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Abstract: 

 
This paper studies the accuracy of various theoretical models of pendulum oscillatory motion by 

comparing them to experimentally determined data. Pendulums, though often simplified in 

introductory physics, display nonlinear behavior at large amplitudes, along with significant 

damping effects. To explore this, equations of motion for the small-angle approximated, 

drag-free and drag-induced model were solved numerically in Python, and compared to 

experimental data. Results showed the increasing unreliability of the small-angle 

approximated and drag-free model with larger amplitudes. At these angles of release, only 

the drag-induced model sufficiently captures amplitude and period decay, though its 

accuracy depends strongly on damping coefficient setup.  
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INTRODUCTION 

Background 

Galileo Galilei systematically studies the oscillatory motion of a pendulum and proposes its 

isochronism – the notion that the period of swinging motion remains nearly constant for 

small amplitudes or initial displacements. This idea remains greatly influential in the field 

of timekeeping and led to, in 1656, Christiaan Huygens developing the first clock working 

on the basis of pendulums [1]. Isaac Newton later analyzes pendulums in his Principia 

Mathematica, confirming that their nature could be modeled definitively through 

deterministic laws of motion, and the period of swing depends solely on the pendulum’s 

length, not its mass [2]. 

Beyond its historical relevance, the pendulum remains a crucial tool in scientific modelling. A linear 

approximation is utilized to model pendulums in preliminary study, but this idea breaks 

down when predicting real-world systems that follow analytically unsolvable governing 

equations. Understanding the transition from the simplified, linear regime to the real-world 

nonlinear domain is foundational in modeling pendulum systems.  

Pendulum dynamics lie at the core of many physical and engineering situations and systems. The 

nonlinear pendulum provides crucial insight into oscillatory behavior far beyond the scope 

of mechanics. Its mathematical setup recurs across fields ranging from electrical 

engineering, seismology and structural mechanics. The pendulum is among the most 

widely studied systems in physics and control theory [3]. Thus, understanding the nonlinear 

behavior of any type of pendulum is not simply academic but foundational for real-world 

modeling and design. 

Simplified idealized pendulum models, especially those assuming small angles, no 

damping, and massless strings, are often taught in introductory physics. However, they fail 

when applied to real contexts and systems. For instance, the commonly applied small-

angle approximation sinθ ≈ θ brings to rise relevant error beyond initial angular 

displacements of about 20°, causing the predicted period to underestimate the actual time 

taken for a full oscillation [4]. At 45°, the deviation is already more than 4% [5]. Moreover, 
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other contributing factors such as friction at the pivot and air resistance introduce energy 

loss, leading to damped motion that cannot be captured accurately by ideal equations. In 

real systems, however, this damping is important to model as it influences stability and 

longevity of oscillations which are properties crucial to consider in engineering design [6]. 

Expanding on the contexts of pendulums, its relevance extends far beyond mechanical 

systems. Its mathematical formulation appears in various fields that are denoted by 

second-order differential equations with sinusoidal or restoring forces. 

In electrical engineering, RLC circuits composed of resistors, inductors and capacitors 

follow equations that are formally identical to damped harmonic oscillators. The voltage 

across an inductor, for example, in such circuits obeys a differential equation analogous to 

a pendulum with friction [7]. In more complicated systems like superconducting Josephson 

junctions, the current-phase relationship is modeled by the nonlinear differential equation 

∅¨+sin∅=0, which is fundamentally identical to the undriven nonlinear pendulum [8]. 

In mechanical and civil engineering, structures such as buildings, bridges and towers 

experience oscillatory behavior under wind or seismic forces. Tall skyscrapers act as 

inverted pendula, with their top floors swaying in response to external perturbations. 

Engineers attempt to mitigate this using tuned mass dampers – large, suspended masses 

that function exactly like pendulums to absorb vibrational energy. The Taipei 101 

skyscraper, for example, makes use of a 728-ton heavy pendulum damper that reduces 

swaying by up to 40% [9]. Bridges use similar mass-spring-damper systems to prevent 

resonant oscillations in decks and cables. 

In seismologic applications, traditional seismometers are based on pendulum-like mechanisms. 

These instruments detect ground motion by measuring relative displacement between a 

swinging mass and the Earth’s movement. The sensitivity and response of these systems 

depend largely on pendulum dynamics [10]. 

These examples show that pendulum-like equations form a unifying mathematical structure 

in science and engineering. The study of their nonlinear dynamics thus contributes directly 

to understanding and optimizing real-world systems. 
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Some physical models bring about equations with no simple closed-form solution. For example, 

the true motion of a pendulum involves the nonlinear term of sinθ and leads to elliptic 

integrals rather than the elementary functions involved in analytical solutions. When 

additional factors of friction, air resistance – forms of damping in pendulums – and external 

driving forces are involved, the system can become analytically intractable [12]. In such 

cases, such as large-angle swings of the pendulum or the chaotic double pendulum, 

computer simulation must be turned to study its swinging behavior. Numerical simulation 

uses computers to integrate the equations step by step when exact formulas are 

inapplicable [13]. 

An analytical solution of a differential equation is an exact formula or expression that agrees to 

the equation for all time and all input values. On the other hand, a numerical solution 

computes approximate values at discrete selected points [14]. Analytical solutions are 

preferred when possible because they are exact ones. However, when the equations are 

too complicated, the only option is to generate a sequence of numerical approximations 

through solving step by step. 

In cases such as the pendulum where equations are no longer simple, analytical methods tend to 

break down. They work well for linear problems with constant coefficients but fail when 

nonlinear terms appear. Likewise, adding damping (which is velocity-dependent) or 

periodic forcing makes closed-form solutions impossible except in special approximations. 

Multi-body problems also defeat analytic formulas; for instance, the three-body 

gravitational problem has no general solutions. Even the damped, driven pendulum only 

gives a known solution in the small-angle limit; for large oscillations, it has the ability to 

exhibit chaotic behavior [12]. 

A numerical simulation is the process of using algorithms and computers to approximate 

the behavior of a physical system by solving its mathematical model step by step. In 

practice, one sets up differential equations that govern the system and then uses a 

computer to calculate the adapting solution at multiple time points. Numerical simulation is 

indispensable for complex physical problems, as it allows virtual experiments and design 

before building real prototypes [13]. 
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Utilizing simulation, building dynamic models of pendulums is possible. These techniques are 

used to simulate the pendulum’s motion under various forces, enabling the exploration of 

its behavior beyond what analytic formulas can show. 

