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Abstract 
3D reconstruction is a fundamental technology with applications in autonomous driving, virtual 
reality, and game development. Plane detection is a critical component in 3D reconstruction, as 
planes form the structural backbone of most environments. However, existing plane detection 
methods have limitations in their accuracy, while machine learning based plane detection is 
largely limited by its training dataset. This research aims to enhance plane detection in 3D 
reconstruction from 2D images by integrating monocular depth estimation, point cloud 
generation, RANSAC, and clustering techniques to better detect and reconstruct planes. In this 
project, I generated depth maps from 2D images by implementing monocular depth generation. 
Next, I then utilized pyRANSAC, a plane detection algorithm to detect basic planes. I then 
improved the algorithm to detect multiple planes and used a clustering algorithm to address the 
many artifacts induced by the algorithm. My proposed method was compared with existing 
approaches to show that my method has a more robust and more accurate plane detection. 
 
Introduction 
3D reconstruction creates digital 3D models of real-world objects and scenes from 2D images or 
other data, which is widely used in different areas, such as automotive driving, virtual reality, 
robotics for navigation, and game development.  In order to reconstruct images in 3D, many 
methods have been researched, which involved depth sensors, stereo vision, and Structure 
from Motion (SfM) [16]. Those traditional methods face significant limitations, such as high cost 
and errors in long-range and outdoor environments. Given the convenience of capturing 2D 
images and videos, leveraging them for 3D reconstruction is a promising alternative. My   
research utilizes monocular depth estimation, only needing a single image for 3D reconstruction 
[1]. 
 
Plane detection is a crucial part of 3D reconstruction because it simplifies a scene by identifying 
flat surfaces, which are prevalent in many environments, like buildings, which enables a more 
accurate reconstruction with less data. This is especially useful in fields like robotics, 
autonomous navigation, and virtual reality where understanding the layout of a space is 
important. However, existing plane detection methods have limitations in their accuracy. For 
example, machine learning based plane detection is largely limited by its training dataset [15]. 
 
One of the most used techniques for robust plane detection is the RANdom SAmple Consensus 
(RANSAC), which is a global iterative method for estimating the parameters of a certain model 
from input data points contaminated by a set of outliers (noisy data) [8]. 
 
This research aims to enhance plane detection in 3D reconstruction from 2D images by 
integrating monocular depth estimation, point cloud generation, RANSAC, and clustering 
techniques to better detect and reconstruct planes. My method utilizes the RANSAC algorithm 
to detect multiple planes in a point cloud representation of a 2D image, which I improve on using 
clustering to polish My detected planes. 
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In this project, I first generated depth maps from 2D images by implementing monocular depth 
generation. From the depth map, I generated the point cloud 3D reconstruction. I then utilized 
pyRANSAC, a plane detection algorithm to detect basic planes [2]. I improved the algorithm to 
detect multiple planes as the original pyRANSAC could only detect one plane. However, there is 
bleeding between two different planes and streaking of the wrong plane on top of another. A 
clustering algorithm was used to address this problem [3], refining plane detection by also taking 
distance between points into account. The proposed method was then compared against 
existing approaches and evaluated side by side to assess overall accuracy. My results showed 
more robust and more accurate plane detection. 
 
Related Work 
In order to reconstruct images in 3D, many methods have been researched, which involved 
depth sensors, stereo vision, and Structure from Motion (SfM) [16]. My research utilizes 
monocular depth estimation, only needing a single image for 3D reconstruction. 
 
Plane detection is a crucial part of 3D reconstruction because it simplifies a scene by identifying 
flat surfaces, which are prevalent in many environments, like walls, ceilings, tables, and floors, 
which enable a more accurate reconstruction with less data. This is especially useful in fields 
like robotics, autonomous navigation, and virtual reality, where understanding the layout of a 
space is important. There are three main steps to 3D plane detection and reconstruction, with 
each involving a variety of algorithms: monocular depth estimation to create the depth map 
(Depth Anything V2 [1], [11]), creating the point cloud, then processing and segmenting the point 
cloud into planes (RANSAC [8], Hough Transform [9], [12]). Other approaches include using 
supervised machine learning to create a model that detects planes given an input image, which 
requires large amounts of labeled data, from datasets such as NYU Depth V2 [5]. 
 
To begin, monocular depth estimation aims to infer depth from a single image, allowing 
generation of a 3D representation (i.e. point cloud) of the scene. Traditional methods use 
algorithms like Structure from Motion (SfM) and Multi-View Stereo (MVS) [16], which require 
multiple images to estimate depth by analyzing different views. However, single image 
approaches need to rely on different methods to analyze and generate depth maps. 
 
One well-known and state-of-the-art monocular depth estimation model is Depth Anything V2 
[1], which uses a transformer based architecture trained on extensive depth datasets to predict 
and create a depth map from a single image. The model operates in three key steps [11]: 
 

1.​ Train a reliable teacher model based on DINOv2-G purely on high-quality synthetic 
images. 

2.​ Produce precise pseudo depth on large-scale unlabeled real images. 
3.​ Train final student models on pseudo-labeled real images for robust generalization. 

