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Abstract 
Mass gap objects have eluded researchers for many years, as they occupy the space between 
the lightest black holes and the heaviest neutron stars. The purpose of this study was to use 
gravitational wave analysis emitted by the process of forming these objects to gain a deeper 
understanding of their properties and general trends. We hypothesized that mass-gap mergers 
differed from other black hole mergers primarily by their chirp-mass distribution, spin, and 
effective spin distributions, which was partially proven correct when the chirp mass of mass gap 
mergers was estimated to be very different from black hole mergers. However, nested sampling 
and kernel density estimation revealed that the spin and effective spins of mass gap objects do 
not differ significantly from those of black holes, which is a fascinating result that will help further 
research in the future.  
 
Introduction  
Black holes and neutron stars are both results of stellar evolution [1], depending on how 
massive the star was. However, there is a <mass gap= between the heaviest neutron stars 
discovered at ~2.5 solar masses and the lightest black holes found at ~5 solar masses. There 
weren’t any objects that we believed would form in this mass gap until 2017, when an event 
happened that could greatly alter our understanding of cosmological objects. Gravitational wave 
astronomy became a reality for the first time in 2015, when the Laser Interferometer 
Gravitational Observatory (LIGO) detected gravitational waves in a black hole merger [2]. Since 
then, gravitational wave detectors like LIGO, Virgo, and KAGRA have detected a multitude of 
events involving objects of different masses and properties colliding, with the most notable of 
these occurring in 2017. On August 17, 2017, LIGO detected gravitational waves emitted from a 
neutron star merger for the first time, with the result appearing to be an object with a mass 
belonging to the <mass gap= previously hypothesized [3]. In this study, we analyze all of the 
future events that produced an object in this mass gap to try to discover trends in the properties 
of these mysterious objects. To do this, we used Bayesian statistics, which allows us to use prior 
knowledge to better estimate the properties of objects in the mass gap. In this way, we can 
obtain full posterior distributions of properties such as masses, spins, and redshift.  For a given 
parameter set θ and data D, the posterior is computed as 
 

     (1) �(θ|�) = �(�|θ)�(θ)�(�)
Where P(D|θ) is the likelihood derived from gravitational-wave strain data, P(θ) is the prior 
distribution, and P(D) is the likelihood of the data [4]. Additionally, chirp mass and effective spin 
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of mass gap merger events detected by LIGO were compared with other events that produced 
<normal-sized= black holes, with a similar statistical distribution regarding effective spin. 
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Results 

To find spin values of black holes, parameter estimation was done using the dynesty sampler in 
Python [3]. Figure 1 shows a sample posterior estimation of the first gravitational wave event 
GW150914, which reports the highest probability of chirp mass, mass ratio, phase, and geocent 
time to be 31.44(±0.33), 0.92(±0.07), 4.72(+0.46,-2.82), and 1126259462.41(±0), respectively.  

 
Figure 1: Posterior distributions for GW150914, estimating Mass ratio, chirp mass, phase, and 
geocentric time. Mass ratio is estimated at 31.44 ±0.33, chirp mass is estimated at 0.92 ± 0.07, 
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phase is estimated at 4.72(+0.46/-2.82), and geocentric time is estimated at 1126259462 ±0. 
The distributions containing phase appear to be bimodal, while the rest are all unimodal. 
Applying the same method for the estimation of other parameters, mainly viewing angles for a 
recent mass gap merger, GW230529, results in Figure 2, showing many concentrated spots of 
probability.  

 
Figure 2: Parameter estimations of GW230529, estimating phase, declination, right ascension, 
and phi, the last three of which are viewing angles. Right ascension and declination have 
well-defined points, while the other two do not. 
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Two additional estimations were done on spin values for GW170817 (Figure 3) and GW190425 
(Figure 4), which led to narrow distributions for the former but broad distributions for the latter. 