Dynamic modeling involves transforming a real physical system into a set of mathematical 

equations that predict its behavior over time. In practice, fundamental principles such as 

Newton’s Laws or energy conservation are used to derive equations of motion for the 

system [16]. For a pendulum, this means relating gravitational torque and inertia to obtain 

differential equations for the angle and angular velocity. In general, a dynamic model of a 

pendulum becomes a set of ordinary differential equations (ODEs) that completely describe 

how the state variables involved in the motion change with respect to time [16].  

To make the pendulum model tractable, certain idealizations are assumed. Common assumptions 

include treating the bob as a point mass and the support as a rigid, massless rod or string. 

One also typically assumes a frictionless pivot and no air resistance – when damping is 

not considered [17]. Including a damping term to the equation proportional to velocity 

produces decaying amplitudes and slightly longer periods. A damped pendulum has a 

longer period, with amplitude shrinking over time [18].This means that a real pendulum 

takes longer to swing, and their amplitude shrinks over time. 

A simulation is a computational process that solves the model’s equation over a time span. A 

numerical solver can handle even very complicated or coupled equations that have no 

analytic solution. The trade-off is that the solution is only approximate with its accuracy 

depending on the selected method, the time step size and the error control [16]. 

Dynamic simulation offers capabilities beyond manual calculation. Once the equations are 

implemented, the computer can model behavior for any chosen initial angle or length and 

instantly show how motion varies. In chaotic systems, small changes in initial conditions 

amplify, making simulation the only practical way to study this sensitivity. 

This paper compares experimental and theoretical models of pendulum motion across 

amplitudes, using experimental data and numerical simulations. The analysis evaluates 
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the small-angle, nonlinear drag-free, and damped models, and concludes with the 

exploration of chaotic behavior in the double pendulum. 

 

METHODS 

Section 1: Analytically Modelling a Simple Pendulum 

1.1 Derivation of the Equations of Motion  

To establish a mathematical foundation for modelling a pendulum’s motion, Newtonian mechanics 

is utilized to derive governing equations of motion.  

A simple pendulum has the following setup: an assumed 

point mass m, suspended by a massless, rigid rod 

or string of length l, oscillating in a vertical plane 

under the influence of gravity. The angle θ defines 

the angular displacement from the equilibrium 

(vertical) position. The restoring force responsible 

for motion is the component of gravitational force 

acting tangent to the arc expressed by 𝐹 =

 −𝑚𝑔 sin 𝜃. Accordingly, this gives rise to a torque 𝜏 =  −𝑚𝑔𝑙 sin 𝜃, where the negative sign 

indicates opposition to displacement. Considering Newton’s second law for rotational 

motion (τ = Iθ̈), with I = 𝑚𝑙2,  the nonlinear differential equation governing the motion 

derived is: 

𝜃̈ +
𝑔

𝑙
sin 𝜃 = 0                       (1) 

This is a second order, nonlinear ODE that cannot be solved analytically using elementary 

functions due to the presence of the sine term [20].   

The derivation above makes several crucial assumptions including a massless, rigid pendulum 

rod/string, the bob acting as a point mass, and most importantly, that there is no energy 

loss due to air resistance or any form of friction at the pivot or internally. This results in an 

idealized, drag-free model that serves as the foundation for more complex analytical and 

numerical models. For small angular displacements, though, this equation can be simplified 

using the small-angle approximation, which is discussed further in the next section. 

 

Figure 1.1: Force Diagram for Drag-Free Model 

[19] 



 

7 

1.2 Small-Angle Approximation  

To simplify the analytically unsolvable nonlinear ODE derived above, a small-angle approximation 

is widely applied to attain a solution. This is defined as sin 𝜃  𝜃, generally valid for |𝜃| ≲ 

0.2 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 ( 11𝑜). 

 

This leads to the simplification of the governing nonlinear equation: 

𝜃̈ +
𝑔

𝑙
𝜃 = 0                        (2) 

This is a second-order linear differential equation that describes simple harmonic motion. The 

general solution is: 

𝜃(𝑡) = 𝜃𝑜 cos (√
𝑔

𝑙
𝑡 +  ∅)                  (3) 

where 𝜃𝑜 is the initial angular displacement and ∅ is the phase constant. The period of oscillation 

under this approximation is: 

𝑇 = 2𝜋√
𝑙

𝑔
                   (4)   

It is important to note that this expression is independent of amplitude, proving its isochronism. 

This property of a pendulum’s motion is what Galileo observed experimentally and used 

as the conceptual basis for early pendulum clocks, though only strictly valid for small 

angular displacements [2].  

 

1.3 Extending Beyond the Small-Angle Approximation 

Although, as the value of 𝜃 rises, the approximation sin 𝜃  𝜃 becomes increasingly inaccurate. 

The Taylor expansion of sin 𝜃 illustrates this deviation: 

sin 𝜃 = 𝜃 −  
𝜃3

6
+

𝜃5

120
− … 

The error from truncating at the linear term grows rapidly with the 

value of the angle. At 𝜃 = 0.4 𝑟𝑎𝑑 ( 23𝑜), for example, the 

error exceeds 1% [20].  This point marks a significant error 

between the estimated and true value of sin 𝜃. Thus, for 

Figure 1.3: Graph comparing sin() and () over a small domain 

[21] 
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such large angular displacements, a full nonlinear treatment is necessary. The figure on 

the right compares sin 𝜃 (blue line) and 𝜃 (red line). 

 

 

The exact period of a nonlinear pendulum with maximum angular displacement 𝜃𝑜 is given by: 

𝑇 = 4√
𝑙

𝑔
∫

1

√1 − 𝑘2 sin2 ∅

𝜋/2

0

𝑑∅                   (5) 

where 𝑘 = sin
𝜃𝑜

2
, and the integral is the complete elliptic integral of the first kind, denoted K(k) [22]  

This result is found from energy conservation and advanced techniques in nonlinear 

differential equations The period increases with amplitude and ultimately diverges as 𝜃𝑜 →

𝜋, as it takes an infinite amount of time for the pendulum to reach a vertical upright position 

from rest. 