 
The high accuracy of Depth Anything V2 makes it a valuable tool for monocular 3D 
reconstruction, allowing us to effectively create disparity maps which can be converted into 
depth maps for plane detection. 
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One of the most used techniques for robust plane detection is the RANSAC algorithm [8]. It 
iteratively fits planes to 3D point clouds by distinguishing inliers and outliers. In each iteration, 
the algorithm first randomly selects 3 points, fits a plane to those three points, calculates which 
other points are inliers of the plane by evaluating if the distance between that point and the 
plane is below a certain threshold. This process is repeated multiple times until the plane with 
the most inliers is found. This algorithm is widely used due to its robustness against noise but 
only detects one dominant plane at a time, which will require modifications to detect multiple 
planes. 
 
Another approach for plane detection is the Hough Transform [9], [12], which converts an image 
from Cartesian to polar coordinates, representing each point in the image space as a sinusoidal 
curve in the Hough space. In addition, two points in a line segment generate two curves, which 
are overlaid at a location that corresponds with a line through the image space. There are fMy 
main steps in this process: edge detection, transformation into parameter space, voting 
mechanism, and identifying peaks. First, the image is run through an edge detection algorithm 
(ex. Canny Edge Detector) to detect features in the image. These image features are then 
mapped and transformed into the parameter space for further analysis, where each detected 
feature or point casts a vote for possible plane parameters in an accumulator array. Finally, the 
plane with the most votes is selected as the best fit plane [9], [12]. The Hough transform is an 
effective method for detecting multiple planes, however it is computationally expensive for large 
scale problems. 
 
In addition to RANSAC and Hough Transform, DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) is a clustering algorithm used to refine plane detection by grouping 
points while filtering out noise [3], [13]. When applied with RANSAC, DBSCAN can help reduce 
artifacts, overlapping planes, and outliers, improving accuracy in monocular 3D reconstruction. 
While effective, DBSCAN is sensitive to parameter changes, and may struggle with varying 
point densities. However, it is still an important tool that can significantly enhance plane 
detection robustness. 
 
Other methods for plane detection are based on machine learning, such as PlaneRCNN and 
PlaneRecNet. PlaneRCNN is a machine learning based method that uses a convolutional neural 
network to detect and segment planes in images [14]. It used a supervised learning approach 
that required labeled datasets for training, and enabled the detection of multiple planes from a 
single image. However, PlaneRCNN had limitations in generalizing to unseen environments and 
suffered from inaccuracies. A more recent advancement, PlaneRecNet is an improved CNN 
based model that enhances plane detection by integrating a multi task learning framework [4]. 
PlaneRecNet [4] integrates a single-stage instance segmentation network for piecewise planar 
segmentation and a depth decoder to reconstruct the scene from a single RGB image. To 
achieve this, it uses several novel loss functions (geometric constraint) that jointly improve the 
accuracy of piecewise planar segmentation and depth estimation. Meanwhile, a novel Plane 
Prior Attention module is used to guide depth estimation with the awareness of plane instances. 
Unlike PlaneRCNN, PlaneRecNet improves generalization and reduces artifacts in complex 
scenes. 
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In conclusion, monocular 3D reconstruction is a powerful alternative to traditional depth sensing 
methods, with plane detection being an integral part to accurate reconstruction. Depth Anything 
V2 improves monocular depth estimation [1], [11]. RANSAC [8], Hough Transform [9], [12], and 
DBSCAN [3], [13] detect and refine plane segmentation, each with strengths and trade-offs. 
Deep learning models like PlaneRCNN [14] and PlaneRecNet [4] further enhance detection but 
require large datasets for training. By integrating monocular depth estimation, geometric 
methods, and machine learning, I am able to achieve greater accuracy and efficiency in plane 
detection for 3D reconstruction. 
 
Methodology 
 

1.​ Monocular Depth Generation 
In order to do 3D reconstruction, I need to obtain the depth map of the scene captured by the 
camera, as shown in Figure 1(a). Instead of using depth sensors, I used monocular depth map 
generation to get the depth map directly from the 2D images, which is more convenient and 
easier to use in different conditions. I selected the most advanced monocular depth generation 
method, the Depth Anything V2 [1] model to generate the disparity map from the 2d images.  
 

2.​ Point Cloud Generation 
In order to generate the 3D point cloud of the scene, I started from the disparity map that I 
generated above, as shown in Figure 1(a). I first converted the disparity map into the depth map 
through inputting the focal length of the camera that was used in the NYU depth v2 dataset [5] 
to take pictures [7]. The focal length information was provided by the NYU depth v2 dataset. 
Then from the depth map I generate the 3D point cloud using the pinhole camera model [18]. 
 

3.​ Plane Detection 
The last stage is to do plane detection from the generated 3D point cloud described above, as 
shown in Figure 1(b). I started with pyRANSAC-3D [5] to do plane detection. The method could 
find the main plane in the scene, but it can only find one plane in the reconstructed 3D point 
cloud. In order to find more planes, I modify the pyRANSAC algorithm to find a set number of 
planes, from the biggest to smallest, which is limited by the number of points. The modified 
method worked very well in finding multiple planes. But there were some artifacts found, caused 
by the detection algorithm bleeding between the detected planes. Later, I used clustering with 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [3] from SKLearn to 
remove artifacts. The final method worked very well for indoor images, and achieved better 
results compared to other methods on outdoor images.  
 