 
Figure 3: Spin and chirp mass estimations for GW170817. Spins concentrate around 0.42, chirp 
mass at around 0.5. 
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Figure 4: Unclear parameter estimation for GW190425 spins. Lots of areas with high and low 
probability 
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Figure 5: The effective spin compared to chirp mass for mass gap objects and other black holes 
detected through gravitational waves. 
Kernel density estimation for most black holes detected by LIGO. Concentrations of both black 
holes and mass gap objects are at around 0 spin and ~5 chirp mass for mass gap objects and 
~30 chirp mass for black holes. 
 
Kernel estimation and Kolmogorov–Smirnov(KS) tests were performed[5], with the KS test 
comparing mass gap object properties with other black holes, reporting p-values of 0.95 for 
effective spin and 5.21e-6 for chirp mass. The kernel density estimation is also shown, with the 
majority of mass gap objects centering around 0 effective spin and chirp mass of ~5. 
 
Discussions of Results 
The more well-defined parameter estimations for GW150914 and 170817 show that when the 
signal-to-noise ratio(SNR) is high enough, dynesty sampling is effective at estimating posterior 
distributions. However, as mass gap objects tend to emit lower amounts of energy due to having 
smaller chirp masses, it is harder to assess their properties, as demonstrated in the broad 
posterior distribution of GW190425, with an SNR of 11.3[6]. Estimates of spin for three 
mass-gap gravitational events(GW170817, GW190425, and GW230529) were able to estimate 
primary spins all within the range of 0.4-0.5, which could imply most mass gap systems have at 
least one object with a spin of ~0.45 before merging. Since most of these systems have an 
effective spin of around zero after they merge, that would imply the other object also has a 
moderate spin, and the spin values cancel out. This provides valuable insight into how these 
systems form, as spin values for both objects will usually have more similar or aligned spin 
values [7]. This means the neutron stars that merged into this mass-gap object only merged 
through long-distance attraction and not from a binary star system.  
 
When comparing the effective spin and chirp mass of mass gap objects to other black holes, the 
KS test outputted a p-value that was notably high when comparing the effective spin. This 
means we cannot reject the null hypothesis, showing that the distributions for effective spin do 
not seem to be dependent on the object’s mass.  
 
However, this has a lot of limitations that need to be addressed. The variety of high-probability 
angles for GW230529 demonstrate a major limitation today in gravitational astronomy: the 
inconsistency and low number of gravitational detectors. Particularly for this event, the only 
detector that was able to be used for data collection was LIGO-Livingston [8]; all other detectors 
were either offline or unable to detect the signal due to not having enough sensitivity. Current 
detectors are also prone to environmental noise from many factors, which makes it harder to 
detect gravitational waves and creates broad posteriors, increasing the difficulty of estimation. 
Also, there have only been a handful of mass-gap objects detected using LIGO, so any trend 

7 



observed may just be a coincidence and isn’t concrete evidence supporting the properties of 
mass gap objects.  
 
In the near future, many of these limitations could be overcome. With more advanced 
technology and improved tuning of detectors, scientists may be able to reduce noise 
significantly and detect gravitational waves at even lower amplitudes. This especially benefits 
mass gap detections, as these events typically have smaller chirp masses and produce weaker 
signals than black hole systems as large as 100 solar masses. More mass gap detections will 
help confirm the trends observed in this study and provide additional insights into the true nature 
of these mysterious objects. Additionally, there is a planned gravitational detector to be located 
in space, which will eliminate a lot of seismic noise and detect many more gravitational waves 
coming from both black hole mergers and neutron star mergers [9].  
 
Materials and Methods 
All gravitational wave data from LIGO is free and can be accessed by importing the <gwpy= 
library in Python [10]. This data gave us the strain data from the interferometer, but it contained 
a lot of statistical noise, both from its environment and the detector itself. Since LIGO is based 
on the ground, the interferometer frequently picks up seismic vibrations from inside the Earth 
that disrupt the data. LIGO’s own instruments also cause noise due to imperfect electromagnetic 
shielding and the location of mirrors [11].  
 
