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Abstract 
 
Stock market forecasting remains one of the most challenging tasks in finance due to the 
market’s high volatility, complex dynamics, and sensitivity to external events. This study 
investigates the short-term predictive performance of five regressor models on the S&P 500 
ETF Index (SPY). There are two experimental setups for evaluating models: one incorporating 
technical indicators and one excluding them. The aim is to determine whether technical 
indicators enhance prediction accuracy and to identify which model is most effective for 
short-term forecasting. Also, the model’s performance is assessed using MAE, RMSE, R2 
score, and directional accuracy. The results showcase that the R2 score is a poor indicator in 
short-term financial datasets. Directional accuracy with technical indicators ranged from 
51-54%, a result better than randomly guessing. Without technical indicators, models ranged 
from 45-48%, highlighting the importance of technical indicators in predictions. 

 
1. Introduction 

 
The SPDR S&P 500 ETF Trust (SPY) is one of the most widely traded exchange-traded funds in 
the world, designed to track the performance of the S&P 500 index. Launched in 1993, it was 
the first ETF listed in the United States and remains the largest by assets under management. 
SPY holds shares of all 500 companies in the index, providing investors with broad exposure to 
the U.S. equity market in a single, liquid security. Because of its size, liquidity, and close 
correlation with the S&P 500, SPY has become a benchmark instrument for institutional 
investors, traders, and researchers seeking to measure or replicate the performance of the U.S. 
stock market. 
 
To predict possible price movements, traders often use technical analysis to find trends or 
patterns in data, such as predicting the S&P 500’s SPDR ETF (SPY) value during its opening, 
closing, highs, and lows [1]. In this research, we will be comparing five different regressor 
models - Simple Linear, Gradient Boosting, Random Forest, XGBoost, and Prophet - using the 
historical 2014 to 2018 SPY data for training and testing for 2019 predictions.  
 
Furthermore, the research aims to fine-tune and evaluate each of the five models, that is, 
adding feature engineering and comparing it to its baseline model. To find which model performs 
the best overall, and give insight into the question of whether adding features to a model makes 
a notable difference in predicting the stock market. 
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2. Background Information and Literature Review 
 
2.1 Linear Regressor 
 
The linear regression model is one of the fundamental models that most prediction models 
derive from. It is a simple model that assumes a linear relationship between the inputs 
(independent variables)  and the outputs (dependent variables). The basis of the linear 
regression formula is: 

y = β0 ​+ β1​x1​ + β2​x2​ + ⋯ +βn​xn​ + ϵ  
Where: 

●​ y = predicted value 
●​ β = coefficients 
●​ x = input features 
●​ ϵ = residual value  

 
β is often referred to as a regression coefficient and defines the slope of the input to the next 
step, and when combined with all of the x and β, it equals the overall slope of the data points [2]. 
And, ϵ, the residual value, indicates the extent to which the average value of the data deviates 
from the linear relationship. This model is high-speed to train and interpret, which is why most 
use it as a baseline model. However, the downsides of linear regression are its linear 
relationship, which is often not realistic in real data.  
 
Furthermore, there are usually assumptions that must be satisfied by the data for the regression 
model to be totally valid. Some of these assumptions are that for each value of x and y, 
observations, which were without measurement error, and the relationships between y and each 
of x, should be linear in the parameters of the specific functional form chosen [3]. 
 
These assumptions are why linear regression models became a baseline model, as they often 
cannot accurately represent the data values, and are frequently not used when there are 
extreme outliers. It is important to note that the above model is a simple linear regression model, 
and other forms of linear regression models exist that are more complex and contain more 
notable features. Though this research does not examine other linear regressions, such as 
multiple linear regression, it is for the sake of comparing a basic model to a more complex one 
to show an apparent difference. Therefore, in this paper, we are using linear regression on our 
data as the standard against other regression models in our analysis. 
 
Key Components of Simple Linear Regressor 
 
Independent Variable (x): The single predictor used to estimate the target variable. 
 
Dependent Variable (y): The outcome or target variable. 
 
