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​Introduction​

​Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is​
​becoming an increasingly urgent public health challenge due to aging populations​
​worldwide (Alzheimer’s Disease International, 2017). Despite its profound social and​
​economic impact, there remains no cure for AD, and current diagnostic methods often​
​detect the disease only after significant brain damage has already occurred. Traditional​
​diagnostic tools, such as cognitive testing and standard imaging, lack the precision and​
​sensitivity to reliably identify early-stage Alzheimer’s in asymptomatic individuals (NIH,​
​2022). This diagnostic delay limits the potential for early intervention, preventive​
​strategies, and clinical trial enrollment. As the prevalence of AD continues to rise, the​
​urgent need for more accurate and timely diagnostic methods has never been greater —​
​but there are limitations in the field. These limitations include low predictive accuracy in​
​earlier diagnosis, the frequent presence of other brain pathologies, and difficulties in​
​detecting the disease in its early stages​​.​​Hence,​​the application of AI-based​
​neuroimaging techniques have begun to be discussed more in clinical environments in​
​regards to AD.​

​Artificial intelligence (AI) offers a promising pathway to revolutionize the early​
​diagnosis of AD by leveraging advanced data analysis and pattern recognition​
​capabilities. AI-based algorithms, particularly those using machine learning and deep​
​learning, can be trained on large-scale neuroimaging datasets such as MRI, PET scans,​
​and functional imaging to detect subtle brain changes that may precede clinical​
​symptoms by years (Coursera, 2025). These techniques can identify complex patterns in​
​brain structure and function that are often imperceptible to human radiologists, improving​
​diagnostic accuracy and enabling earlier detection. Beyond imaging, AI can integrate​
​multimodal data — including genetics, biomarkers, and cognitive test results — to create​
​comprehensive diagnostic models.​

​This paper will first provide a basic understanding of both AD, its causes and​
​symptoms, as well as explain the concept of utilizing AI algorithms, particularly deep​
​learning networks, such as Convolutional Neural Networks (CNNs), and their potential​
​future applications into clinical workspaces. Then, I will present three different AI​
​algorithms and evaluate their function, strengths, limitations, and then choose a single AI​
​algorithm that is most likely to have the most effective impact on diagnosing AD earlier​
​and more accurately, while simultaneously offering several areas of improvement to the​
​model. The goal of this research will be to evaluate the extent to which AI algorithms will​
​be able to be effectively clinically implemented to provide care for diverse patients in a​
​more accurate manner. Ultimately, this paper can provide a more thorough understanding​
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​on how the use of AI in AD could help improve future research on both AI in neurology​
​applications and medicine broadly.​

​Alzheimer’s Disease​
​Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the​

​most prevalent form of dementia, characterized most prominently by a declining memory​
​and remembering recent events despite experiencing them in the past. This is followed​
​by dramatic mood swings (outbursts of anger, anxiety, and depression), physical​
​problems (like odd gait or coordination), feeling confused or frustrated (especially at​
​night), feeling disoriented or getting lost easily, and difficulty doing ordinary activities​
​(Alzheimer’s Association, 2025) (Figure 1). As of 2020, over 55 million people globally​
​live with dementia, and approximately 10 million new AD cases are diagnosed each year,​
​and nearly all diagnoses being elderly people of 65 or older, demonstrating its continued​
​problems towards public health. For example,​​in 2025​​an estimated 7.2 million Americans​
​aged 65 and older are living with AD​​,​​a number expected​​to grow significantly, with​
​deaths from AD having doubled​​since 2000, demonstrating​​its continued public health​
​challenge​​(Alzheimer’s Disease International, 2017).​
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​Figure 1:​​Symptoms of Alzheimer’s Disease (AD)​​. Highlights​​all the symptoms​
​commonplace among people suffering from AD, including dramatic mood swings,​
​difficulty doing ordinary activities, feeling disconnected and getting lost easily, feeling​
​confused and frustrated at night, and physical problems such as a lack of coordination.​
​(Home Care Assistance, 2020).​

