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Abstract 
 
Music classification has become an essential feature of modern technology, from 
recommendation systems and mood-based playlists to therapeutic interventions. Beyond genre 
classification, recent work emphasizes the importance of recognizing the emotional tone of 
music. This study investigates whether spectrogram-based image classification can be applied 
using simple, accessible AI tools. Specifically, I ask: (1) Can spectrograms serve as reliable 
features for both genre and emotion classification? and (2) How accurate can a lightweight AI 
tool be in this task? Using the Emotify dataset, I trained two models—one for genre and one for 
emotion. Results showed moderate success in genre classification (57% accuracy vs 25% 
chance levels) but poor performance in emotion classification (21% accuracy vs 11% chance 
levels). Findings suggest that spectrograms capture some, but not all aspects of genre and 
emotion related differences, that can be reliably detected using simple AI tools. 
 
 
1. Introduction 
 
Artificial intelligence (AI) has reshaped how we interact with music. Platforms like Spotify and 
YouTube use recommendation systems[1] to recommend songs based on individual 
preferences. Music therapy is increasingly used for improving emotional and mental well-being, 
and AI is increasingly used to personalize music therapy recommendations based on individual 
preferences and emotional states. Traditionally, personalization of music preferences often 
relies on genre metadata, but there has been a shift towards recognizing the emotional 
characteristics of music. 
 
Here I examine the utility of lightweight AI tools to classify music, and compare their ability to 
classify music genres and emotions, using statistical properties of the music. Specifically, I 
utilize spectrograms[2], which are visual representations of the audio frequency spectrum 
changing over time, and provide a way to represent a song visually[3]. This makes it possible to 
apply classical image classification models such as convolutional neural networks (CNNs)[4]. 
This project explores whether simple CNNs can utilize spectrograms effectively for music 
classification. I focus on two tasks: (1) classifying music by genre, and (2) classifying music by 
the key perceived emotion. 
 
2. Methods 
​ ​ ​  
2.1 Dataset: The dataset used in this project was the Emotify Dataset[5] on induced musical 
emotion through a game. The dataset consists of 400 song excerpts that are each 1 minute long 
across 4 different genres: pop, rock, classical, and electronic. Each song excerpt includes 
metadata including the genre as well as emotions experienced by multiple different participants. 
This was collected through a game in which the participant could listen to song excerpts and 
indicate up to 3 emotions they felt most strongly using the GEMS scale (Geneva Emotional 
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Music Scales)[6]. The songs were classified into the following 9 emotions: amazement, 
calmness, joyfulness, sadness, nostalgia, power, solemnity, tenderness, tension. For this 
project, tracks were sorted into their emotions by identifying the most frequently reported 
emotion for each track.  
 
2.2 Spectrograms: Spectrograms transform audio into a time-frequency visual representation, 
enabling image-based models like CNNs to process sound data. Because they encode both 
temporal and frequency information, spectrograms have been widely used in tasks like speech 
recognition and environmental sound classification. For this project, audio clips were converted 
to spectrogram images using MATLAB[7]. Figure 1 shows examples of two spectrograms, the 
first represents a classical music track, identified by human raters as producing a joyful 
emotional response, and the second an electronic music track producing a tension-like 
emotional response.  

 
 
2.3 Model Training and Testing: I used a lightweight online AI tool (Teachable Machine)[8] to 
specify a CNN model for image classification. I ran two separate models, one for Genre 
classification (4 categories), and one for Emotion classification (9 categories). Approximately 
70% of the spectrograms were used for training and the remaining were used for testing. For 
genre classification, all genres had equal amounts of data for training. For the emotion 
classification, some emotions had more data than others (e.g. “Amazement” had the least 
amount of data for training, while “calmness” had the most). 
 
Model specification: The models were standard image classification models trained using 
Teachable Machine version 2.4.10. They employed a MobileNet based CNN backbone. 224 x 
224 px color images were used as the input and could be exported to TensorFlow, TF Lite, or 
TF.js formats. Each model size was approximately 5 MB. 4 classes were used to train for genre 
classification and 9 classes were used to train for emotion classification.  
 