We used a bandpass filter and notched frequencies to remove noise from the data. Bandpass 
filters are filters designed to filter out specific frequencies when detecting noise, usually done by 
combining low-pass filters and high-pass filters to get the desired range of frequencies [12]. By 
combining multiple of these filters, we can create a bandstop filter, otherwise known as a notch 
filter [13]. This allows us to leave out specific frequencies of energy in the data that are known to 
cause noise. For example, low-frequency seismic noise is known to occur at the frequency of 60 
Hz and its harmonics at 120 and 180 Hz [11], so we can notch those frequencies to reduce the 
noise in our data. This helps us obtain a more filtered plot of the strain data to better determine 
the strain caused by the gravitational wave, as shown in Figure 6. 
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Figure 6: Unfiltered and filtered data from LIGO-Hanford. The first image is unfiltered data, with 
the gravitational wave not discernible and lots of noise. The second image shows the 
gravitational wave clearly at 15 seconds.  
 
Often, there are glitches in the detector that produce a result similar to a very strong 
gravitational wave that simple bandpass filtering can’t filter out. In this case, we use a 
Q-transform, in Figure 7.  
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Figure 7: Q-transform of GW170817. Large glitch in the data from -2.4 to 0.3 seconds, with a 
slight curve in the background showing the gravitational wave. 
 
A Q-transform displays the amount of energy detected at various frequencies over time[14], and 
we see that there is a huge spike of energy at all frequencies at around -1.2 seconds. However, 
we also see a faint curve of energy increasing in frequency behind the glitch, which is the 
gravitational wave that LIGO detected at that time, letting us see past the glitch and reveal what 
actually happened.  
 
Markov Chain Monte Carlo and Nested Sampling 
To explore the posterior space, we use nested sampling, a variation of the Markov Chain Monte 
Carlo (MCMC) method. The MCMC method employs many walkers in the posterior distribution, 
each exploring the distribution by moving toward points with higher probability computed with 
Bayes' theorem[15]. The walkers also have a chance to move toward regions with lower 
probability to find more high-probability areas. However, the MCMC method is not as efficient as 
nested sampling when dealing with complex distributions, which can often occur in black hole 
parameter estimation [16]. Nested sampling works by first selecting multiple points, then 
computing the point with the least probability, Pmin. Next, it replaces that point with a new point, 
provided the new point has a probability P greater than Pmin, and shrinks the boundaries of the 
probability it is computing. As the likelihood floor rises, the prior mass shrinks exponentially, until 
another iteration doesn’t meaningfully contribute to P, then the algorithm is stopped[16]. To use 
this method, we use the Dynesty sampler [17] in Python, along with bilby [18], which helped run 
the sampler and set priors, numpy[19], which provides numerical values for pi, Pandas [20], 
which helps load the posterior samples, matplotlib [21], which helps plot data, LALinference[22], 
which gives likelihoods for parameters, and gwosc [23] and gwpy [10] for obtaining the data. 
 
Priors and Statistical Analysis 
Priors were chosen based on data from the original LIGO detection papers[2][3][6][8], including 
mass ratio, chirp mass, luminosity distance, and geocentric time. Other non-mentioned priors, 
such as viewing angles and phase, were separately calculated using nested sampling in Python, 
as shown in Figure 2. Parameters to be estimated were set as uniform between two fixed 
values. 
 
The plot and kernel density estimation were run using seaborn [24], scipy [25] to run the KS test, 
and Pandas [20] to interpret the dataset. Data from most early events came from the stellar 
graveyard plot[26] which provided the spin values and chirp masses that were needed. 
Additionally, later events, such as GW231123 and GW230529, had their properties extracted 
from their respective discovery papers [27][7].  
 
Conclusions and Future Works 
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Overall, this study used techniques such as parameter estimation, kernel density estimation, 
and KS tests to analyze the similarities and trends of mass-gap objects through their 
gravitational wave data. The results indicate that the spin distributions of mass-gap objects are 
similar and resemble a more concentrated distribution of larger black holes, in addition to 
mass-gap objects having similar chirp masses. This research has enhanced our understanding 
of the distinguishing properties of black holes and will be valuable in the future as more 
mass-gap objects are detected.  
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