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INTRODUCTION 

Chimeric Antigen Receptor T-cell (CAR T) therapy is a form of immunotherapy that modifies a 
patient’s own T cells to recognize and destroy cancer cells. The process involves extracting T 
cells, engineering them to express receptors, expanding them in the lab, and infusing them back 
into the patient. This approach has shown promise in hematologic malignancies, especially 
B-cell cancers. In relapsed or refractory diffuse large B-cell lymphoma (DLBCL), for example, 
CAR T-cell therapy has demonstrated a complete response (CR) rate of 54%, with 40% of 
patients maintaining remissions beyond two years (1). However, the success of CAR T therapy 
is far more limited in other solid tumors (2). Since CAR T cells typically target CD19, a surface 
protein expressed on B cells, genetic mutations in immunoglobulin-related genes like IGHV2-70, 
which are involved in B-cell receptor formation, may influence both disease progression and 
response to CAR T-cell therapy (3).  

DLBCL, the most common type of non-Hodgkin lymphoma, accounts for 30–40% of all cases 
globally. It is an aggressive cancer of mature B cells, often presenting with rapidly growing 
lymph nodes and systemic symptoms. While first-line treatment with the R-CHOP regimen, 
Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone, cures approximately 
60–70% of patients, a significant proportion either relapse or fail to respond (4). The consistent 
expression of CD19 on malignant B cells makes DLBCL an ideal candidate for CD19-directed 
CAR T therapies, such as Yescarta and Kymriah, both of which are FDA-approved for use in 
relapsed or refractory DLBCL. Yescarta showed an overall response rate of 82% and complete 
response rate of 54% in real-world data (5). Immune checkpoint inhibitors (ICIs) have been 
explored in DLBCL as well, particularly PD-1 blockade with nivolumab or pembrolizumab, but 
results have been limited, with single-agent response rates typically under 40% (6). Ongoing 
trials are evaluating ICIs efficacy in combination with chemotherapy or other immunotherapies. 
Genetically, DLBCL is heterogeneous, and it can be categorized into subtypes like germinal 
center B-cell-like (GCB) and activated B-cell-like (ABC), each with distinct molecular pathways 
and treatment responses (7).  

In contrast to DLBCL where CAR T-cell therapy has shown success, other solid tumors pose 
unique challenges. Among solid tumors, glioblastoma (GBM) stands out as a particularly 
aggressive cancer, making it an important candidate for investigation. GBM is a highly 
aggressive primary brain tumor with a median survival time of only 15 to 18 months despite 
standard treatment involving surgical resection, radiation, and chemotherapy with temozolomide 
(8). GBM poses significant therapeutic challenges due to its extensive heterogeneity in genetic 
profiles and the tumor ecosystem, its resistance to treatment, and the presence of the 
blood-brain barrier, which limits drug and immune cell access. While CAR T therapy has been 
tested in GBM, mainly targeting EGFRvIII, clinical trials have shown limited efficacy, with no 
sustained responses and median progression-free survival of only 1.3 months (7). Immune 
checkpoint inhibitors have also been developed and tested for GBM, especially PD-1 and 
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CTLA-4 inhibitors like nivolumab and ipilimumab, but they have not been effective, due to low 
tumor mutational burden, poor T-cell infiltration, and an immunosuppressive environment (9). 
However, unlike in melanoma or non-small cell lung cancer, ICIs have failed to significantly 
improve survival in GBM (10).  

CAR T-cell therapy is significantly more effective in DLBCL than in GBM. In DLBCL, complete 
response rates reach up to 54%, with many patients achieving long-term remission, largely due 
to uniform CD19 expression, better CAR T-cell expansion, and a less immunosuppressive tumor 
environment. In contrast, GBM exhibits poor CAR T efficacy, with low response rates and short 
progression-free survival. This is due to antigen heterogeneity (e.g., variable EGFRvIII or 
IL13Rα2 expression), immune evasion mechanisms, and physical barriers like the blood-brain 
barrier (7). Additionally, the GBM microenvironment contains suppressive myeloid cells that 
hinder CAR T-cell activity (11). While these tumor-level and microenvironmental challenges play 
a major role, underlying genetic differences between DLBCL and GBM may further influence 
treatment response, shaping both tumor behavior and susceptibility to CAR T-cell therapy. 
These differences suggest that genetics may be critical to understanding why CAR T-cell 
therapy is more successful in DLBCL than GBM. 