​Pathogenesis of Alzheimer’s Disease​

​The pathogenesis of AD is strongly associated with the accumulation of amyloid​
​beta (Aβ) plaques. These plaques are​​dense, insoluble​​clumps of beta-amyloid (Aβ)​
​proteins that accumulate outside nerve cells in the brain.​​The amyloid cascade​
​hypothesis, which proposes that Aβ deposition in the brain triggers a cascade of events​
​leading to a buildup of tau proteins in the brain. Over time, this buildup of amyloid​
​plaques and tau tangles trigger inflammation between synapses which proceeds to block​
​internal transport systems, damage the cells, and eventually contribute to cell death,​
​which contributes to cognitive decline. This hypothesis is widely accepted as the primary​
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​explanation for the biological mechanisms underpinning the development of AD, though​
​the actual cause of AD remains unknown (Zhang et al, 2023) (Figure 2). Furthermore, AD​
​primarily affects key brain regions like the hippocampus, frontal, temporal, and parietal​
​lobes—resulting in memory losses, impaired reasoning, and language difficulties. This​
​highlights the importance of early detection can help minimize the irreversible neuronal​
​damage (MyHealth Alberta, 2024) (Figure 3).​

​Figure 2:​​Pathology of Healthy and AD brain​​. Depictions​​of the development of a healthy​
​brain and the development of a diseased (AD) brain, showing the formation of Tau​
​proteins on the AD brain compared to the healthy brain. Red is the tau protein and​
​amyloid plaques (BioRender, 2025).​
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​Figure 3:​​Affected regions of the brain.​​Shows the​​3 main parts of the brain that control​
​the functions of a person/what they control as well as being the three parts that are​
​affected by AD development (Healthwise, 2018).​

​Heterogeneity in Alzheimer’s Disease​

​Alzheimer’s disease (AD) is highly heterogeneous, meaning that it does not​
​present the same way in all individuals. Patients may show different patterns of memory​
​decline, language impairment, or behavioral changes, and the rate of progression can​
​vary widely from slow deterioration over decades to rapid decline within a few years.​
​Subtypes such as early-onset AD, which is often linked to rare genetic mutations (e.g., in​
​APP​​,​​PSEN1​​, or​​PSEN2​​), differ from the more common​​late-onset form, which is​
​influenced by risk genes like​​APOE ε4​​. Beyond genetics,​​environmental and lifestyle​
​factors also contribute to disease risk and expression—examples include head trauma,​
​cardiovascular health, diet, physical activity, education level, and exposure to toxins.​
​Additionally, having a family history of AD increases the likelihood of developing the​
​disease, but sporadic cases without any familial link are also common (Avalar-Pereira et​
​al, 2022).​

​Traditionally Diagnosing Alzheimer’s Disease​
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​Currently, diagnoses typically rely on cognitive assessments, brain imaging (CT,​
​MRI, PET). However, these traditional methods are expensive, time-consuming, and​
​often take several months to years, as well as require specialist expertise, limiting​
​accessibility. Current treatments, from cholinesterase inhibitors to recently approved IV​
​infusions like lecanemab, offer relief and modest disease modification but are only​
​temporary solutions (NIH, 2022) (Figure 4). Thus, accurate and early diagnosis, ideally in​
​the preclinical stage before visible symptoms emerge, is critical for effective treatment​
​planning, safety in prescribing medications, and improving patient quality of life.​

​Figure 4:​​Temporary solutions to AD​​. The left image​​shows how cholinesterase inhibitors​
​work. In people with AD, cholinergic neurons are progressively lost, reducing levels of​
​acetylcholine. By targeting cholinesterase enzymes (AChE and BuChE) and inhibit the​
​breakdown of acetylcholine (a major neurotransmitter). This increases the availability of​
​acetylcholine at the cholinergic synapses. The right image shows a lecanemab IV​
​infusion of the antibodies that stimulate the attraction of immune cells that can break​
​down the amyloid proteins around the neurons, thus minimizing the damage caused by​
​the buildup of the amyloid beta plaques (Neurotorium, 2023) (BBC Research, 2022).​

