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Abstract

We investigate late-time cosmology using a compiled sample of ≈ 85 galaxy-scale strong gravitational lenses,
exploiting the fact that lensing directly probes geometry through the distance ratio Dls/Ds while remaining
effectively independent of the Hubble constant H0. For each system we infer Dls/Ds from the observed
Einstein radius and stellar velocity dispersion under a standard, spherically symmetric mass description of
the lens galaxy. We then confront these measurements with the predictions of two dark-energy scenarios
in a spatially flat universe: ΛCDM (cosmological constant) and wCDM with a constant, yet free, equation-
of-state parameter w. The theoretical distance ratios are computed from the expansion history E(z) and
line-of-sight integrals between the lens and source redshifts.

Parameter estimation proceeds via a straightforward χ2 minimization built from per-lens uncertainties,
yielding (i) profiled one-dimensional likelihood curves for Ωm0 and w, and (ii) joint confidence contours
in the (Ωm0, w) plane. The resulting constraints demonstrate that strong lensing alone provides precise,
H0-independent information on the matter density and dark-energy phenomenology. In ΛCDM, the best-fit
matter density and its confidence interval are obtained from the profiled χ2 curve; in wCDM, the two-
parameter contours capture the expected degeneracy between Ωm0 and w while still delivering competitive
bounds on each.

Overall, our analysis shows that a uniform treatment of galaxy-scale lenses—linking well-measured imag-
ing and stellar kinematics to distance-ratio predictions—offers a clean and efficient route to cosmological
constraints. The framework is simple, reproducible, and readily extensible: it can incorporate alternative
lens models, larger samples, or be combined with complementary probes (e.g., supernovae, BAO, CMB) to
further sharpen constraints and test the robustness of the late-time expansion.

1 Introduction

Strong gravitational lensing has progressed from a conceptual curiosity to a precision tool in cosmology. By
producing multiple images, arcs, and Einstein rings, lenses turn galaxies into laboratories where mass, light,
and distance meet in the same equations. Since the discovery of late–time acceleration [9, 11], a central task
has been to map the expansion history well enough to distinguish a cosmological constant from more general
dark–energy behaviors. Lensing contributes uniquely to this task because its key geometric quantity depends
on ratios of angular–diameter distances and is thus effectively independent of H0—a clean complement to
standard candles and rulers [10].

This paper uses galaxy–scale lenses as a geometric probe of the late–time Universe and addresses two
questions: (i) within flat ΛCDM, what matter density is preferred by lensing geometry alone? (ii) within
flat wCDM, how tightly can a constant w be bounded, and how does it covary with Ωm0? The lens–source
redshift lever arm places sensitivity squarely in the late epochs most relevant for dark energy, while the
direct link to enclosed mass keeps the inference physically transparent.

Contributions. (1) We assemble a uniform, lensing–only analysis pipeline that carries imaging and stel-
lar kinematics through to cosmological distance–ratio constraints, emphasizing simplicity and reproducibility.
(2) We report constraints on Ωm0 in flat ΛCDM and on (Ωm0, w) in flat wCDM, presented both as concise
one–parameter profiles and as joint confidence regions that make parameter degeneracies explicit. (3) We
frame the results for straightforward combination with external probes (SNe Ia, BAO, CMB), positioning
strong lensing as an H0–independent cross–check on late–time dynamics.
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This paper is organized as follows. In Section 2, we briefly describe the methodology. In Section 3 we
introduce the strong–lensing dataset used in our analysis. Results are presented in Section 4 and conclusions
in Section 5.

2 Methodology

The goal of this work is to use galaxy–scale strong lenses as a purely geometric probe of the late–time expan-
sion in a spatially flat universe, testing both ΛCDM and its minimal extension with a constant dark–energy
equation of state (wCDM). Throughout we assume a single lens plane, negligible external convergence in the
baseline analysis, and a spherically symmetric mass description of the lens galaxy adequate for relating the
Einstein radius to the enclosed mass. We adopt SI units, take all angles in radians, and reserve subscripts L,
S, LS for lens, source, and lens–to–source distances, respectively. The notation Ωm0 denotes the present–day
matter density parameter and w ≡ pDE/ρDE a constant equation–of–state parameter for dark energy.