To our knowledge, no head-to-head genomic studies have compared CAR T-cell factors in 
DLBCL versus GBM. We aim  to investigate whether genetic differences between DLBCL and 
GBM can help explain the contrast in CAR T-cell therapy effectiveness. We hypothesize that 
specific mutations in GBM may hinder CAR T efficacy but  these are not present in DLBCL. By 
using publicly available datasets from cBioPortal and other sources, this study offers insights 
that could guide the development of future CAR T therapies for solid tumors.  

METHODS 

To allow for proper comparison between cBioPortal patient datasets and clinical trial populations 
used in CAR-T studies, where individual genetic information is unavailable, for diffuse large 
B-cell lymphoma (DLBCL) and glioblastoma (GBM), a matching process was designed based 
on available demographic and clinical data in both datasets. This process involved extracting 
summary statistics of patient characteristics from the trials, defining a distance function of the 
patient characteristics, and selecting subsamples from cBioPortal that closely matched the 
clinical trial populations based on the distance function.  

Clinical Trial Reference Statistics  

Trial demographic and disease characteristics were extracted from published studies (1, 12-24) 
and standardized. For continuous variables (e.g., age, Karnofsky score), weighted medians 
were calculated. For categorical variables (e.g., sex, disease stage), sample-size proportions 
were used. Separate standardization was used for DLBCL and GBM. Patients were excluded if 
more than 50% of the characteristics are missing. Pediatric GBM patients were also excluded 
due to known differences in genetic profiles between adult and pediatric GBM patients (25). 
Patient age was assumed to be reported at the beginning of the trials.  
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To quantify similarity between a subsample and its corresponding clinical trial population, a 
distance function was defined. This function accounts for both categorical and continuous 
variables after scaling and standardizing the data.  

An algorithm was implemented to identify the optimal subset from the cBioPortal dataset that 
minimized the defined distance to the clinical trial reference statistics. At each iteration:  A 
candidate subsample of size “n” was drawn without replacement. The distance to the clinical 
trial reference was computed. The best subsample for each “n” was noted.  This process was 
repeated across a range of “n” values, and the overall best subsample was selected as the one 
with the lowest distance.  

Mutation data for Diffuse large B‑cell lymphoma (DLBCL) and Glioblastoma (GBM) was 
downloaded from cBioPortal. Both the complete group and subsampled datasets were 
processed. The following metrics were computed for each group after removing synonymous 
mutations: 

Top‑10 most frequently mutated genes 

Distribution of mutation types (e.g., SNP, DEL, INS) 

Distribution of variant classifications (e.g., missense, nonsense, frameshift) 

For both DLBCL and GBM, three data frames were constructed: 

For each patient, overall survival time, progression-free survival time and event status 
(death/progression) were compiled. Available overall survival or progression-free survival was 
included. 

Patient-level clinical features were compiled: 

DLBCL: Diagnosis age, sex, stage III/IV status, and International Prognostic Index (IPI) score.  

GBM: Diagnosis age, sex, stage, Karnofsky performance score. 

For each patient, mutation status (0 = absent, 1 = present) was determined for the top 10 most 
frequently mutated genes in each cancer type, based on the cBioPortal dataset. 

The mutation matrix and patient characteristics were merged based on patient IDs. To ensure 
equal weighting of characteristics, continuous variables were scaled by subtracting the mean (of 
the entire dataset for a cancer) and dividing by the standard deviation (of the entire dataset for a 
cancer) within each iteration. Mutation columns were also scaled to match continuous variables. 
The final dataset (merged survival, characteristics, and mutations) was prepared for Cox 
Modeling. 

Cox proportional hazards models were made separately for DLBCL and GBM datasets using 
the lifelines Python package (26). The models included both clinical variables and genetic 
mutation statuses. Hazard ratios (HRs), 95% confidence intervals, and p-values were computed 
for each predictor. 
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RESULTS 

Patient Matching 
To perform joint analysis of genetic mutations and CAR T therapy treatment outcomes on the 
same individuals, we matched subsets of cBioPortal patients in terms of patient characteristics 
with patients who underwent CAR T clinical trials. This is because cBioPortal provides 
individual-level genetic mutations from many patients, but most patients did not go through 
clinical trials. The existing clinical trials tend to be small and typically do not make 
individual-level genetic mutations available. By minimizing demographic and clinical differences 
between subsampled patient cohorts in cBioPortal and the overall populations within the clinical 
trials, we aim to approximate the CAR T treatment outcome of the subsampled cBioPortal 
patients for each cancer. 
 