​However, clinical trials continue to face challenges due to late intervention,​
​incorrect dosing, and incomplete understanding of AD’s pathophysiology, aggravated by​
​the disease’s varying genetic and pathological origins in different populations. This​
​variability requires larger patient populations to detect treatment effects, increases the​
​cost and duration of trials, and can lead to treatments that appear ineffective because​
​they only work for specific patient subgroups. These gaps highlight the need for​
​innovative approaches such as neuroimaging-based AI techniques to revolutionize early​
​and accurate AD diagnosis. (Alzheimer’s Association, 2025).​
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​Population targets for AI powered diagnostic screening​

​For early diagnosis of AD, the populations that should be prioritized are those at​
​highest risk due to age, genetics, or medical conditions. The most prominent group is​
​elderly individuals, particularly those 65 years and older, as this is the age range when​
​symptoms typically become most apparent, with prevalence rising steeply compared to​
​younger groups.​

​Another critical population is those with a family history of AD, since having a​
​parent or sibling with the disease increases one’s risk significantly. Genetic​
​predispositions are especially important to consider—mutations in the APP, PSEN1, and​
​PSEN2 genes are strongly linked to early-onset AD (before age 65), while the APOE​
​gene, particularly the APOE4 allele, is associated with increased risk in later-onset forms,​
​with those carrying two copies at especially high risk, as demonstrated in the figure​
​below, generally in the Northern Hemisphere as well as regions of Africa and South​
​America, highlighting a difference in distribution of the APOE4 allele. Beyond genetic and​
​familial risk, individuals already experiencing Mild Cognitive Impairment (MCI)—a​
​well-documented precursor to AD—should also be targeted, as early intervention at this​
​stage can help delay or reduce progression. Finally, populations with comorbid conditions​
​such as diabetes, obesity, or hypertension should be screened early, as these health​
​issues have been shown to elevate the risk of developing AD (Figure 5). By focusing first​
​on elderly individuals, those with genetic markers or family history, and people with MCI​
​or related comorbidities, early detection efforts can be directed where they are most likely​
​to make a significant impact (Alzheimer’s Association, 2025).​
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​Figure 5:​​Diversity maps.​​The first map shows the genetic diversity of the APOE 4 allele,​
​worldwide, with a deeper shade of red meaning that the allele frequency is much higher​
​in those regions. The second map shows the global obesity rates, with the darker color​
​(purple to dark red) meaning a smaller percentage of people in that region/country with​
​obesity and a lighter color (light red to yellow) showing a larger percentage of obesity.​
​Obesity itself, especially in the mid-life, has a clear link to developing AD (WHO, 2022).​

​AI in Neuroimaging​

​In recent years, the integration of artificial intelligence (AI) into neuroimaging has​
​emerged as a powerful tool for enhancing diagnostic precision and efficiency in medical​
​settings. Neuroimaging techniques such as magnetic resonance imaging (MRI),​
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​computed tomography (CT), and positron emission tomography (PET) provide detailed​
​ways of looking inside the brain (Figure 6). MRI uses strong magnets and radio waves to​
​create high-resolution images of brain structures, allowing doctors to spot changes in​
​brain tissue, shrinkage, or damage linked to diseases like AD. CT scans, which use​
​X-rays to create cross-sectional images, are often used to quickly detect strokes, tumors,​
​or bleeding in the brain. PET scans work differently by using a small amount of​
​radioactive tracer to measure brain activity and metabolism, making it possible to detect​
​abnormal patterns of energy use that may signal early stages of disease before structural​
​changes appear. Machine learning (ML), a subset of AI, combines the power of these​
​imaging methods with advanced computer algorithms to analyze vast datasets, identify​
​patterns, make predictions, and support clinical decision-making. In healthcare, ML is​
​commonly used to improve patient outcomes, from optimizing trauma-care responses to​
​enabling more personalized treatment strategies (Coursera, 2025). However, challenges​
​remain: neuroimaging alone cannot always capture dynamic brain changes over time,​
​and the complexity of analyzing and interpreting such large datasets requires careful​
​attention.​

​Figure 6:​​Neuroimaging scans.​​Neuroimaging taken from​​a normal “healthy” brain, a brain​
​with mild cognitive impairment, and a brain diagnosed with Alzheimer’s disease. The​
​black represents regions of neuron decay and red and blue represent normal, metabolic​
​brain activity regions. This figure depicts a heatmap of an PET scan of three brain​
​conditions: normal, MCI, and AD, and the progression/differences between each​
​(MedReport Foundation, 2025).​