 

1.4 Approximations for Moderate and Large Initial Angles of Release 

Between the simple linear approximation and the full elliptic solution, several intermediate 

approximate formulae exist that can closely predict the period for angles larger than those 

that can be considered as eligible for small-angle approximation. These can be valuable 

tools since they do this without needing numerical integration through simulation. Two main 

regimes are considered in this paper: 

Not-so-large angle approximation: 

For angles less than approximately 𝜋/2, Lima [23] proposes an effective empirical formula that 

estimates the period using the expression: 

𝑇 ≈  −𝑇𝑜 ∙  
ln(𝑎)

1 − 𝑎
                      (6),   𝑤ℎ𝑒𝑟𝑒 𝑎 = cos (

𝜃𝑜

2
)  

Here, 𝑇𝑜 is the period in the small-angle limit defined by 2𝜋√
𝑙

𝑔
, and  is the initial (and maximum) 

angular displacement. This expression yields reasonably accurate estimates for angles 

below 𝜋/2 and is particularly useful without the availability of numerical tools. However, the 

error rises monotonically with amplitude and becomes acceptable near 𝜋 radians. 
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Very large-angle approximation: 

For amplitudes approaching 𝜋 radians, Cromer’s logarithmic formula asymptotically approximates 

the exact period [24]: 

𝑇 ≈  
2

𝜋
𝑇𝑜 ∙ ln (

4

𝑎
)                     (7)   ,   𝑤ℎ𝑒𝑟𝑒 𝑎 = cos (

𝜃𝑜

2
)   

This formula diverges logarithmically as 𝜃𝑜 →  𝜋, correctly modeling the infinite-period behavior at 

the vertical upright position. However, it performs poorly at lower amplitudes, where it 

significantly overestimates the period of oscillation. 

Together, these formulae allow for quick approximation across a wide range of angle and serve 

as useful tools for analysis when high accuracy computational solutions are not feasible. 

While that is not the case for this paper, it is important to consider them as bridging the 

significant gap between idealized small-angle theory and complex numerical or elliptic-

integra-based solutions. 

Section 2. Numerically Modeling a Simple Pendulum 

2.1 Analytical Failure in Studying Pendulums 

While analytical approaches are often favored for their precision and simplicity, they instantly 

become insufficient when modeling the true behaviour of pendulum systems beyond ideal 

approximations and conditions. As displayed in Section 1, the governing equation of the 

nonlinear pendulum is unsolvable in closed form with only the period derivable using elliptic 

integrals. If the inclusion of realistic elements is considered (eg. friction or air resistance), 

the resulting equations become non-integrable using elementary functions. Quadratic 

damping, for example, introduces velocity-dependent terms that complicate separation of 

variables that further amplifies this difficulty. 

Moreover, when studying multi-body systems such as the double pendulum, analytical methods 

become impossible. The resulting equations are coupled, nonlinear, and sensitive to initial 

conditions – a representation of chaotic behaviour. There exists no general solution 
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analytically to these systems, even under simplifying assumptions. Thus, numerical 

integration is the only viable route to investigate their dynamics in depth. 

2.2 Numerical Solvers and their implementation 

Since the pendulum’s nonlinear ODE generally has no simple closed-form solution, it is integrated 

numerically using time-stepping methods explained in Overview of Solving Methods. The 

initial angle and velocity are inputted and new values at each time set Δt are incrementally 

computed. In each step the solver uses the current state to estimate the derivates from the 

defined ODE and update the state to the next time. This numerical approach measures the 

system’s state variables at set time intervals, approximating the continuous motion step-

by-step [16].   

 

In general, a variety of numerical algorithms are used to solve ordinary differential equations 

(ODEs). Four important methods discussed include Euler’s Method, Classical Runge-Kutta 

(RK4), RK45 (Dormand-Price) and DOP853 (Dormand–Prince 8(5,3)). These methods 

trade of accuracy, speed, and stability.  

 

To start with, Euler’s Method is the fastest per step due to just one evaluation but is the least 

accurate and stable. Its first-order error means the result drifts rapidly unless the step size 

is extremely minimal [25]. RK4 requires more computation per step but yields much better 

accuracy for a given step size and is still explicit, so it remains stable in most general 

situation. RK45 and DOP853 are more refined in the way that they have adaptive stepping, 

which usually yields higher efficiency. They do this by automatically enlarging the step in 

smooth regions and shrink it in steep regions, controlling the error. RK45 typically needs 

fewer total steps than Euler or RK4 for the same tolerance, while DOP853, being 8th-order, 

can achievably extremely low error but at the cost of many function evaluations. Notably, 

the SciPy documentation recommends using DOP853 when very high precision is 

required, such as in chaotic systems like the double pendulum [26]. In summary, one often 

starts with RK45 as a versatile, middle-ground solver, uses Euler only for quick rough 

estimates and turns to DOP853 when modelling with high accuracy is crucial. 
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For regular nonlinear pendulum simulations, RK45 is employed as a reliably and computationally 

efficient default which has sufficient accuracy to detail the motion of the system. On the 

other hand, for the chaotic double pendulum, DOP853 is selected due to its enhanced 

accuracy and lower global error propagation. 

 

2.3 Modeling the Nonlinear Drag-free Pendulum 

As outlined earlier, the nonlinear, drag-free pendulum is solved by the exact governing equation: 

𝜃̈ +
𝑔

𝑙
sin 𝜃 = 0                          (8) 

The assumptions for this particular simulation entailed assuming those of a simple pendulum, 

along with the absence of resistive forces in the form of pivotal and internal friction or air 

resistance. This assumes complete energy conservation in the motion of the pendulum 

itself.  

Numerical integration is carried out using RK45 for a set number of oscillations with varying initial 

angles of release, yielding high-resolution time series data for 𝜃(𝑡) and 𝜔(𝑡), allowing for 

the determination of time period. Here, since there is no energy loss, this period remains 

constant. This value is compared with experimental results from both analytical and 

numerical methods, along with a lab-based result. While this system is still quite idealized, 

it provides a critical baseline for understanding more complex behaviour when damping 

and coupling are introduced. 

 

2.4 Modeling the Damped Nonlinear Pendulum 

To model the damped nonlinear pendulum, it is essential to first establish the governing equations 

that define the motion of the system in this case. The figure below depicts the forces acting 

on the pendulum, with the restoring force 𝑚𝑔 sin 𝜃 and force of drag Fd, acting opposite to 

the tangential velocity v.  

 



 

12 

For this paper, the sole resistive force of quadratic drag is assumed– force of drag depending on 

the factor of linear velocity squared. With this, 

𝑚𝐿
𝑑2𝜃

𝑑𝑡2
= = −𝑚𝑔 sin 𝜃 − (

1

2
𝐶𝑑𝜌𝐴𝑣2 × 𝑠𝑖𝑔𝑛(𝑣))           (9) 

Here, 

𝐶𝑑 is the coefficient of drag – approximated to be around 0.5 for 

spheres [28]. 

