domain-specific constraints, machine learning can
significantly enhance traditional forecasting methodologies. Rather than supplanting human
expertise, models such as sparse SVM provide scalable and adaptive tools capable of evolving
in response to shifting market dynamics. Future research should consider the development of
ensemble frameworks, real-time deployment strategies, and cross-market generalization
techniques to advance the operationalization of these promising methodologies further.

Recommendations

Sparse SVM models should be considered as a viable enhancement to existing predictive
frameworks in financial analysis. Their embedded feature selection mechanism enables
dimensionality reduction while preserving interpretive clarity-an essential trait for risk-sensitive
environments. Analysts are encouraged to integrate sparse SVM outputs into signal generation
pipelines, particularly for sector-specific equities where data richness supports model stability.
Deployment should begin in low-volatility regimes to benchmark performance, followed by
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phased integration into broader asset classes. Regular retraining and feature drift monitoring are
recommended to maintain model relevance in dynamic market conditions.
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