​Types of Machine Learning​

​Within machine learning, there are 2 subtypes commonly used in the medical​
​setting: supervised learning techniques, which rely on labeled datasets, allow algorithms​
​to classify abnormalities or predict disease progression, while unsupervised methods​
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​uncover latent patterns in complex, unlabeled data. (Delua, 2021). Specifically,​
​convolutional neural networks (CNNs), primarily supervised while incorporating some​
​unsupervised aspects, have emerged as being significantly promising in image-based​
​analysis. Preprocessing steps—noise reduction and data normalization—are crucial to​
​improving model performance (Joseph et al, 2023). The outputs of AI-assisted​
​neuroimaging often involve identifying diseases or disorders based on imaging inputs,​
​which can facilitate early diagnosis and treatment planning (Joseph et al, 2023). (Figure​
​7). However, challenges such as high-dimensional data, computational demands, and​
​bias in training datasets remain in CNN’s. Despite this, AI has shown potential in​
​streamlining imaging workflows by reducing scan times and the need for contrast​
​supervision, and even in operational improvements such as predicting patient wait times​
​and optimizing scheduling. As AI continues to evolve, it holds considerable promise in​
​transforming both the technological and clinical techniques of diagnosing.​

​Figure 7:​​CNN example.​​The process shows the input​​as a clear picture of a bird being​
​applied to a series of filters to the input image, detecting patterns and features at different​
​levels of complexity. In relation to neuroimaging, the CNN can take multimodal,​
​preprocessed images such as 3-D MRI/PET scans and distinguish the different subtle​
​brain changes in the morphology to determine the type and level of AD development​
​(Medium, 2024).​

​Current and FutureModels in AI-based Neuroimaging​​Field​

​Building on the current applications of AI in neuroimaging, where tools like CNNs​
​already aid in detecting subtle brain changes and streamlining clinical workflows,​
​researchers are now pushing toward more advanced models that can improve accuracy,​
​interpretability, and multi-modal integration. This next section explores several emerging​
​algorithms—called CAPCBAM, D3LM-LAN, and MLM-MCSVM—that build on the​
​strengths and limitations of CNN-based systems. These models aim to address​
​persistent challenges like loss of spatial information, limited interpretability, and reliance​
​on single-modality data. All the models utilize data from the ADNI, a global research​
​initiative whose purpose is to​​collect and analyze​​brain imaging, genetic, fluid biomarkers​
​(like cerebrospinal fluid), and cognitive data from individuals at different stages of​
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​cognitive aging and dementia to create tools for early diagnosis and to speed the​
​development of treatments for AD.​​By evaluating their​​design and performance, we can​
​see how the field is evolving toward earlier, more reliable, and clinically useful diagnoses​
​of AD and related conditions. Ultimately, the goal of this section will be to evaluate the​
​impact the following three algorithms can have on this field in the future, applying​
​primarily to AD, potentially influencing further research into this field.​

​The CAPCBAM model is a new type of computer program designed to help​
​doctors diagnose AD (Slimi et al, 2025). It builds on older image-recognition systems​
​called Convolutional Neural Networks (CNNs), which are good at finding patterns in​
​pictures but sometimes lose important details about how those patterns are arranged. To​
​fix this, CAPCBAM uses Capsule Networks, which keep track of how features are​
​connected in space (like how the nose relates to the eyes in a face). It also uses an​
​attention system called CBAM that helps the model “focus” on the most important parts of​
​brain scans and other data. By combining these two ideas, CAPCBAM can study brain​
​images from MRI and PET scans, along with memory test scores, to detect whether a​
​person is healthy, has mild memory problems, or has AD. In tests, the model was almost​
​perfectly accurate (about 99–100%), meaning it rarely made mistakes. This level of​
​accuracy suggests that CAPCBAM could become a powerful tool for diagnosing AD​
​earlier and more reliably, which may lead to better treatment and care for patients (Slimi​
​et al, 2025).​