𝜌 is the air density, which varies with pressure and temperature – 

assumed to be around 1.204 kgm-3 at 20oC and standard pressure 

[29].  

𝐴 is the cross-sectional area of the sphere 

v is the tangential velocity 

𝑣 = 𝐿 × 𝜔 = 𝐿
𝑑𝜃

𝑑𝑡
                 (10) 

 

 

Substituting 𝑣 = 𝐿
𝑑𝜃

𝑑𝑡
 to simplify, 

𝑚𝐿
𝑑2𝜃

𝑑𝑡2
= = −𝑚𝑔 sin 𝜃 − (

1

2
𝐶𝑑𝜌𝐴𝐿2 (

𝑑𝜃

𝑑𝑡
)

2

× 𝑠𝑖𝑔𝑛 (
𝑑𝜃

𝑑𝑡
))        (11) 

𝑚𝐿
𝑑2𝜃

𝑑𝑡2
+ 𝑚𝑔 sin 𝜃 + (

1

2
𝐶𝑑𝜌𝐴𝐿2 (

𝑑𝜃

𝑑𝑡
)

2

× 𝑠𝑖𝑔𝑛 (
𝑑𝜃

𝑑𝑡
)) = 0                         (12) 

 

Dividing this equation by ‘mL’: 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
sin 𝜃 + (

𝐶𝑑𝜌𝐴𝐿

2𝑚
(

𝑑𝜃

𝑑𝑡
)

2

× 𝑠𝑖𝑔𝑛 (
𝑑𝜃

𝑑𝑡
)) = 0                   (13) 

Since the coefficient of drag, length of the rigid massless rod/string, mass of the bob, air density 

and the cross-sectional area of the sphere can all be considered to be constant: 

Let 
𝐶𝑑𝜌𝐴𝐿

2𝑚
= 𝜅   

Hence, 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
sin 𝜃 + 𝜅 (

𝑑𝜃

𝑑𝑡
)

2

× 𝑠𝑖𝑔𝑛 (
𝑑𝜃

𝑑𝑡
)) = 0                 (14) 

which can be represented as: 

𝜃̈ +
𝑔

𝑙
sin 𝜃 + 𝜅(𝜃)̇ 2 × 𝑠𝑖𝑔𝑛(𝜃)̇ = 0                      (15) 

Figure 2.4: Force Diagram for Damped Model 

[27] 
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Simulations were run using RK45, although with tighter error tolerances than in the undamped 

case to account for the nonlinear damping term and time period decay. The time period 

evolution would show amplitude decay and period elongation, characteristics of realistic 

oscillatory motion. These results will be discussed in detail in the experimental results 

section. 

2.5 Modeling the Double Pendulum 

The double pendulum system generally consists of two assumedly point masses connected by 

two assumedly massless rods, both allowed to swing freely in a vertical plane as depicted 

in the figure below. Unlike the simple pendulum, the system requires two generalized 

coordinates: 𝜃1(𝑡) and 𝜃2(𝑡), representing the angular displacement of each mass from the 

vertical with respect to time. 

The complexity of the double pendulum system makes Lagrangian mechanics the preferred 

framework for deriving its equations of motion. Newtonian mechanics – revolving around 

forces in action – would require calculating the tensions and constraint forces in both rods 

independently and resolving them in multiple dimensions. This leads to a cumbersome, 

lengthy and a less direct derivation. 

Lagrangian mechanics, by contrast, allows one to think in terms of energies and generalized 

coordinate constraints. It inherently accounts for constraint forces and produces a set of 

compact, coupled equations without requiring a breakdown into individual force 

components which Newtonian mechanics makes compulsory. This is particularly beneficial 

in systems with rotational symmetry or non-Cartesian constraints, such as the double 

pendulum.  
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The Lagrangian (L) serves as the foundation for the Lagrangian approach to mechanics. It is 

defined as the difference in the total kinetic energy (T) and total potential energy (V) in the 

system: 

𝐿 = 𝑇 − 𝑉             (16) 

For the double pendulum, with the plane, coordinates and variables defined as in the figure above, 

𝑇 =
1

2
𝑚1𝑙1

2𝜃̇1
2 +  

1

2
𝑚2(𝑙1

2𝜃̇1
2 + 𝑙2

2𝜃̇2
2 + 2𝑙1𝑙2𝜃̇1𝜃̇2 cos(𝜃1 − 𝜃2))            (17) 

𝑉 = −𝑚1𝑔𝑙1 cos 𝜃1 − 𝑚2 𝑔(𝑙1 cos 𝜃1 + 𝑙2 cos 𝜃2)             (18) 

After defining the total kinetic and potential energy in the system, using Lagrange’s equations is 

the next step to derive the equations of motion. These equations are second-order 

differential equations that describe the motion of a mechanical system [31].  

For the double pendulum, there are two generalized coordinates present: 𝜃1 and 𝜃2. Euler-

Lagrange’s equations are applied here to derive equations of motion that look at the 

change in state of these coordinates with respect to time.  

Euler-Lagrange's equations are a fundamental tool in Lagrangian mechanics, and they take the 

following form: 

Figure 2.5 Constraint Diagram for Double pendulum 

[30] 
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𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0                    (19) 

where L is the Lagrangian in terms of generalized coordinates (𝑞𝑖) and their derivatives with 

respect to time (𝑞̇𝑖). 

 

Using the expressions for energies involved in the system and the corresponding Euler-

Lagrange’s equations, the equations of motion are derived for both 𝜃1 and 𝜃2: 

 

(𝑚1 + 𝑚2)𝑙1𝜃̈1 + 𝑚2𝑙2𝜃̈2 cos(𝜃1 − 𝜃2)

+ 𝑚2𝑙2𝜃̇2
2 sin(𝜃1 − 𝜃2) + (𝑚1 + 𝑚2)𝑔 sin 𝜃1 = 0       (20) 

𝑚2𝑙2𝜃̈2 + 𝑚2𝑙1𝜃̈1 cos(𝜃1 − 𝜃2) − 𝑚2𝑙1𝜃̇1
2 sin(𝜃1 − 𝜃2) + 𝑚2𝑔 sin 𝜃2 = 0                                  (21) 

 

The full derivation is presented in Appendix A. 

 

After defining these equations of motion, numerical integration is to be performed using the 

DOP853 solver. This choice is motivated by the need for high-order accuracy (8th Order) 

to minimize local truncation error. Also, adaptive time-stepping can be done with this to 

handle the rapid changes in motion associated with the chaotic nature of double 

pendulums. RK4 and RK45 may diverge in chaotic regimes while the DOP853 is quite 

reliable to remain stable in these cases.  

