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Abstract 
Artificial intelligence research in chess has traditionally centered on analyzing board positions 
and moves. While effective for engines, this perspective overlooks the wider context that shapes 
human play. Players face time pressure, emotional, and psychological influences beyond the 
board. This paper examines whether Machine Learning can predict win, loss, or draw outcomes 
using only meta-game data such as ELO differences, time management, and activity statistics. 
A Random Forest classifier trained on a large dataset achieved competitive accuracy, revealing 
correlations between contextual signals and results.  
 
1. Introduction 
Chess has long been a central domain for exploring the capabilities of artificial intelligence and 
machine learning. From early engines that relied on brute-force search to modern neural 
networks like AlphaZero, much of this research has concentrated on analyzing moves and 
board states. These approaches have proven highly successful for computers that aim to find 
the best move, but they overlook an equally important question: how can we model and predict 
the behavior of human players?   
Unlike machines, humans do not play under ideal conditions. They are constrained by time 
pressure, skill differences, tournament standings, and psychological factors such as confidence 
or fatigue. These influences, while not visible on the board itself, shape the outcome of games in 
significant ways. Understanding them requires shifting focus from positions and moves to the 
broader context of play.   
This paper investigates that shift by asking:Can we use Machine Learning to predict win/loss 
rates in chess using meta-game data? By examining features such as time usage, ELO 
differences, and other non-board variables, the goal is to evaluate whether contextual 
information about the game environment can meaningfully contribute to predicting outcomes. In 
doing so, this work contributes to a more human-centered understanding of chess performance, 
complementing the board-focused approaches that dominate current research.   
 
2. Background 
This paper contributes to the area of how technology can influence chess. To understand how 
computers have influenced chess, it helps to trace the game’s history alongside technological 
change. Looking at the sequence of milestones makes it easier to compare how each stage 
reshaped the way chess was studied and played.  
 
2.1 Before Chess Engines Era 
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Before chess engines, the main way of learning chess was through following the footsteps of 
masters. Books and annotated games communicated insights that masters had gained through 
experience. These players often spent hours analyzing even a single position, and their love for 
the game stemmed from the highly romanticized view of chess in that era. Still, without 
computers, players relied more on intuition than on calculation, since thorough analysis was 
time-consuming. For example, Capablanca emphasized principled play over calculating lines 
before play. Because of the limits of human analysis, certain openings, games, and positions 
were debated for decades with no clear resolution. Much of the literature was written by great 
masters, but even they were not immune to mistakes in their evaluations. 
 
2.2 After Chess Engines Era 
The arrival of chess engines completely changed how players study the game. Engines can 
calculate millions of moves every second, which means they can quickly point out the best 
options in almost any position. This saved players the long hours they used to spend working 
out moves on their own and made preparing openings and reviewing games much faster. 
Engines also settled arguments that had lasted for decades by showing which moves were truly 
strong and which older ideas were actually mistakes. As a result, the overall level of play 
improved, and players at all levels gained access to tools that once would have taken years of 
experience to develop. That being said, previous methods of following the footsteps of masters 
were still used by many players. Chess engines offered calculation, but did not offer any help 
with intuition. 
 
2.3 Human-like Chess AI 
The most recent step in this journey has been the rise of human-like chess AIs such as 
AlphaZero and Leela Chess Zero. These systems learn patterns and strategies by playing 
millions of games against themselves. As a result, they demonstrate a style that feels creative 
and intuitive, sometimes even surprising grandmasters with moves that seem unusual but later 
prove effective. Furthermore, an ongoing project called MIAIA chess seeks to achieve human 
play as closely as possible. This allows the computer to understand what moves seem 
appealing to humans and can show how to avoid common blunders and mistakes. These 
advances have brought engines closer to human-like thinking meaning that they can better help 
humans improve their chess, but they still differ in one key way: they do not share the same 
limitations that humans face. A machine never gets nervous before a critical move, runs low on 
energy after a long tournament, or gets demotivated after losing a game. 
 
3. Related Works 
As mentioned before, in machine learning studies of chess, most prior work has focused on 
board-centric features. Researchers have trained large neural networks on millions of games to 
classify positions as winning, drawing, or losing, often by approximating engine evaluations 
through supervised learning [6]. Reinforcement learning approaches, most notably AlphaZero 
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and Leela Chess Zero, have shown that models can achieve superhuman strength through 
self-play, learning strategies without human heuristics [5, 7]. While these methods represent 
breakthroughs in AI, they remain tied to evaluating positions and move sequences on the board. 
 
By contrast, much less research has explored meta-game data as a lens for prediction. Studies 
have shown that time pressure increases error rates and blunders, showing the role of temporal 
dynamics in human play [1]. Similarly, ELO rating differences have long been recognized as 
reliable predictors of performance [2]. Psychometric analyses have also linked expertise to 
differences in memory, pattern recognition, and decision-making speed [8]. More recent work 
has explored the role of emotions in chess problem solving [3] and the impact of competitive 
stress on cognitive performance, including factors such as momentum, fatigue, and 
psychological pressure [4]. 
 