4.​ Deep Learning based Plane Detection 
As described above, my plane detection method was based on RANSAC plus the clustering 
method as the refinement. I also tried some deep learning based plane detection methods. 
PlaneRecNet [4] is one state-of-art deep learning based method proven to achieve good results 
in 2D plane detection. I used this model to test the plane detection quality on my test samples, 
and compared with my method in the following session.  
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(a) 

 

 
(b) 

 
Figure 1: Graphical description of my methodology. (a) Using an input image to generate the 
scene disparity map, I then generated the 3D point cloud from the disparity map with focus 
length information. (b) Plane detection from the 3D point cloud generated from (a). My algorithm 
detects multiple planes in the scene. The added clustering method refined the results and 
removed the artifacts. 
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Experiments and Discussion 
 
First, the proposed method was tested on the images from the NYU depth v2 Database [5], 
which is a collection of indoor scenes. 3 examples of the processed results are shown in Figure 
2. Figure 2(a) shows the input 2D images. The scenes in the images contain lots of objects with 
lots of noise, which makes plane detection quite challenging.  
 
Figure 2(b) shows the results of the 3D point cloud obtained from my multiple plane detection 
method based on RANSAC. Compared to the input 2D images, the generated 3D point clouds 
very well represented the 3D scene generation from the 2D image scene. In the 3D point cloud, 
each color plane represents one plane that’s detected inside the 3D point cloud. From the 
examples, you can see that the method showed very high accuracy of the planes in the scene. 
Although the scenes are complicated, most of the planes in the scenes were able to be 
detected.  
 
Figure 2(c) shows the results of plane detection after the clustering algorithm [3]. It refined the 
plane detection results obtained in Figure 2(b), made the plane detection more precise 
especially on small objects and boundaries. The detected planes very well represented the 
original structure shown in the input 2D images.  
 
Figure 2(d) shows the results from the deep learning plane detection method PlaneRecNet [4]. 
Because the method doesn’t generate 3D reconstruction. The detected 2D planes were 
displayed overlapping the original 2D images. The colorful patches representing the planes 
detected from the method. The results show that only a limited number of planes were detected 
from PlaneRecNet, much less than those from my results. Also, the precision of the planes are 
much less than my results. It’s hard to reconstruct the original scenes through the detected 2D 
planes by the deep learning method. One reason for the poor performance is that the scenes 
are quite complicated with random objects inside the rooms. Another reason is that deep 
learning based methods largely rely on the training dataset. But generally there is not a robust 
enough plane detection dataset, especially datasets labeled with ground truth for complicated 
scenes, that could be used to do plane detection directly from 2D input images. The problem is 
even more obvious for outdoor images and scenes, since it’s much more challenging to get the 
depth map for outdoor scenes. 
 
From the examples shown in Figure 2, it clearly indicated that my plane detection method based 
on RANSAC with clustering refinement outperforms both traditional RANSAC methods and even 
the state-of-art machine learning methods like PlaneRecNet.  
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(a)​Input 2D Images 
 

 
(b) 3D point cloud results from RANSAC based multiple Plane Detection method 

 
(c) 3D point cloud results from my RANSAC multi-plane method plus clustering 

 

 
 

(d) Results from Deep Learning based Plane Detection method PlaneRecNet [4] 
 

Figure 2: Plane detection results from my method and the comparison with the state-of-art deep 
learning method. (a) Input 2D Images. (b) 3D point cloud results from RANSAC based multiple 
Plane Detection. (c) 3D point cloud results from my RANSAC multi-plane method plus 
clustering. (d) Results from Deep Learning based Plane Detection method PlaneRecNet [4].  
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Conclusion and Future Work 
In this project, instead of using depth sensors, I used 2D images directly with monocular depth 
estimation to generate a 3D model with depth information, which was later used for plane 
detection.  
 
From the point cloud, I used a RANSAC based method to detect planes in the scene, which was 
further improved with a clustering strategy to refine results and remove artifacts.  
 
I compared my method with PlaneRecNet, which is a machine learning based method. My 
method outperforms this machine learning based method because it’s not limited by the training 
dataset, and it does not rely on segmentation, so that it’s more robust to work on images of 
complicated contents, while that is general for normal taken images.  
 
My future work will focus on:  

1.​ Improving the accuracy of point clouds through improving depth map generation, and 
adjusting the point clouds for more robustness to noise.  

2.​ Further improving the quality of plane detection for complicated scenes and outdoor 
scenes, which could improve the flexibility of the method to adapt to more environments. 

3.​ Further simplifying the algorithm to have better latency, allowing the method to be used in 
commercial products.  

4.​ Extend plane detection past planes into other shapes, so that more complicated 3D 
scenes could be represented with small amounts of data and with higher accuracy.   

5.​ Buildings are made up of many different shapes that are not just expressed in simple 
planes. Research can be extended to extending my method to complex shapes like 
spheres or cones.  
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