 

Plugging initial values for the values for coordinates (𝑞𝑖) and their derivatives with respect to time 

(𝑞̇𝑖) and integrating for a set number of oscillations results in a motion configuration highly 

sensitive to these initial values – a sign of chaotic systems. Plots and further analysis of 

this behaviour are presented in the Experimental Results section 
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RESULTS 

3.1 Experimental Method 

To form a definitive conclusion regarding the effectiveness of different pendulum models at 

simulating its expected motion, a physical experiment is necessary to conduct to serve as 

a point for comparison. The setup for the rigid simple-pendulum involves a string with 

length L (measured by a meter stick) and a metal bob – with radius r and mass m 

(measured by a meter stick and digital weighing balance respectively) – attached to a low-

friction pivot. A digital video camera records the motion of the pendulum for all the initial 

angles of release at roughly 30 frames/s (Δt  0.03s) . The LoggerPro software (v. 3.16.2) 

is used to digitize the bob’s position and compute the angular displacement and angular 

velocity at each timestep. A marked point on the pendulum bob – the center – is used for 

this computation. At a chosen trajectory, though, the possibility of a rapidly moving bob 

‘blurring’ between pixels makes certain fine details of the path less accurate [32]. In 

practice, the measured amplitude decayed steadily with time due to air drag and small pivot 

friction, as expected for a real pendulum [33]. Due to the cumbersome means of data 

collection, only the experimental data for two angles of release is measured - 10 and 90. 

These angles of release are chosen to prove failure of the small-angle approximated model 

beyond 10, which has been confirmed theoretically. The 90 release is also shown to 

measure the significant deviation in the models as well as predict the drag-induced model’s 

accuracy in that case. 

A sample of the LoggerPro-derived data is shown below for 𝜃𝑜 = 10°, mapping angular 

displacement and angular velocity at discrete timestamps. Full datasets are imported into 

Python for subsequent comparisons error analyses with the simulated models.  

[Table 3.1: Sample LoggerPro output for θo = 10°] 

t (s) x (m) y (m) vx (m/s) vy (m/s) w (rad/s) theta (rad) 

0 0.050824 0.0050009 0 0 0 0.0980802 

0.033333 0.045527 0.0034234 0.1907080 0.0279006 0.2961730 0.0750532 

0.066667 0.039062 0.0029794 0.2198273 0.0189993 0.0568162 0.0761261 

0.1 0.030897 0.0023789 0.2498452 0.015837 0.109380 0.0768443 
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0.133333 0.021971 0.0018014 0.2691109 0.0099687 0.5468579 0.0818083 

0.166667 0.012858 0.0018338 0.2822513 0.0070245 2.5326227 0.1416598 

0.2 -0.002839 0.0013666 0.2839983 0.0041078 37.920172 0.4486334 

0.233333 0.006386 0.0012055 0.2750978 0.0070625 6.7831845 0.1865678 

 

3.2 Comparison between Theoretical Models 

Before comparing to experimental data, it is insightful to gauge how the three theoretical models 

simulated behave under identical initial conditions. These include: 

- The small angle approximated (linearized) model 

- The full nonlinear model without damping 

- The full nonlinear with quadratic air drag 

Simulations were conducted for each model under five standard release angles (10°, 30°, 45°, 

60°, 90°), holding physical constants and integration parameters identical. These constants 

include the length of the string L, the acceleration due to gravity g, the mass m and radius 

r of the bob. The initial angular velocity was also kept constant at 0 rad/s for all simulations. 

The plots obtained are presented below: 

 

 

 

Figure 3.2.1a:  against t for all models at 10, generated from 

custom Python Simulation 

 

Figure 3.2.1b: w against t for all models at 10, generated 

from custom Python Simulation 
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Figure 3.2.1c: Period Evolution for all models at 10, generated from custom Python Simulation 

 

Figure 3.2.2a:  against t for all models at 30, generated from 

custom Python Simulation 

 

Figure 3.2.2b:  against t for all models at 30, generated from 

custom Python Simulation 

 

Figure 3.2.2c: Period Evolution for all models at 30, generated from custom Python Simulation 
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Figure 3.2.3a:  against t for all models at 45, generated from 

custom Python Simulation 

 

Figure 3.2.3b:  against t for all models at 45, generated from 

custom Python Simulation 

 

Figure 3.2.3c: Period Evolution for all models at 45, generated from custom Python Simulation 

 

Figure 3.2.4a:  against t for all models at 60, generated from 

custom Python Simulation 

 

Figure 3.2.4b:  against t for all models at 60, generated from 

custom Python Simulation 
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Note that for all graphs: (blue = drag-free model) (orange = drag model) (green = small-angle 

model) 

Figure 3.2.4c: Period Evolution for all models at 60, generated from custom Python Simulation 

 

Figure 3.2.5c: Period Evolution for all models at 90, generated from custom Python Simulation 

 

Figure 3.2.5a:  against t for all models at 90, generated from 

custom Python Simulation 

 

Figure 3.2.5b:  against t for all models at 90, generated from 

custom Python Simulation 
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For extremely low displacement (10°), all three models exhibit nearly identical displacement and 

velocity profiles. The small-angle approximation aligns closely with the nonlinear models, 

with only a minor phase offset. Quadratic drag introduces a slight amplitude decay of ~20% 

by the final cycle. Period evolution curves confirm the similarity: both the small-angle and 

drag-free models remain constant, differing by just 0.001 s, while the damped model shows 

only a subtle decay of 0.0004 s. 

At 30°, small nonlinear effects emerge. The small-angle approximation now shows a perceptible 

phase lead, nearly half an oscillation ahead over 100 s. Amplitude decay in the drag model 

reaches ~30%. Period differences grow an order of magnitude, with the small-angle model 

~0.01 s shorter than the drag-free model, while damping shortens the period by 0.006 s. 

At 45°, divergence becomes significant. The small-angle model completes an entire oscillation 

more than the drag-free model, with period error rising to 0.023 s. The drag-free and 

damped models remain aligned in phase, but the damped case shows 40–45% amplitude 

and velocity reduction. Its final period is ~0.015 s shorter than the drag-free version. 

By 60°, the limitations of the small-angle approximation are undeniable, with more than two extra 

oscillations compared to the nonlinear models. Its period underestimates by ~0.04 s, nearly 

double the error at 45°. Drag effects dominate: amplitude and velocity decay exceed 50%, 

and the damped model’s final period is shortened by ~0.03s. 