Expansion history and distances. The expansion history is encoded in the dimensionless Hubble function
E(z) ≡ H(z)/H0. In the flat models considered here,

E(z) =

{√
Ωm0(1 + z)3 + (1− Ωm0), flat ΛCDM,√
Ωm0(1 + z)3 + (1− Ωm0)(1 + z)3(1+w), flat wCDM (constant w).

It is convenient to work with the (dimensionless) comoving distance

χ(z) =

∫ z

0

dz′

E(z′)
, (1)

from which the flat–FRW angular–diameter distance between two redshifts z1 < z2 follows as

DA(z1, z2) =
c

H0

χ(z2)− χ(z1)

1 + z2
. (2)

The geometry relevant for lensing enters only through the ratio DLS/DS , which eliminates the overall scale
c/H0 when formed from Eq. (3). Consequently, the theory prediction used below is effectively independent
of H0.

Lensing geometry and the observable. For a spherically symmetric lens producing an Einstein ring of
angular radius θE , the reduced deflection at θE equals θE itself. In the Singular Isothermal Sphere (SIS)
limit this yields

θE =
4π σ2

c2
DLS

DS
, (3)

where σ is the line–of–sight stellar velocity dispersion of the lens galaxy measured from spectroscopy. Equa-
tion (4) provides a direct estimator of the distance ratio per lens:

Dobs ≡
(
DLS

DS

)
obs

=
c2

4π

θE
σ2

. (4)

In practice θE is obtained from image astrometry (or lens–model fits) and σ from aperture spectroscopy of
the lens galaxy. When necessary, all angles are converted to radians before use.

Lens mass model (baseline and generalization). The baseline mapping employs the SIS relation above, ap-
propriate for massive early–type lenses near the Einstein radius. If one instead adopts a spherical power–law
density profile ρ ∝ r−γ and measures a luminosity–weighted dispersion σap within an aperture θap, the
inferred ratio becomes (

DLS

DS

)
obs

=
c2 θE
4π σ2

ap

(
θap
θE

)2−γ
1

f(γ)
,

where f(γ) is the standard isotropic Jeans factor,

f(γ) = − 1

(5− 2γ)(1− γ)

√
π Γ

(
γ
2 − 1

2

)
Γ
(
γ
2

) Γ(γ − 1)

Γ
(
γ − 3

2

) .
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Our cosmological analysis uses the SIS baseline for simplicity and uniformity; the pipeline can substitute the
power–law expression without altering the cosmology integrals or the χ2 construction presented below.

Data contents and selection. Each lens in the catalog contributes the tuple {zl, zs, θE , σ} with correspond-
ing 1σ uncertainties {σzl , σzs , σθ, σσ}. We retain only systems with zs > zl, finite positive uncertainties, and
well–resolved Einstein radii. If multiple measurements exist for the same system, a deterministic priority
order is adopted (e.g., most recent reduction; validated instrument pipeline), otherwise measurements are
averaged inverse–variance–weighted. Where no explicit σθ is reported, a conservative fractional uncertainty
is adopted (a fixed percentage consistent with survey systematics), clearly documented in the data table.

Uncertainty propagation for the observable. Assuming uncorrelated errors in θE and σ, the fractional
uncertainty in Eq. (5) is (

σD

Dobs

)2

=

(
σθ

θE

)2

+ 4
(σσ

σ

)2

, (5)

applied lens–by–lens to obtain σD,i for use in the likelihood below. (If a dispersion rescale is used, propagate
the quoted uncertainty.)

Theory prediction per lens. Given (zl, zs) for a lens, the theoretical counterpart of Eq. (5) is

Dth(zl, zs; Θ) ≡ DLS

DS
=

DA(zl, zs)

DA(0, zs)
=

∫ zs

zl

dz′

E(z′; Θ)∫ zs

0

dz′

E(z′; Θ)

, (6)

where the parameter set is Θ = {Ωm0} for flat ΛCDM and Θ = {Ωm0, w} for flat wCDM, and E(z′; Θ) is
given by Eq. (1). The numerator and denominator are evaluated numerically to a fixed tolerance, and the
result is checked to satisfy 0 < Dth < 1 for all valid redshift pairs.