2.4 Evaluation: I examined both the model validation accuracy as well as detailed confusion 
matrices, which allow us to examine the nature of errors. That is, what type of genres / emotions 
were misclassified into which categories. 
 
3. Results 

2 



 
Teachable Machine reported its prediction confidence for each track. To evaluate its accuracy, 
the most confident prediction was compared to the actual track label. For the genre 
classification, the model had an accuracy of about 57% (compared to chance levels of 25% 
based on 1 in 4 categories). The machine struggled much more with classifying emotion, with an 
accuracy of about 21% (compared to chance levels of 11% based on 1 in 9 categories). Thus 
while both models were significantly better than chance levels, they still produced a significant 
level of errors. The confusion matrices are reported below. 
 
3.1 Confusion Matrix: Genre Classification: 
 

 Pred. Pop Pred. Rock Pred. Electronic Pred. Classical 

Pop (31) 39% 52% 9% 0 

Rock (29) 24% 48% 28% 0 

Electronic (31) 23% 6% 61% 9% 

Classical (29) 14% 0 7% 79% 

 
 
3.2 Confusion Matrix: Emotion Classification: 
 

 
Pred. 
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Pred. 
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Joyful 

Pred. 
Nostalgia 

Pred.  
Power 

Pred. 
Sadness 

Pred. 
Solemnit

y 

Pred. 
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ss 
Pred. 

Tension 

Amazeme
nt (1) 0 0 100% 0 0 0 0 0 0 

Calmness 
(19) 0 32% 11% 5% 0 0 15% 11% 26% 

Joyful  
(18) 0 28% 50% 0 5% 5% 0 0 12% 

Nostalgia 
(11) 0 46% 27% 0 0 9% 9% 0 9% 

Power  
(7) 0 0 43% 0 14% 0 29% 0 14% 

Sadness  
(6) 0 33% 33% 17% 0 0 0 17% 0 

Solemnit
y (6) 0 33% 17% 17% 0 0 0 17% 17% 

Tenderne
ss (6) 0 67% 0 17% 0 0 0 17% 0 
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Tension  
(9) 0 33% 44% 0 0 0 11% 0 11% 

 
 
4. Discussion 
 
The model was much better at classifying genre than emotion. For a simple AI tool, it was 
reasonable at classifying genres, with classical music being the most easily identified and pop 
being the hardest to identify. Pop music was most often misclassified as rock music.  
 
For emotion classification, basic and universal emotions like joyful were the most easily 
predicted, while emotions like nostalgia, which are not just complex, but may also be highly 
subjective, were most often misclassified. It was an interesting outcome that another basic 
universal emotion like sadness was highly misclassified. This suggests that some emotions are 
more strongly tied to personal experience than any elements within the song itself.  
 
A key limitation was the relatively small and skewed sample size for some emotions compared 
to others. Future work should compare a spectrogram based approach versus a model that can 
directly process audio data, or use audio features. Future work should also consider more 
complex model architectures, and explore multi-label classification (simultaneous prediction of 
genre and emotion). 
 
5. Conclusion 
 
5.1 Educational value: This study demonstrates how complex tasks can be approached with 
simple, accessible tools, making it a valuable option for students interested in engineering, 
computer science, and data analysis.​
 
5.2 Engineering perspective: The project highlights how engineering methods, such as 
transforming audio into spectrograms, allow us to translate one form of information (sound) into 
another (visual data), to take advantage of existing tools (CNNs). 
 
5.3 Practical applications: Music classification is central to technologies we use daily, from 
streaming platforms to mental health apps. Understanding the limits and strengths of AI systems 
is relevant as we design tools that affect real-world usability.​
 
5.4 Broader impact - understanding human emotion: By exploring the challenges of emotion 
recognition in music, this study underlines the complexity of modeling human experiences and 
emotions. It provides a window of insights into how different emotions may overlap and be 
related to each other. 
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