At the extreme case of 90°, the small-angle model leads by over 2.5 oscillations, overestimating 

peak velocity by ~1 rad/s. Amplitude decay in the drag model reaches ~55%, while its 

period shortens by ~0.03 s relative to drag-free. Notably, period errors grow consistently 

with angle: from 0.001 s at 10° to nearly 0.1 s at 90°. 

Overall, results show that while the small-angle approximation is valid at low displacements, it 

rapidly fails at larger angles due to cumulative phase error and period underestimation. 

The drag-free nonlinear model accurately predicts period but neglects amplitude decay. 

The drag-induced model best reflects experimental damping trends, with growing 

significance at higher energies. 
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3.3 Deviation from Experimental Data 

To quantify the accuracy of each theoretical model simulated in approximating real pendulum 

motion, the angular displacement and angular velocity generated for the full duration of 

simulation were directly compared to the LoggerPro experimental output (See Figure 3.1) 

for the angles of release tested. Since the time base for the simulation is not identical to 

that of the experimental measurements (at 30 FPS or in intervals of 0.03 seconds), the 

simulated data is to be interpolated to match the experimental timestamps. For release 

points not tested experimentally, the drag-induced model is considered as a point of 

reference due to its inherently increased accuracy. Thus, it can serve as an approximate 

basepoint. 

The deviation at each time point is the absolute value of difference between the simulation and 

experiment given by: 

∆𝜃(𝑡) =  |𝜃𝑠𝑖𝑚(𝑡) − 𝜃𝑒𝑥𝑝(𝑡)| 

∆𝑤(𝑡) =  |𝑤𝑠𝑖𝑚(𝑡) − 𝑤𝑒𝑥𝑝(𝑡)| 

(i) For extremely low initial displacement - 10 

Figures 3.3.1a and 3.3.1b below plot the results for 𝜃𝑜 = 10 for the three models. In this case, 

the models yield consistently low deviation values, with the small-angle approximated and 

drag-free models performing nearly identically. The angular displacement deviation 

difference and the angular velocity deviation difference between models is negligible. It is 

important to note that absolute error is high for the angular velocity for some cases, but 

this is due to experimental error, not in the model. Thus, it can be inferred that for this 

release angle, all 3 models are adept at accurately approximating real pendulum motion.  
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(ii) For low initial displacement - 30 

For the 30 case, the small-angle model begins to drift as compared to the drag-free model which 

performs better to model this motion in the first few oscillation cycles. Peak angular 

deviation is at 1 rad and peak angular velocity error goes over 5 rad/s. The drag-free model 

still generally works for this initial angle of release, with a much smaller deviation of angle 

(0.5 rad) and angular velocity (2 rad/s). However, as observed in both Figures 3.3.2a and 

3.3.2b, the nonlinear undamped model fails to model the eventual shrinking oscillation time 

Figure 3.3.1a: ∆ against t for all models at 10 

 

Figure 3.3.1b: ∆w against t for all models at 10 
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period due to its assumed constant period for the entire simulation period. Surprisingly, the 

small-angle approximated model has a much lower deviation toward the latter half of the 

simulation period at in both angle (0.25 rad) and angular velocity (< 2 rad/s). 

 

 

 

 

(iii) For moderate initial displacement - 45 

At this angle of release, the significant error in both phase and peak state values for the small-

angle approximated and drag-free become particularly noticeable over the full oscillation 

time. For the small-angle approximated model over the simulation period, angular error 

reaches close to 1.5 rad, while maximum error in angular velocity climbs over 8 rad/s. 

Additionally, the drag-free model also begins to exhibit significant error in the angular 

Figure 3.3.2b: ∆w against t for all models at 30, generated from custom Python Simulation 

 

Figure 3.3.2a: ∆ against t for all models at 30 
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deviation toward the last few oscillation cycles, around 1.5 rad, and in angular velocity – 

close to 8 rad/s. It also starts to show signs of deviating in phase. One thing to note here 

is the consistent trend of deviation appearing in the drag-free model only after multiple 

oscillations due to its failure in modelling decay. Again, the small-angle approximated 

model can be used as a close estimate for the last few cycles of oscillations as seen in its 

lower deviation in that frame of time. 

 

 

 

(iv) For high initial displacement - 60 

In this case, the errors are amplified further. The small-angle approximation becomes of no use 

while even the nonlinear drag-free solution has significant error in modeling the behavior. 

Figure 3.3.3a: ∆ against t for all models at 45, generated from custom Python Simulation 

 

Figure 3.3.3b: ∆w against t for all models at 45, generated from custom Python Simulation 
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Here, in fact, even the later oscillations where the small-angle approximated model had 

better results previously, it has great error. The peak angular displacement and velocity 

deviation in the models comes close to 2 rad and 11 rad/s respectively. This deviation is in 

both the models. 

 

 

 

 

(v) For extremely high initial displacement - 90 

The most interesting case in comparing the models lies in the comparing the results at the 

unstable angle of release of 90. This is why results were compared over a full 100-second 

Figure 3.3.4a: ∆ against t for all models at 60, generated from custom Python Simulation 

 

Figure 3.3.4b: ∆w against t for all models at 60, generated from custom Python Simulation 
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simulation to effectively accuracy at the most nonlinear form. Over the complete simulation 

period, the small-angle model completes over 2.5 extra oscillations than the actual 

pendulum due to a great underestimation in period. While error in the small-angle and drag-

free model plateaus due to the damping, deviation exceeds 15 and 13 rad/s respectively. 

The drag model displays half of that error and more consistently has lower deviation than 

the other models. The damped model tracks amplitude decay reasonably well as its 

difference in angular displacement to the experimental data remains the least at 1.7 rad at 

maximum, as compared to the maximum of 3 rad observed in the other models.  It remains 

the best performing model of the bunch in accurately mapping experimental real data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.5a: ∆ against t for all models at 90 

 

Figure 3.3.5b: ∆w against t for all models at 90 
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3.4 Time Period Analysis 

3.4.1 Methodology of Period Extraction 

Time periods for each model are determined based on oscillation extracted from w(t) or (t) plots 

for both experimental and simulated data. Due to the recording of multiple oscillations of 

data, two references for comparison are made for ease and effectiveness for the angles of 

release - 10º and 90º. Namely, the points are the average of the first three oscillations and 

the average of the last three oscillations in the 100 second time frame.  