Numerical evaluation and caching. To ensure efficiency and reproducibility, the redshift grid used in
the integrals is constructed from the unique set of lens and source redshifts in the catalog (augmented by
z = 0), and the comoving integral χ(z) in Eq. (2) is computed once per grid point using a stable quadrature
rule (e.g., adaptive Gauss–Kronrod or composite Simpson with step control). The values χ(z) are cached
and reused to form DA via Eq. (3) and hence Dth via Eq. (7). All constants (c, conversion factors) are
defined in a single place and unit–checked. Inputs are validated for monotonicity of redshifts (zs > zl) and
for numerical pathologies (NaNs, infs), which trigger explicit, logged exclusions.

Quality control and physical sanity checks. Because DLS/DS ≤ 1 in standard FRW cosmology with a
single lens plane, systems with Dobs − σD > 1 are flagged as inconsistent under the baseline assumptions.
These may indicate measurement issues, complex environments, multipane lensing, or model mismatch. The
baseline fit is performed on the full quality–controlled sample; a predefined alternate cut (removing flagged
outliers) is used later as a robustness check. Neither branch alters the estimator defined below.

Parameter domain and evaluation strategy. Parameter exploration proceeds on a dense, rectangular grid
covering physically motivated ranges sufficient to bracket the posterior support, for example

Ωm0 ∈ [Ωmin
m0 ,Ω

max
m0 ] , w ∈ [wmin, wmax] (for wCDM) , (7)

with step sizes chosen to resolve the curvature of χ2(Θ) (validated by refinement tests). At each grid point
Θ the full set of Dth(zl,i, zs,i; Θ) is formed and compared to the observables.

Estimator and confidence construction. The goodness–of–fit function is

χ2(Θ) =

N∑
i=1

[
Dth(zl,i, zs,i; Θ)−Dobs,i

]2
σ 2
D,i

, (8)

with degrees of freedom ν = N − 1 for flat ΛCDM (one free parameter) and ν = N − 2 for flat wCDM

(two free parameters). The best–fit parameters Θ̂ are those minimizing Eq. (9). One–parameter confidence
intervals are reported from profiled curves (minimizing over the nuisance parameter, if present) using the
standard thresholds ∆χ2 ≡ χ2 − χ2

min = 1 (68%) and 4 (95%). Joint two–parameter confidence regions in
(Ωm0, w) correspond to ∆χ2 = {2.30, 6.18, 11.83} for 1σ, 2σ, and 3σ. Around the minimum, a local quadratic
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or spline interpolation of χ2 is used purely for reporting smooth parameter estimates and uncertainties; all
quoted values trace back to Eq. (9) evaluated on the native grid.

Reproducibility, safeguards, and audit trail. All numerical tolerances (integration accuracy, grid steps),
constants, and selection criteria are fixed in a configuration file that accompanies the analysis. Intermediate
arrays—χ(z), DA(z1, z2), Dth, Dobs, and residuals—are saved per run to enable full audit. The lens list
is processed in a deterministic order with explicit logging of any exclusions and of the two quality–control
branches (baseline and outlier–culled). While the baseline model uses the spherical SIS linkage of Eq. (4), the
pipeline is modular: alternate mass–profile mappings or dispersion–aperture conventions can be substituted
without changing the cosmology layer (Eqs. (1)–(7)) or the estimator (Eq. (9)).

Scope of this section. The methodology above defines the end–to–end path from observables to cosmo-
logical constraints without invoking any statistical results or figures. The subsequent sections specify the
adopted parameter ranges in Eq. (8), present the curated lens catalog with measurement uncertainties, and
then apply the estimator of Eq. (9) to derive profiled one–parameter curves and joint confidence regions for
the flat ΛCDM and flat wCDM frameworks.

3 Data: strong–lensing sample and measurements

To implement the methodology of Section 2 we assembled a homogeneous catalog of ∼85 galaxy–scale
lenses drawn from three surveys: the Sloan Lens ACS Survey (SLACS), the Lenses Structure and Dynamics
survey (LSD), and the Strong Lensing Legacy Survey (SL2S). Our goal was to build a set in which the four
quantities required to evaluate Dobs for each system are available with uncertainties: the lens and source
redshifts (zl, zs), the Einstein radius θE , and a spectroscopic stellar velocity dispersion for the lens galaxy.