Using distance-based matching (Figures 1-2, Equation 1-2), minimal distances were achieved: 
2.697 for DLBCL and 2.836 for GBM. This yielded subsample sizes of n = 74 for DLBCL and n = 
80 for GBM. Distributions of patient characteristics (Figure 1) are not significantly different  
between matched and full cohorts (DLBCL IPI score: p=0.59; GBM Karnofsky score: p=0.13). 
 
Table 1. 

 

Summary of diffuse large B-cell lymphoma (DLBCL) patient populations from CAR T-cell 
therapy clinical trials. Median age, sex distribution, stage III/IV status, and International 
Prognostic Index (IPI) scores are shown. Percent missing was calculated after removing 
patients missing 50% or more of characteristics.  

Table 2. 
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Summary of glioblastoma (GBM) patient populations from CAR T-cell therapy clinical 
trials. Median age, sex distribution, tumor stage, and Karnofsky performance score are 
listed. Percent missing was calculated after removing patients missing 50% or more of 
characteristics.  

Trial reference statistics guided subsampling of cBioPortal patients to approximate 
clinical trial populations.​  

Patient characteristics in histograms: 

Figure 1. 

 

 

Distributions of patient characteristics between subsampled and full cohorts are aligned. (A) Age 
at diagnosis in diffuse large B-cell lymphoma (DLBCL), (B) age at diagnosis in glioblastoma 
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(GBM), (C) International Prognostic Index (IPI) scores in DLBCL, and (D) Karnofsky 
performance scores in GBM. Distance-based matching minimized differences between 
cBioPortal subsamples and clinical trial reference populations (minimal distance = 2.697 for 
DLBCL; 2.836 for GBM), yielding matched sample sizes of n = 74 (DLBCL) and n = 80 (GBM). 
Wilcoxon rank-sum tests showed no significant differences in age distributions (DLBCL p = 0.59; 
GBM p = 0.13). 

Top 10 Genes 
 
Identifying the most frequently mutated genes in each cancer type provides insights into 
potential drivers of disease progression and resistance to CAR T-cell therapy.  
After removing synonymous mutations, the dataset contained 2,346 unique mutated genes in 
DLBCL and 1,857 in GBM. The top 10 most frequently mutated genes were (Table 3-4). SNPs 
made up most of the mutations in the full cohort and the subsampled cohort for each cancer 
(Table 5-6).  
 
 
 
Table 3. 

 

The ten most frequently mutated genes identified in diffuse large B-cell lymphoma (DLBCL) 
patients (total of 2,346 unique mutated genes). Most common mutations included PIM1, BCL2, 
PCLO, IGLL5, FAT4, CSMD3, BTG1, SGK1, KMT2D, IGHV2-70.  

Table 4. 
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The ten most frequently mutated genes identified in glioblastoma (GBM) patients (total of 1,857 
unique mutated genes after excluding synonymous mutations). Frequent mutations occurred in 
TP53, PTEN, EGFR, TTN, NF1, MUC16, PIK3R1, FLG, PIK3CA, RYR2.  
​  
*Note that the top genes are those with the most number of mutations within the entire patient 
cohort in cBioPortal (or the subsampled patient cohort). For patients with multiple mutations in 
the same gene, each mutation was counted individually. 
 
 
 
Table 3a. 
 
 

 
Breakdown of mutation classes in the DLBCL dataset for full and subsampled data. SNPs made 
up the majority of mutations, with insertions and deletions comprising smaller proportions, 
similar across full and subsampled cohorts. 
 
Table 3b. 
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Breakdown of mutation classes in the GBM dataset for full and subsampled data. SNPs made 
up the majority of mutations, with insertions and deletions comprising smaller proportions, 
similar across full and subsampled cohorts. 

Survival Analysis 

To test the hypothesis of whether distinct genetic features are associated with CAR T therapy in 
DLBCL and GBM, we conducted a survival analysis to associate the presence or absence of 
mutations in top 10 most mutated genes and the clinical factors (e.g., age) with survival 
outcomes in DLBCL and GBM,  

DLBCL 
Figure 2a. 

 

Hazard ratios (HRs), 95% confidence intervals, and p-values for predictors of survival in DLBCL 
(n = 74). Significant risk factors included mutations in PIM1 (HR > 2, p < 0.05), CSMD3 (HR > 2, 
p < 0.05), KMT2D (HR > 2, p < 0.05), PCLO (HR > 2, p < 0.05), and IGHV2-70 (HR > 2, p < 
0.05). Age was also a strong clinical predictor (HR = 2.24 per unit increase, p < 0.01). 