For simulations, high-resolution time arrays from numerical solvers used were analyzed to detect 

events where the state value crossed 0. Periods were calculated by measuring the time 

between alternate zeroes in the state vs time plot. The first three and last three values are 

averaged for each of the models to quantify change in period over time as well as establish 

a good comparison point for the experimental results. As mentioned, the data is here 

interpolated to match the time intervals of the experimental data. 

For the experimental data recorded via LoggerPro, angular velocity versus time was extracted for 

each initial displacements at a sampling rate of 30 FPS or in 0.03s intervals. The period 

was determined numerically by importing the tabular data to Python which extracts period 

that can be averaged similarly to the simulated data. Overall, methodology allows for the 

reporting of experimental periods up to 4 decimal places to have consistency with the 

simulated data.  

 

3.4.2 Comparative Data and Bar Chart 

Table 3.4.2: Comparison of time periods for experimental and Simulated Data. 

Initial Angle 

() 

Oscillation Texp (s) Tsmall (s) Tdrag-free (s) Tdrag (s) 

10 Early-cycle 0.6127 0.5494 0.5504 0.5504 

Late-cycle 0.5882 0.5494 0.5504 0.5502 

30 Early-cycle -/- 0.5494 0.5589 0.5587 

Late-cycle -/-  0.5494 0.5589 0.5536 

45 Early-cycle -/- 0.5494 0.5713 0.5704 
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Late-cycle -/- 0.5494 0.5713 0.5563 

60 Early-cycle -/- 0.5494 0.5896 0.5871 

Late-cycle -/- 0.5494 0.5896 0.5588 

90 Early-cycle 0.7167 0.5494 0.6485 0.6873 

Late-cycle 0.5400 0.5494 0.6485 0.5629 

 

Figure 3.4.1: Bar chart of percent error in period for first vs final oscillation across all models and 

angles. 

 

 

3.4.3 Observed Trends and Implications 

Looking at Table 3.4.1 and Figure 3.4.1, there are some prevalent trends in the data that appear 

when comparing the simulation and experiment.  

Firstly, all models converge at 10° and diverge with higher angles. This is due to the relevance of 

the small-angle approximation – since it lies in the valid range – and the insignificant 

damping due to limited initial energy level that allow for nearly constant periods. This 

reduces the error for the models that predict constant periodic motion – drag-free and 

small-angle approximated. Although, as the initial displacement increases, the models 
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diverge. Secondly, when looking at the small-angle approximation model usefulness, it 

rapidly loses accuracy beyond 30° where it fails to account for nonlinear behavior. 

Moreover, the drag-free model retains good short-term prediction but overestimates long-

term periods as suggested by Figure 3.4.1 which shows its great error in predicting the 

average period for the last few oscillation cycles. One interesting trend is that at 90°, 

damping effects level off slightly, as compared to the rapid increase over the angles less 

than 90°. This suggests an asymptotic trend in period decay, as discussed in Section 3.3. 

These results reinforce that nonlinear and damping effects dominate at larger amplitudes, and 

that model choice is angle dependent. Fine-tuning damping coefficients based on air 

density, material choice, and drag-coefficient based on geometry may further improve high-

angle model fidelity. 

 

3.5 Model Suitability Summary 

The comparative results presented in Sections 3.2 through 3.4 reveal crucial insights into the 

range of validity and applicability of each theoretical model. Based on state vs time 

behavior, period evolution, and experimental deviation, the following model choices 

emerge as most appropriate across each amplitude: 

(i) For extremely low initial displacement - 10: All three-models perform equally well. The 

small-angle approximation yields nearly identical results to the nonlinear models that must 

be solved numerically, so the analytical approach of the small-angle approximation takes 

precedent here. Due to its simplicity, the small-angle approximated model is preferred. 

(ii) For low initial displacement - 30: For this case, however, the small-angle approximated 

model begins to break down and show visible underestimation in period as well as phase 

mismatching. The drag-free nonlinear model, along with the damped model, matches 

closely with the experiment in early cycles. Due to the computational burden and additional 

information required about the setup for the drag model, the drag-free model is preferred 

in cases where either short-term oscillations are studied or alternate factors such as air 

density and drag coefficient cannot be approximated or found. Thus, it is generally 

preferred. 
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(iii) For moderate initial displacement - 45: At this point the small-angle model is out of the 

picture, particularly with its large error in phase and total number of oscillations in the time 

period. The drag-free model and damped model follow the same trend as the 30 but the 

error in amplitude measure and time period is now significant for the last few oscillation 

cycles for the drag-free model. However, it does still accurately map initial oscillations. 

Thus, the drag-free model is preferred for early cycles while the drag-induced model is 

the answer if longer time periods are modelled or if higher accuracy is necessary. Both 

models here could be used. 

(iv) For high initial displacement - 60: Now, looking at only the drag-free and drag-induced 

model, there is a similar pattern as the 45 amplitude, but there is now error that is evident 

even in the early oscillations of the drag-free model. It predicts period shape and state 

trends but is insufficient to model the pendulum accurately. Hence, due to its enhanced 

accuracy in mapping amplitude and period decay, the drag-induced model is the clear 

option for this model. 

(v) For extremely high initial displacement - 90: Between the nonlinear models, the drag-

induced model is preferred at this high energy level. The drag-free model starts with 

accurate motion but quickly breaks down as rapid damping takes precedent. Thus, to 

model this the drag-induced model is suitable. It is important to note, though, that there is 

some deviation in the model. This underscores the need for careful coefficient calibration 

here to obtain accurate values for other variables such as air density, radius of bob, drag-

coefficient and more involved in the drag model’s calculations. 

3.6 Double Pendulum Simulation Results 

To demonstrate the transition from predictable oscillatory behaviour to chaotic dynamics, a double 

pendulum model was included. Even with the addition of just one extra degree of freedom, 

the system shifts from regular motion to highly sensitive and unpredictable trajectories, 

emphasising the broader relevance of nonlinear dynamics beyond the simple pendulum. 

This system was modelled using a Lagrangian mechanics formulation and integrated via 
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the high-precision DOP853 solving method, with parameters chosen to mirror those of the 

simple pendulum for meaningful comparison. 

 

This was run for 100 seconds using 100,000 seconds (Δt = 0.001 s), allowing fine-grained 

resolution to track the system’s rapid dynamic changes. The parameters used were: 

- Arm Length: 𝐿1 = 𝐿2 = 0.3𝑚 

- Masses: 𝑚1 = 𝑚2 = 0.01𝑘𝑔 

- Initial Angular Displacements: 𝜃𝑜1 = 𝜃𝑜2 = 30° 

- Initial Angular Velocities: 𝑤1 = 𝑤2 = 0 

The simulation output included a trace animation of the lower bob (tip of the second pendulum), 

with the pendulum traced across its full trajectory. The result is a densely plotted, curving 

path showing the space traversed over the full period of simulation. Figure 3.6.1 represents 

this at one timestamp in the animation. 