Sources of systems. SLACS provides the bulk of the sample. It identifies early–type lenses by searching SDSS
spectra of massive galaxies for background emission lines at zs > zl and then confirming viable candidates
with HST/ACS imaging; the lens mass distribution is modeled to the imaging to recover θE with high
precision [e.g. 1, 3]. The LSD survey predates SLACS and supplies a handful of well–studied systems for
which both imaging and high–quality central dispersions are available; we include the standard subset (e.g.,
CFRS03.1077, HST 14176+5226, HST 15433+5352, Q0047−281, MG2016+112). SL2S searches CFHTLS
imaging for ring–like features around massive red galaxies using the RingFinder algorithm and follows up
candidates with HST and spectroscopy; we adopt the lenses compiled in Sonnenfeld et al. [13, 14]. In all
three surveys the confirmed lenses are dominated by massive early–type galaxies (ETGs), consistent with the
expectation that ETGs contain the majority of stellar mass at low redshift and therefore have the highest
lensing cross–section.

What is measured and how. For every system we record (zl, zs) from spectroscopy, the Einstein radius
θE from lens–model fits to high–resolution images, and a one–dimensional stellar velocity dispersion. The
Einstein radius is obtained by subtracting the light of the deflector (typically a de Vaucouleurs profile) and
fitting a lens mass distribution to reproduce the multiply–imaged arcs/ring; the baseline mass model in the
survey pipelines is a singular isothermal ellipsoid (SIE) with an external shear term added when required
by the data. Although the internal mass–model details differ slightly across surveys and between ground
and space imaging, the Einstein radius is a very robust, directly imaged scale: when an explicit error is not
published, we adopt a conservative relative uncertainty of 5%, consistent with the survey teams’ estimates.

The spectroscopic dispersion is reported as an aperture value σap measured within a circular fiber or
rectangular slit of angular size θap. For SLACS we take θap = 15 (SDSS fiber); for SL2S and LSD we infer
an effective circular aperture from the reported slit dimensions as in the source papers. When the effective
(half–light) radius θeff is available, we also compute a standardized central dispersion

σ0 = σap

(
θeff
2 θap

)0.04

, (9)

following the Jørgensen et al. aperture correction. Because the exponent is small, the additional uncertainty
from θeff is negligible (< 1%) compared to the quoted error on σap. Our baseline analysis uses the stan-
dardized value σ = σ0 when available, otherwise σ = σap; in both cases the quoted measurement error is
propagated.
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Catalog contents and formatting. Table 1 (excerpted in the figure below) lists, for each lens: the identifier,
zl, zs, σap ± δσap (km s−1), θE (arcsec), survey label (SLACS/LSD/SL2S), the adopted θap (arcsec), the
effective radius θeff (arcsec) when available, and the standardized dispersion σ0 ± δσ0 (km s−1). All angles
are in arcseconds in the table and converted to radians when used in Eq. (5). Quality flags in the working
file indicate any peculiarities (e.g., close environment, obvious satellites, or ambiguous arc morphologies).

Selection and quality control. We retain systems with (i) secure measurements of zl and zs; (ii) a published
θE ; (iii) a dispersion with an uncertainty; and (iv) zs > zl. We remove duplicates and keep a single entry per
lens following a deterministic rule (most recent and/or highest–quality reduction). After computing Dobs =
(c2/4π) θE/σ

2 and its uncertainty, we flag systems with Dobs−σD > 1 as inconsistent with single–plane FRW
geometry under the spherical baseline (possible multi–plane lensing, strong environment, or measurement
issues). The baseline cosmology fits use the full quality–controlled catalog; in robustness checks reported
later we repeat fits with the flagged systems removed.

Redshift coverage. The combined catalog provides good leverage on late–time geometry: lenses span zl ∼ 0.1–
0.8 with medians that reflect survey design (SLACS at lower zl, SL2S intermediate, LSD higher), while
sources typically lie at zs ≳ 1–3. This lens–source lever arm places the sensitivity squarely in the regime
most informative for the ΛCDM/wCDM expansion histories considered here.

Consistency across surveys. Although SLACS, SL2S, and LSD differ in target selection and instrumentation,
the quantities we require are reported in a consistent manner. Einstein radii come from forward modeling
of the same observables (arc/ring morphology), and dispersion measurements are homogenized through the
aperture correction above. As a result, the derived distance–ratio estimator Dobs is directly comparable
across the full sample and can be confronted, lens by lens, with the theoretical prediction Dth(zl, zs; Θ) of
Section 2.