This body of work suggests that while board-focused methods dominate AI research, 
meta-game features offer complementary insights into human performance. By extending 
models beyond the board to include these meta features, future research can develop more 
human-centered predictive frameworks that better reflect the realities of competitive play. 
 
4. Dataset 
The data used in this project is sourced from lichess.org open database, which provides chess 
game records in PGN (Portable Game Notation) format. PGN is a widely accepted standard for 
storing and analyzing chess games. Lichess collects PGN data from two main sources: 

1.​ Games played directly on the Lichess platform​
 

2.​ Games broadcasted by Lichess from major tournaments and events​
 

For this project, I chose to use three datasets from the official broadcast games dataset (July - 
2025, June - 2025, and May - 2025), which is released under the Creative Commons 
Attribution-ShareAlike 4.0 license. Although this dataset is significantly smaller than the full 
archive of all user-played games on Lichess, it provides three key advantages: 

●​ Game quality: Broadcast games typically feature strong players, including titled and 
professional competitors, which improves consistency and quality. More formal games 
also carry more weight to players compared to casual games played online.​
 

●​ Annotations: These PGNs often include clock times and engine evaluations, whereas 
user-played games rarely do.​
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●​ Size: This project was conducted on a personal laptop with limited disk space and 
processing power. Handling the full Lichess archive would have been resource-intensive 
without providing proportionally valuable insights. The broadcast dataset is compact 
enough to be processed efficiently on local hardware while still offering high-quality data 
for analysis. 

4.1 Definitions Related to the Dataset 

This list gives a standard breakdown of terminology that will be referred to in the code and in the 
paper: 

●​ Time Controls and Clocks: Refers to the total time each player has to complete the game 
(e.g., 3 + 0 means 3 minutes with no increment). Time usage per move is logged into 
digital formats like PGN, typically using time-stamp notation (e.g., [%clk 00:03:17]). The 
data is cumulative, and time spent per move is calculated by taking the difference 
between successive clock values. 

●​ Player Ratings: Chess platforms assign ratings (e.g., 1000 or 2800) based on 
performance using ELO or Glicko rating systems. The higher the rating, the better the 
player. A player’s rating difference with their opponent is a key contextual factor when 
evaluating other features. 

●​ Game Phases: Chess is broadly divided into the opening, middlegame, and endgame. 
Each phase has its own principles, techniques, theory, and style of play. 

●​ Behavioral Indicators from Time: From move-by-move data, several behavioral metrics 
can be computed, such as average time per move, standard deviation of time, and the 
number of peaks in time usage (moves where they spent a significant amount of time). 

 
5. Methodology 
This section includes the main features of the model and the architecture of the project in the 
form of the pipeline. 
 
5.1 Features 
The features I have used for this include time, elo, and some basic overall position data not 
specific to any player  (this way we gain context into the type of game played without showing 
who is better). Specifically, I used the average time spent by each player (both as a ratio of 
starting time and also as a number), the standard deviation of time used, the elo of both the 
black and white players, the maximum time used by both players, The amount of moves the 
players peaked in time usage, number of captures total from both players (not separated by 
player, used to signify more of what phase ended on), how many moves the game lasted for, 
number of checks, number of promotions, and whether both players had decided to castle. 
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5.2 Pipeline 
We begin by downloading the lichess.org database. The data will be in PGN format which is not 
ideal for the information we will be extracting. Thus, we run a script to turn the PGN file into a 
JSON file, with only the data which is necessary from the PGN data. We get rid of all move 
centric data, keeping the features aforementioned. Further, we get rid of invalid data that may be 
errors in the dataset. Still, this data is very broad, so it is then handed to another script called 
the Feature Extractor which takes the data and splits it for the analysis and the models. To see a 
visual representation of the process, refer to figure 1. Each JSON file the feature extractor 
creates is specifically tailored towards its goal.  
The goal of each section is different. The analysis is meant to look at general statistics of the 
position and the dataset and see whether it can be used to predict the game's results. One part 
of the analysis looks at behavioral characteristics of time, and the other visualizes chess games 
in a graph. The goal for the models is to prove that AI and other models can use meta-game 
data to improve or predict human play. This data then goes to a Random Forest Classifier, 
which takes the features as input and outputs the likely result of the game. The models 
themselves take 20% of the data as training data and take 80% as testing data. Different 
variations of the models have been created to judge feature importance in the machine.  
 

 
Figure 1: Pipeline Diagram 
 
6. Evaluation 
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This section shows the insights gained in exploratory data analysis and how it was used in the 
model. All implementation details and scripts used in this study are available at my github 
repository: AstroAtomic/Chess-Research-Paper. It is still necessary to download the datasets as 
Github doesn’t allow large file uploads, see the Read Me for more details. 
 
6.1 Exploratory Data Analysis 
The first bit of analysis I did was checking the average time between winners and losers for the 
first 30 moves. Referring to Figure 2, the y-axis represents the percent amount of time that is 
used on average, and the x-axis is the move-number. We can see that during a chess game, the 
first few moves are typically quick between moves 1-5. Moves 5 to 25, typically where most 
middle games occur, show an increase in time-usage. Then as it approaches move 30 and 
beyond, the time usage shrinks. We can also see that on average, losers spend slightly more 
time than winners. 
 