Figure 3.6.1: Double Pendulum Simulated Animation with Trace Plot 

 

One thing to note here is that despite the minimal initial energy input – at a low initial angle of 

release – the trace reveals chaotic motion beginning after a short initial phase of close to 

regular oscillation. As energy exchanges between the two arms amplify, the lower bob 

follows a highly sensitive, unpredictable, and chaotic path characterized by loops and 

crossings. This simulation visually demonstrates the exponential divergence of trajectories 

and the impossibility of predicting behavior without high-resolution integration as 

conducted.  

The use of equal arm lengths and masses simplify the theoretical model but still produce rich 

dynamical behavior due to the uncanny nonlinear coupling between the bobs. The 
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animation confirms that even small deviations in initial conditions set the motion in a 

dramatically altered trajectory. 

This simulation highlights the extent of testing numerical methods, exploring deterministic chaos 

and modeling it. While analytical solutions are not possible in these cases, high-resolution 

solvers such as DOP853 provide a practical tool for revealing some pattern to the chaotic 

motion.  

 

CONCLUSION 

This study evaluates the effectiveness and degree of accuracy of various pendulum models in 

capturing real-world motion, progressing from simple idealizations to complex nonlinear 

systems. Through thorough simulations and experimental comparisons, the paper has 

reaffirmed the importance of the pendulum as well as numerical tools in engineering. 

Importantly, the investigation reveals the experimental limits of the small-angle 

approximation in adequately describing pendulum motion over long intervals and with 

moderate and large amplitudes.  

The nonlinear drag-free model improves considerable upon this by consistently aligning in phase 

and amplitude behavior, especially at intermediate angles. However, its inability to capture 

damping renders it inadequate for long-term behavior studies. The full nonlinear model, 

with quadratically dependent air resistance, while computationally more intensive and 

sensitive to parameter selection, emerges as the most accurate to experimental values. 

Period decay, as an important defining characteristic of real-pendulum systems, is 

effectively mapped in this model. However, the accuracy of the drag term is limited by the 

choice of damping coefficient, which was difficult to calibrate precisely. Small variations in 

bob radius, air density, or the assumed drag coefficient can significantly alter the predicted 

energy loss, leading to mismatch with experiment. This highlights a key limitation of the 

current modelling: while quadratic drag captures the overall trend of amplitude decay, 

achieving quantitative agreement requires careful experimental determination of damping 

parameters, which was beyond the scope of this study. 

Beyond the simple pendulum, the double pendulum simulations underscores the transition from 

deterministic dynamics to chaotic motion. This pushes the line of numerical simulation, with 

a high-resolution solver necessary to render its full motion. Even with relatively low initial 
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energies, the system displays sensitivity to parameters inputted. A simulation output with 

an animation of this system traces out this unpredictable motion. 

Altogether, this study demonstrates the necessity of pendulum model selection based on system 

energy and highlights the importance and usefulness of accurate numerical simulation as 

an indispensable toolkit for capturing real-world motion. From metrology to structural 

dynamics and chaos theory, the pendulum is not only historically significant but deeply 

relevant to modern science and engineering with tools available in this time. 
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Appendix A 

This appendix provides a full derivation of the equations of motion for a planar double pendulum 

using Lagrangian mechanics.  

M1: 𝑥1 = 𝑙1 sin 𝜃1 , 𝑦1 =  −𝑙1 cos 𝜃1  

M2: 𝑥2 = 𝑙1 sin 𝜃1  +  𝑙1 sin 𝜃2 , 𝑦2 =  −𝑙1 cos 𝜃1 − 𝑙2 cos 𝜃2  

The corresponding velocities are: 

M1: 𝑥̇1 = 𝜃̇1𝑙1 cos 𝜃1 , 𝑦̇1 =  𝜃̇1𝑙1 sin 𝜃1  

M2: 𝑥̇2 = 𝜃̇1𝑙1 cos 𝜃1 +  𝜃̇2𝑙2 cos 𝜃2  , 𝑦̇2 =  𝜃̇1𝑙1 sin 𝜃1 +  𝜃̇2𝑙2 sin 𝜃2 

Hence, the total kinetic energy is: 

 
1

2
𝑚1(𝑥̇1² + 𝑦̇1²)  +

1

2
𝑚2(𝑥̇2² + 𝑦̇2²) 

Simplifying in terms of existing variables: 

𝑇 =
1

2
𝑚1𝑙1

2𝜃̇1
2 +  

1

2
𝑚2(𝑙1

2𝜃̇1
2 + 𝑙2

2𝜃̇2
2 + 2𝑙1𝑙2𝜃̇1𝜃̇2 cos(𝜃1 − 𝜃2)) 

The total potential energy (V) is: 

𝑉 = −𝑚1𝑔𝑙1 cos 𝜃1 − 𝑚2 𝑔(𝑙1 cos 𝜃1 + 𝑙2 cos 𝜃2) 

Plugging these values into the Lagrangian Function 

𝐿 = 𝑇 − 𝑉 

𝐿 =
1

2
𝑚1𝑙1𝜃̇1

2 +  
1

2
𝑚2(𝑙1

2𝜃̇1
2 + 𝑙2

2𝜃̇2
2 + 2𝑙1𝑙2𝜃̇1𝜃̇2 cos(𝜃1 − 𝜃2))

+ 𝑚1𝑔𝑙1 cos 𝜃1 +  𝑚2 𝑔(𝑙1 cos 𝜃1 + 𝑙2 cos 𝜃2) 

Substituting L into the Euler-Lagrange Equation for i = 1,2, 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 

This leads to the Final Equations of Motion: 

(𝑚1 + 𝑚2)𝑙1𝜃̈1 + 𝑚2𝑙2𝜃̈2 cos(𝜃1 − 𝜃2) + 𝑚2𝑙2𝜃̇2
2 sin(𝜃1 − 𝜃2) + (𝑚1 + 𝑚2)𝑔 sin 𝜃1 = 0 

𝑚2𝑙2𝜃̈2 + 𝑚2𝑙1𝜃̈1 cos(𝜃1 − 𝜃2) − 𝑚2𝑙1𝜃̇1
2 sin(𝜃1 − 𝜃2) + 𝑚2𝑔 sin 𝜃2 = 0 
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