A machine–readable version of the catalog (including all columns shown in Table 1 and the propagated
Dobs and σD) accompanies this work.
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Table 1: Dataset used in this work.

Name zℓ zs σap [km s−1] E [] Survey ap (”) θeff [′′] [km s¹]

J0330-0020 0.351 1.071 212±21 1.1 SLACS 1.5 1.2 220±22
J0405-0455 0.075 0.81 160±8 0.8 SLACS 1.5 1.36 165±8
J0728+3835 0.206 0.688 214± 11 1.25 SLACS 1.5 1.78 219±11
J0737+3216 0.322 0.581 338± 17 1 SLACS 1.5 2.82 339±17
J0808+4706 0.219 1.025 236± 11 1.23 SLACS 1.5 2.42 238±11
J0822+2652 0.241 0.594 259±15 1.17 SLACS 1.5 1.82 264±15
J0841+3824 0.116 0.657 225±11 1.41 SLACS 1.5 4.21 222±11
J0903+4116 0.43 1.065 223±27 1.29 SLACS 1.5 1.78 228±28
J0912+0029 0.164 0.324 326± 12 1.63 SLACS 1.5 3.87 323±12
J0935-0003 0.348 0.467 396±35 0.87 SLACS 1.5 4.24 391±35
J0936+0913 0.19 0.588 243± 12 1.09 SLACS 1.5 2.11 246±12
J0946+1006 0.222 0.608 263±21 1.38 SLACS 1.5 2.35 266±21
J0956+5100 0.24 0.47 334± 17 1.33 SLACS 1.5 2.19 338±17
J0959+0410 0.126 0.535 197±13 0.99 SLACS 1.5 1.39 203±13
J1016+3859 0.168 0.439 247±13 1.09 SLACS 1.5 1.46 254±13
J1020+1122 0.282 0.553 282± 18 1.2 SLACS 1.5 1.59 289±18
J1023+4230 0.191 0.696 242± 15 1.41 SLACS 1.5 1.77 247±15
J1100+5329 0.317 0.858 187±23 1.52 SLACS 1.5 2.24 189±23
J1106+5228 0.096 0.407 262± 13 1.23 SLACS 1.5 1.68 268±13
J1112+0826 0.273 0.63 320±20 1.49 SLACS 1.5 1.5 329±21
J1134+6027 0.153 0.474 239± 12 1.1 SLACS 1.5 2.02 243±12
J1142+1001 0.222 0.504 221±22 0.98 SLACS 1.5 1.91 225±22
J 1143—0144 0.106 0.402 269± 13 1.68 SLACS 1.5 4.8 264±13
J1153+4612 0.18 0.875 226±15 1.05 SLACS 1.5 1.16 235±16
J 1204+0358 0.164 0.631 267±17 1.31 SLACS 1.5 1.47 275±17
J1205+4910 0.215 0.481 281±14 1.22 SLACS 1.5 2.59 283±14
J1213+6708 0.123 0.64 292±15 1.42 SLACS 1.5 3.23 291±15
J 1218+0830 0.135 0.717 219±11 1.45 SLACS 1.5 3.18 218±11
J 1250+0523 0.232 0.795 252±14 1.13 SLACS 1.5 1.81 257±14
J 1251-0208 0.224 0.784 233±23 0.84 SLACS 1.5 2.61 234±23
J 1330-0148 0.081 0.712 185±9 0.87 SLACS 1.5 0.89 194±9
J1402+6321 0.205 0.481 267±17 1.35 SLACS 1.5 2.7 268±17
J1403+0006 0.189 0.473 213±17 0.83 SLACS 1.5 1.46 219±17
J1416+5136 0.299 0.811 240±25 1.37 SLACS 1.5 1.43 247±26
J1430+4105 0.285 0.575 322±32 1.52 SLACS 1.5 2.55 324±32
J1436-OOOO 0.285 0.805 224±17 1.12 SLACS 1.5 2.24 227±17
J1451-0239 0.125 0.52 223± 14 1.04 SLACS 1.5 2.48 225±14
J1525+3327 0.358 0.717 264±26 1.31 SLACS 1.5 2.9 264±26
J1531-0105 0.16 0.744 279±14 1.71 SLACS 1.5 2.5 281±14
J1538+5817 0.143 0.531 189± 12 1 SLACS 1.5 1.58 194± 12
J1621+3931 0.245 0.602 236±20 1.29 SLACS 1.5 2.14 239±20
J1627-0053 0.208 0.524 290± 14 1.23 SLACS 1.5 1.98 295± 14
J1630+4520 0.248 0.793 276±16 1.78 SLACS 1.5 1.96 281±16
J1636+4707 0.228 0.674 231±15 1.09 SLACS 1.5 1.68 236±15
J2238-0754 0.137 0.713 198±11 1.27 SLACS 1.5 2.33 200± 11
J2300+0022 0.228 0.464 279±17 1.24 SLACS 1.5 1.83 285±17
J2303+1422 0.155 0.517 255±16 1.62 SLACS 1.5 3.28 254± 16
J2321-0939 0.082 0.532 249±8 1.6 SLACS 1.5 4.11 246±8
J2341+OOOO 0.186 0.807 207±13 1.44 SLACS 1.5 3.15 207±13
Q0047-2808 0.485 3.595 229±15 1.34 LSD 1.25 0.82 239± 16
CFRS03-1077 0.938 2.941 251±19 1.24 LSD 1.25 1.6 256±19
HST14176 0.81 3.399 224±15 1.41 LSD 1.25 1.06 232± 16
HST15433 0.497 2.092 116±10 0.36 LSD 1.25 0.41 125±11
MG2016 1.004 3.263 328±32 1.56 LSD 0.65 0.31 347±34
J0212-0555 0.75 2.74 273±22 1.27 SL2S 0.9 1.22 277±22
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Name zℓ zs σap [km s−1] E [] Survey ap (”) θeff [′′] [km s¹]