GBM 
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Figure 2b. 

 

Hazard ratios (HRs), 95% confidence intervals, and p-values for predictors of survival in GBM (n 
= 80). Significant risk factors included mutations in MUC16 (HR ≈ 1.97, p < 0.05), EGFR (HR ≈ 
1.97, p < 0.05), and PIK3R1 (HR ≈ 1.97, p < 0.05). Age at diagnosis was also a significant 
predictor, with older patients experiencing substantially higher risk of death. 

In DLBCL, mutations in PIM1, CSMD3, KMT2D, PCLO, and IGHV2-70 are associated with 
significantly increased hazard ratios (Table 4a), indicating a higher risk of death and lower 
efficacy of CAR T therapy.  Age is an important clinical predictor. The model shows that for 
every unit increase in age, the hazard increases by a factor of 2.24, confirming age as a 
relevant variable in DLBCL prognosis.  

In GBM, MUC16, EGFR, and PIK3R1 had high HRs (Table 4b), showing an association with 
worse CAR T therapy outcomes, increasing risk by a factor of 1.97. Age was also a statistically 
significant predictor of poorer prognosis, indicating that older patients face a significantly higher 
risk of death. 

Age at diagnosis remained a negative prognostic factor in both cancers. This trend is also 
generally observed across many cancer types, where advanced age is associated with poorer 
outcomes, potentially due to immunosenescence and changes in the tumor microenvironment 
that impair T-cell function and reduce CAR-T efficacy (27).  

The PI3K/AKT/mTOR pathway is represented in both datasets through genes such as PTEN, 
PIK3CA, PIK3R1, and SGK1. This pathway promotes cell survival and proliferation, and its 
disruption has been shown to reduce CAR T-cell infiltration and contribute to resistance against 
immune-mediated killing (28). 

Receptor tyrosine kinase (RTK) and MAPK signaling pathways are affected by mutations in 
EGFR, NF1, and PIM1. These pathways enhance tumor growth and contribute to the formation 
of an immune-suppressive tumor microenvironment (29). 
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CONCLUSIONS 

Discussion 

In this study, we tested the hypothesis that genetic differences between diffuse large B-cell 
lymphoma (DLBCL) and glioblastoma (GBM) help explain why CAR T-cell therapy is effective in 
some cancers but not others. Using publicly available datasets from cBioPortal, we analyzed 
mutation and clinical data from 74 DLBCL patients and 80 GBM patients, selected through 
distance-based patient matching to reflect clinical trial populations. We identified the top 10 most 
frequently mutated genes in each cancer type and conducted a survival analysis to determine 
which genetic mutations were associated with worse prognosis. 

In DLBCL, mutations in key genes play significant roles in disease progression. PIM1 mutations 
cause gain-of-function or constitutive kinase activation, enhancing cell proliferation and survival 
(11). Mutations in PCLO disrupt normal cellular communication (30). CSMD3 mutations impair 
tumor suppressor activity due to loss-of-function (31). KMT2D mutations affect histone 
methylation and transcriptional control, altering gene expression (32). Mutations in IGHV2-70 
impact immunoglobulin structure and function, disrupting B-cell receptor signaling (33). 

In GBM, mutations in several critical genes influence tumor progression. EGFR mutations are 
typically gain-of-function, driving uncontrolled cell proliferation (34). Disruption of mucin 
functions by MUC16 mutations may affect immune evasion and cell signaling (35). PIK3R1 
mutations impair inhibitory control of the PI3K pathway, leading to AKT activation and increased 
cell survival (36). Hotspot mutations in PIK3CA result in gain-of-function, activating PI3K 
signaling and promoting cell survival and growth.  

Age at diagnosis remained a negative prognostic factor in both cancers. This is also generally 
true in most cancers. which could influence the immune microenvironment and T-cell function, 
indirectly affecting CAR-T efficacy (27).  