​While the CAPCBAM model “focuses” on specific brain regions, the D3LM-LAN​
​model works differently. It uses two types of brain scans at the same time: PET scans,​
​which show how active different parts of the brain are (like measuring energy use), and​
​MRI scans, which give very detailed pictures of brain structure (Mahmood et al, 2024). By​
​combining both, the model can spot early signs of AD that might be missed when looking​
​at just one scan. In testing, it was very accurate—about 97% in some cases. However,​
​the model has some drawbacks: it needs very high-quality scans, it can be hard for​
​doctors to understand exactly how it makes decisions, and it requires powerful computers​
​to run (Mahmood et al, 2024).​

​Similar to D3LM-LAN, another model called MLM-MCSVM also analyzes brain​
​data but adds an extra “optimization” step to improve its accuracy (Mahmood et al, 2024).​
​It is especially strong at finding AD in its earliest stage, known as Mild Cognitive​
​Impairment (MCI). In experiments, it correctly classified cases almost 99% of the time.​
​One of its strengths is that it’s easier to interpret than some deep learning models, so​
​doctors can better understand why it made a certain prediction. On the downside, it can​
​struggle when data from different hospitals or patient groups is inconsistent, and it is still​
​expensive to run on a large scale. Like many AI models, it can sometimes act as a “black​
​box,” meaning its internal decision-making isn’t always clear, which can make doctors​
​hesitant to fully trust it (Mahmood et al, 2024).​
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​Discussion​
​Among the three models, CAPCBAM emerges as the most effective for accurate​

​AD diagnosis. Its near-perfect accuracy, coupled with the ability to integrate and prioritize​
​multimodal data through attention mechanisms, allows it to produce highly individualized​
​diagnostic predictions. The combined strengths of Capsule Networks and CBAM enable it​
​to preserve complex spatial relationships in imaging data while focusing on clinically​
​relevant features, enhancing both early-stage detection and overall classification​
​performance. (Slimi et al, 2025). Unlike many deep learning models, CAPCBAM’s​
​attention layers offer a level of interpretability that can improve acceptance among​
​healthcare professionals. In comparative benchmarks, it consistently outperforms both​
​traditional deep models and alternative attention-based architectures, making it the most​
​promising tool for reliable, precise, and clinically actionable AD detection. Clinically, its​
​ability to highlight key areas of interest through attention maps not only improves​
​diagnostic precision but also provides interpretability for healthcare professionals.​
​Additionally, the model is trained using rich, multimodal data from the Alzheimer’s​
​Disease Neuroimaging Initiative (ADNI) — a large research project that collects brain​
​scans, genetic information, cerebrospinal fluid (CSF) biomarkers, and cognitive test​
​scores from thousands of participants — including MRI, PET, CSF, genetics, and​
​cognitive scores, enables the model to capture the heterogeneity of AD, supporting more​
​personalized and biologically informed diagnoses.​

​Limitations in the Field​

​Despite the outstanding performance of the CAPCBAM model, the field itself (AI​
​algorithms in neuroimaging diagnosis) faces significant limitations that could hinder​
​clinical deployment. To begin, computational complexity is notably high for many models,​
​requiring powerful hardware and substantial processing resources, which may not be​
​feasible in all clinical settings, particularly those with limited infrastructure. Furthermore,​
​many models depend on extensive data preprocessing—such as normalization, resizing,​
​and augmentation—adds further time and resource costs (Slimi et al, 2025). Moreover,​
​while ADNI provides rich multimodal data, its historical lack of diversity limits the​
​generalizability of the model’s predictions across broader, more varied populations. The​
​dataset’s overrepresentation of well-educated, White individuals and exclusion of​
​participants with common comorbidities (e.g., cardiovascular disease, diabetes) means​
​that the model may not fully capture the clinical variability of real-world AD cases​
​(Ashford et al, 2022). While interpretability can be improved through improved heatmaps​
​(representations of complex data), the time required to process and confirm outputs could​
​delay clinical decision-making in urgent scenarios. Ultimately, future improvements in​
​computational efficiency, dataset diversity, and multimodal integration will be necessary​
​for this field to achieve full adaptability in clinical practice.​
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​Future Directions​