J0213-0743 0.717 3.48 293±34 2.39 SL2S 1 1.97 293±34
J0214-0405 0.609 1.88 287±47 1.41 SL2S 1 1.21 293±48
J0217-0513 0.646 1.847 239±27 1.27 SL2S 1.5 0.73 253±29
J0219-0829 0.389 2.15 289±23 1.3 SL2S 1 0.95 298±24
J0223-0534 0.499 1.44 288±28 1.22 SL2S 1 1.31 293±28
J0225-0454 0.238 1.199 234±21 1.76 SL2S 1 2.12 233±21
J0226-0420 0.494 1.232 263±24 1.19 SL2S 1 0.84 272±25
J0232-0408 0.352 2.34 281±26 1.04 SL2S 1 1.14 287±27
J0848-0351 0.682 1.55 197±21 0.85 SL2S 0.9 0.45 208±22
J0849-0412 0.722 1.54 320±24 1.1 SL2S 0.9 0.46 338±25
J0849-0251 0.274 2.09 276±35 1.16 SL2S 0.9 1.34 279±35
J0850-0347 0.337 3.25 290±24 0.93 SL2S 0.7 0.28 309±26
J0855-0147 0.365 3.39 222±25 1.03 SL2S 0.7 0.69 228±26
J0855-0409 0.419 2.95 281±22 1.36 SL2S 0.7 1.13 283±22
J0904-0059 0.611 2.36 183±21 1.4 SL2S 0.9 2 182±21
J0959+0206 0.552 3.35 188±22 0.74 SL2S 0.9 0.46 199±23
J1359+5535 0.783 2.77 228±29 1.14 SL2S 1 1.13 233±30
J1404+5200 0.456 1.59 342±20 2.55 SL2S 1 2.03 342±20
J1405+5243 0.526 3.01 284±21 1.51 SL2S 1 0.83 294±22
J1406+5226 0.716 1.47 253±19 0.94 SL2S 1 0.8 262±20
J1411+5651 0.322 1.42 214±23 0.93 SL2S 1 0.85 221±24
J1420+5258 0.38 0.99 246±23 0.96 SL2S 1 1.11 252±24
J1420+5630 0.483 3.12 228±19 1.4 SL2S 1 1.62 230± 19
J2203+0205 0.4 2.15 213±21 1.95 SL2S 1 0.99 219±22
J2205+0147 0.476 2.53 317±30 1.66 SL2S 0.9 0.66 330±31
J2213-0009 0.338 3.45 165±20 1.07 SL2S 1 0.27 179±22
J2219-0017 0.289 1.02 189±20 0.52 SL2S 0.7 1.01 191±20
J2220+0106 0.232 1.07 127±15 2.16 SL2S 1 0.8 132±16
J2221+0115 0.325 2.35 222±23 1.4 SL2S 1 1.12 227±24
J2222+0012 0.436 1.36 221±22 1.44 SL2S 1 1.56 223±22