The genetic differences between DLBCL and GBM provide important clues as to why CAR 
T-cell therapy is highly effective in one but not the other. In DLBCL, the most frequently mutated 
genes, PIM1, BCL2, and KMT2D, are involved in B-cell development, survival, and epigenetic 
regulation (37). Several mutations, including those in IGLL5 and IGHV2-70, affect 
immunoglobulin genes, which are closely tied to the cancer’s origin in the immune system (38). 
These features make DLBCL well-suited for CAR T-cell therapies that target B-cell antigens like 
CD19, which are expressed on the surface of malignant cells (39). In contrast, GBM frequently 
has mutations in TP53, PTEN, EGFR, and NF1, which activate growth-promoting pathways 
such as RTK/MAPK and PI3K/AKT (34). These mutations drive rapid tumor progression and 
create conditions that prevent immune cell activity. For example, PTEN mutations have been 
associated with reduced T-cell infiltration and resistance to immunotherapy (40), while EGFR 
mutations contribute to immune evasion (41). GBM’s location within the brain also limits immune 
cell access due to the blood-brain barrier and presents a challenge for CAR T-cell therapies 
(41).  
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This is an active research area. In DLBCL, FDA-approved CAR T therapies such as 
axicabtagene ciloleucel (axi-cel), tisagenlecleucel (tisa-cel), and lisocabtagene maraleucel 
(liso-cel) target CD19, a B-cell surface antigen expressed in nearly all malignant B cells. 
Consistent with our findings, multiple genes related to B-cell functions, such as IGHV2-70, 
IGLL5, and PIM1, were identified in the DLBCL top gene and survival analysis. On the other 
hand, developing CAR T therapies for GBM is more challenging, as our study highlighted 
recurrent alterations in the PI3K/AKT/mTOR pathway (PIK3R1, PIK3CA, PTEN, SGK1) and the 
RTK/MAPK pathway (EGFR, NF1, PIM1). Likely due to the complexity and redundancy of these 
pathways, existing CAR T therapies that focus on targets such as EGFRvIII and IL13Rα2 have 
shown only limited effects. However, these antigens are often variably expressed, contributing to 
the limited efficacy of CAR T therapy in GBM. To overcome this limitation, researchers have 
begun testing multi-targeted strategies. In a study, researchers tested intraventricular 
CARv3-TEAM-E T cells, targeting EGFRvIII and wild-type EGFR, in three recurrent glioblastoma 
patients. Treatment caused no severe toxicities, induced rapid tumor regression in all, but 
responses were short-lived in two. Activity was observed even without EGFRvIII expression 
(42).These results suggest that while promising strategies are emerging, a better genetic 
understanding of GBM will be critical for identifying stable and broadly effective CAR T-cell 
targets. 

Limitations 
This study has several limitations: First, data availability was limited, particularly regarding 
clinical variables, which restricted the ability to fully match patients across groups. Additionally, 
the sample size for both DLBCL and GBM was relatively small, and this also caused a small 
number of mutations in the dataset after subsampling.  Since the analysis was not based on 
patients from a single controlled trial, the comparison between cancer types is indirect. Some 
patient demographic data, such as race, was incomplete or missing altogether. Some of the 
studies were done in areas with the majority of patients being one race. Also, the cohort was 
mainly made up of patients with recurrent or refractory cancer as CAR-T is generally used as a 
second or third line treatment in most cancers. As a result, the representativeness of the cohort 
is limited, and the findings may not fully reflect the broader population of patients with DLBCL or 
GBM. 
The long-term goal is to develop predictive models that use a patient's genetic profile to 
determine the likelihood of response to CAR T therapy.  Cancer treatment decisions will 
significantly benefit from reliable tools that predict patient responses. For recurrent or refractory 
tumors, CAR T-cell therapy is often a last-resort option: one that is extremely costly but can 
produce remarkable, durable remissions in select patients. The long-term goal of this line of 
research is to develop predictive models that integrate a patient’s genetic profile to estimate the 
likelihood of response to CAR T therapy. Such models would help clinicians identify patients 
most likely to benefit, while sparing others from unnecessary toxicity and expense. 
 
Developing these tools requires overcoming key limitations. Currently, the lack of genomic and 
clinical data directly linked to CAR T clinical trial participants makes it difficult to establish 
precise correlations between genetic mutations and therapeutic efficacy. In this study, we 
addressed this gap by designing a method to approximate trial populations through patient 
matching and by analyzing mutational patterns that may influence outcomes. While indirect, this 
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approach provides a foundational dataset and highlights genetic features that could be 
incorporated into future predictive models. Ultimately, by combining mutation profiles with 
clinical trial data, these tools could transform patient selection, optimize resource use, and 
improve overall outcomes in CAR T-cell therapy. 
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