 
Figure 2: average time diagram between winners and losers per move 
 
The next step in analysis that was done was to check visually if there are any correlation 
between the features that were chosen. Referring to the heat maps in Figures 3, 4, and 5, we 
can see that there are stark visual differences when white wins, draws, and losses based on the 
behavioral time data. The difference in color distribution between each diagram shows that there 
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are differences in correlation depending on the result. One example is standard deviation and 
average of time (irrespective of color). When the result is a draw, the color shown between them 
is blue (meaning when one increases the other typically decreases). When the result is a win for 
white, the color is more neutral/white (no correlation), and when the result is a loss for white, it 
shows a more red color (meaning when one increases, the other increases). This can confirm 
that time meta data can be used to predict the outcome of games. 
 

 
Figure 3: Feature Relationship Heatmap - White Draws 
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Figure 4: Feature Relationship Heatmap - White Losses 
 

 
Figure 5: Feature Relationship Heatmap - White Wins 
 
6.2 Model performance evaluation 
Now that we had sufficient evidence, it was time to build the model. For this, I chose a Random 
Forest algorithm. I developed two versions of the model: one that classifies wins, draws, and 
losses, and another that focuses only on wins and losses. 
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Starting with the win–loss version, White recorded a total of 23,255 wins and 19,286 losses. As 
shown in Table 1 and Table 2, this model achieved up to 90% accuracy. Other performance 
metrics such as the F1-score and recall were closely aligned, differing by only 1–2%. 
The version that included wins, draws, and losses reached an overall accuracy of 84%. For this 
model, the F1-score and recall followed within a margin of 3–10%. 
 

 
Table 1: Classification report for chess outcomes (Win vs Loss) 
 

 
Table 2: Classification report for chess outcomes (Loss, Draw, Win). Overall accuracy = 0.84 
 
6.3 Model Prediction Examples 
Referring to Table 3, the model correctly predicted a game that ended in a win. The probability 
distribution strongly favored the Win outcome (0.73), with Loss and Draw receiving much lower 
confidence scores (0.12 and 0.15, respectively). Several features contributed to this accurate 
prediction: the White player held a higher ELO rating (1632 vs. 1588), both sides showed 
balanced tactical peaks, and the game included aggressive signals such as early queen 
development, multiple checks, and a high number of captures. It also shows that white has 
spent more time than black (the average) and has more consistent time usage than black (the 
standard deviation), suggesting white was more calm and calculative during the game. Together, 
these factors suggested a decisive result, and the model aligned with the true outcome. 
 

9 



Table 3: Example (Correct Prediction) -- Index: 55526

 
 
In contrast, Table 4 shows an incorrectly classified example where the true result was a Draw, 
but the model predicted a Loss with the highest probability (0.46). Here, the game’s long length 
(135 moves), high number of captures and checks, and even the occurrence of two promotions 
created the appearance of a decisive outcome. Additionally, the stronger rating of the Black 
player may have biased the model toward expecting a win or loss rather than a draw. This 
highlights a common limitation: the model tends to associate highly active games with big rating 
differences with decisive results, meaning that the model is lacking more contextual information. 
 
Table 4: Example (Incorrect Prediction) -- Index: 6653 
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7. Limitations and Future Work 
One limitation of the current model is that it relies solely on in-game features such as move 
counts, timing variations, and tactical events (e.g., checks, captures, or promotions). While 
these indicators are valuable, they do not capture the broader context of the players 
themselves. Important metadata that could influence outcomes—such as psychological state, 
fatigue, or confidence—remains unavailable. For instance, whether a player was on a losing 
streak, their age, or even the psychological pressure of a tournament setting may significantly 
affect decision-making during a game. Without access to such contextual variables, the model 
still cannot yet truly predict human moves and game results. 
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Future work could integrate richer sources of metadata to provide a more holistic view of player 
performance. Historical performance trends (e.g., streaks of wins or losses), player 
demographics, or even real-time biometric data could improve the model’s ability to predict 
human behavior. Additionally, incorporating natural language data from post-game commentary 
or player interviews might provide insight into psychological drivers behind decisions. Expanding 
the feature set beyond purely game mechanics could therefore make the model both more 
accurate and more interpretable in capturing the complex human dynamics of competitive 
chess. Perhaps if such projects were attempted, it could unlock a lot about human psychology in 
general. 
 
8. Conclusion 
This research shows that chess outcomes can be predicted using metagame features such as 
time usage, ELO differences, and activity statistics, though with limitations compared to 
board-based analysis. The model captured meaningful signals—especially in decisive 
games—but struggled with active draws, underscoring both the potential and constraints of 
metagame approaches. While time management and consistency provide a human-centered 
lens on play, the absence of richer metadata, such as tournament context or psychological 
factors, restricts predictive power. Expanding beyond the board could yield models that better 
reflect human competition, supporting training, preparation, and insights into player psychology. 
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