​The future of AI in AD diagnosis in clinical detection lies in expanding the scope,​
​improving efficiency, and integrating it seamlessly into healthcare workflows. To enhance​
​early-stage detection, future iterations should be trained on larger, more diverse​
​(ethnically, physiologically, and genetically), and longitudinal datasets, with ADNI 4​
​already attempting to accomplish this initiative with ethnically diverse populations of​
​Black, Latinx, Asian, American Indian/Alaska Native, and Native Hawaiian/Other Pacific​
​Islander individuals​​, that capture patients at preclinical​​or MCI stages, as well as those​
​from underrepresented populations. This can be accomplished via younger​
​representatives from these populations to represent these marginalized populations in​
​various, homogenous regions. Incorporating additional modalities—such as CSF​
​biomarkers, speech analysis, and genetic risk factors (such as the APOE 4 allele)—could​
​allow the model to generate richer, more individualized risk profiles, improving both​
​accuracy and generalizability. Computational optimization through pruning, quantization,​
​or efficient routing algorithms will be essential to reduce hardware demands, making the​
​model more accessible to clinics with limited resources.​

​Clinician Relationship​

​Clinically, these neuroimaging-based AI algorithms could function as an AI-driven​
​screening layer, rapidly processing MRI, PET, and other multimodal data to flag high-risk​
​individuals for neurologist review, serving as a decision-support system rather than a​
​replacement for clinicians. As real-world validation progresses, the model’s​
​explainability—via attention-based heatmaps—will help build physician trust, allowing​
​AI-human collaboration to enhance the performance of both (Figure 8). Long-term,​
​integrating CAPCBAM into EHR systems, remote cognitive testing platforms, and​
​population screening programs could make it a cornerstone tool for early AD detection,​
​subtype classification, and personalized intervention planning.  Ultimately, AI can serve​
​as a second reader or decision-support system, flagging at-risk patients that a doctor​
​might otherwise overlook, or providing confidence scores for ambiguous cases.​

​Figure 8:​​AI-Doctor Relationship.​​AI can analyze complex​​information in a much quicker​
​and more efficient way, giving more time for doctors to interact with patients and provide​
​more intimate and personal care/comfort. Image shows traditional manual analysis by​
​doctors, contrasted by AI’s more efficient way (BioRender, 2025).​
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​Conclusion​

​This paper compared three advanced AI-based models for Alzheimer’s disease​
​(AD) diagnosis — CAPCBAM, D3LM-LAN, and MLM-MCSVM — with a focus on early​
​detection accuracy, clinical utility, and interpretability. CAPCBAM, which integrates​
​Capsule Networks with the Convolutional Block Attention Module, achieved the highest​
​performance, with 99.95% accuracy, precision and recall above 99.8%, and an AUC of​
​0.99. Its ability to preserve spatial hierarchies and focus attention on clinically relevant​
​regions makes it highly effective for MRI-based diagnosis. D3LM-LAN demonstrated​
​strong multimodal classification capabilities using PET and MRI data, achieving​
​accuracies up to 97.74%, while MLM-MCSVM leveraged optimized kernel selection to​
​excel in early-stage detection, with accuracies near 98.6%. Despite these strengths, all​
​models share limitations: high computational demands, dependence on large high-quality​
​datasets, potential bias from underrepresentation in current datasets, and varying​
​degrees of interpretability challenges in clinical practice. All of these models could​
​eventually be utilized in the diagnostic process, demonstrated by their high accuracies​
​and ROI regionalization of specific brain regions.​

​The field of AI-driven AD diagnosis is rapidly advancing, with emerging models​
​outperforming many traditional neuroimaging methods and, in some cases, matching or​
​exceeding the accuracy of radiologists for early detection. CAPCBAM, in particular,​
​stands out for its ability to integrate multimodal data and provide attention-based​
​interpretability, making it both powerful and clinically relevant. However, the lack of​
​diversity in widely used datasets like ADNI limits generalizability, especially across​
​populations with varying genetic, environmental, and socioeconomic risk profiles.​
​Increasing representation of underrepresented populations, improving dataset​
​standardization, and expanding longitudinal, multimodal data will be critical next steps. If​
​these challenges are addressed, AI systems could serve as reliable triage tools in clinical​
​workflows — identifying at-risk individuals early, improving trial recruitment, and enabling​
​more personalized interventions — while complementing rather than replacing human​
​expertise.​
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