4 Results

Redshift dependence: Dls/Ds vs zl

• Per-lens observable: Dobs =
c2

4π

θE

σ2
plotted against lens redshift zl.

• Error bars from quadratic propagation in θE and σ; any points with Dobs − σD > 1 indicate tension with single-plane
FRW under the spherical baseline.
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Flat ΛCDM: ∆χ2 vs Ωm0

• Profiled curve ∆χ2(Ωm0) ≡ χ2(Ωm0)− χ2
min (one parameter).

• Vertical dashed line: best-fit Ωm0; dotted line: ∆χ2 = 1 (68% C.L.).
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Flat wCDM: ∆χ2 vs Ωm0 (profiled over w)

• ∆χ2(Ωm0) ≡ minw χ2(Ωm0, w)− χ2
min.

• Vertical dashed line: best-fit Ωm0; dotted line: ∆χ2 = 1.
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Flat wCDM: ∆χ2 vs w (profiled over Ωm0)

• ∆χ2(w) ≡ minΩm0
χ2(Ωm0, w)− χ2

min.

• Vertical dashed line: best-fit w; dotted line: ∆χ2 = 1.
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Flat wCDM: joint constraints in (Ωm0, w)
• Two-parameter confidence regions: ∆χ2 = {2.30, 6.18, 11.83} ⇒ 1σ, 2σ, 3σ.

• Marker shows the global minimum (best fit).

5 Conclusion

We have carried out an end–to–end, lensing–only determination of late–time cosmology using a uniform
catalog of ∼85 galaxy–scale strong lenses. The key observable in our analysis is the geometric distance ratio
Dls/Ds, inferred for each system from the circularized Einstein radius and an aperture–corrected stellar
velocity dispersion. Because the prediction depends only on ratios of angular–diameter distances, the overall
H0 scale cancels, yielding a clean, geometry–based test of the expansion history.

Within flat ΛCDM, profiling the likelihood over a one–dimensional grid produces a clear minimum that
favors a present–day matter density of Ωm0 = 0.442 with 68% interval [0.350, 0.551] and 95% interval
[0.272, 0.680], from a goodness of fit χ2

min≈282.864 for ν = 84 (reduced χ2≈3.37). These results demonstrate
that strong lensing alone selects a well–defined matter density using only geometric information, independent
of an external absolute distance calibration.

We then extended the analysis to flat wCDM with a constant dark–energy equation of state. The joint fit
yields (Ωm0, w) = (0.400, −0.692) with χ2

min≈284.098 for ν = 83 (reduced χ2≈3.423). The one–parameter
profiles and the two–parameter contours exhibit the expected anti–correlation between Ωm0 and w: more
negative w pairs with slightly higher Ωm0 to keep the distance ratios fixed across the observed lens–source
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lever arm. Together with the redshift trend in Dls/Ds versus zl—which follows the monotonic behavior
set by the line–of–sight path lengths—these patterns offer a coherent, physically transparent picture of the
constraints provided by the present sample.

Beyond the numerical values, the methodological contribution is a transparent and reproducible pipeline:
circularized θE from image modeling, standardized dispersions with a mild aperture correction, stable nu-
merical evaluation of the distance integrals, and a simple χ2 construction that treats every lens in the same
way. This modular design is a practical strength. Alternative lens mappings (e.g., power–law slopes), spatial
curvature, or a time–varying w can be introduced with minimal changes to the data vector or estimator,
and the framework can be combined seamlessly with complementary probes (supernovae, BAO, CMB) for
cross–validation or joint inference. As samples grow and measurements sharpen, the approach developed here
provides a useful stepping stone: a clean, H0–independent geometric pipeline that already yields informative
late–time constraints and is ready to accommodate richer models and larger data sets.
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