Model Coefficients (β₀, β₁):  

●​ β₀ (intercept) is the predicted value of y when x = 0.  
●​ β₁ (slope) represents the change in y for a one-unit change in x. 
●​ Equation: y = β₀ + β₁x + ϵ  

2 



 
Residual (ϵ): The difference between the predicted and actual value (error term). 
 
Loss Function (Usually MSE): Mean Squared Error (MSE) = average of squared residuals.  
 
Advantages of Simple Linear Regressor 
 

1.​ The simplicity and interpretability of the linear regressor are easy for anyone with a basic 
understanding of algebra to understand.  

2.​ A simple linear regressor is computationally efficient and can train extremely efficiently. 
3.​ It works best with linear trending data compared to data with more outliers. 

 
Limitations of the Simple Linear Regressor 
 

1.​ It can only capture linear relationships and fails in environments where the data is highly 
variable. 

2.​ It is assumption-heavy for it to be valid.  
3.​ It is outlier sensitive, where too many of them can corrupt its accuracy. 

 
2.2 Gradient Boosting Regressor 
 
The gradient boosting regression model is the foundation of more popular models like XGBoost, 
which will be covered later in the study. It is an ensemble model that builds trees sequentially, 
where each new tree learns to fix the errors made by its predecessors. This model originated 
from Freund and Schapire’s work on weighted iterative classification, where they created an 
algorithm that used gradient descent [4].  Gradient boosting is named as it is because of the use 
of gradient descent (an optimization algorithm used to minimize the loss function) to change 
parameters to reduce errors. 
 
It is also highly customizable to the particular needs of the application and learns to respect the 
different loss functions [5]. In simple words, gradient boosting is a learning model that combines 
the outputs of predictors to produce a robust prediction. It is one of the best-performing models 
in practice because of its algorithm, and it can handle non-linear relationships and optimizations 
well. However, the downsides of this model are that it is slow to train, can overfit if not tuned 
properly, and is complex to interpret. In this study, we will use gradient boosting to compare its 
results primarily with its most similar model, XGBoost, to gain a deeper understanding of what 
truly makes one model predict the stock market more accurately.  

 
Key Components of Gradient Boosting 
 
Ensemble of Weak Learners (Decision Trees): Each tree corrects the errors of the previous one. 
 
Additive Learning Process: Starts with a base prediction. Adds new trees trained on residual 
errors: 

Fm(x) = Fm−1(x) + η ⋅ hm(x) 
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Where η is the learning rate, and hm(x) is the m-th tree. 
 
Learning Rate (η): Controls the contribution of each tree. The smaller the learning rate, the more 
conservative and accurate, but it needs more trees. 
 
Subsampling (Stochastic Gradient Boosting): Randomly selects a subset of data at each step, 
which reduces variance and improves generalization. 
 
Advantages of Gradient Boosting 
 

1.​ Gradient boosting can capture non-linear patterns well, and it is exceptional at modeling 
complex interactions between values. 

2.​ It can handle missing data and outliers successfully using tree-based learners and is not 
affected by outliers, unlike linear models. 

3.​ It can also contain feature importance, indicating which variables are more influential on 
its predictions, and can help guide to a more accurate overall prediction. 
 

Limitations of Gradient Boosting 
 

1.​ Gradient boosting takes much longer to train compared to a linear regressor because it 
trains hundreds of decision trees at a time. 

2.​ Gradient boosting is likely to overfit the data if there are too many training decision trees. 
3.​ It is necessary to have a variety of parameters to obtain more accurate readings, which, 

without them, leads to overfitting the data. 
 

2.3 Random Forest Model 
 
Random Forest is a further refinement of classification and regression from the Cox models and 
CART models (6). A Cox model is patterned after a linear regression, and its outputs are 
presented as coefficients, which can be easily transformed. It is a popular machine learning 
model in clinical and medical fields because of its ability to predict the overall risk of the 
outcome accurately. A CART model is straightforward, non-parametric, and used in either 
classification or regression. A CART’s output is referred to as a “decision tree,” most commonly 
because of the way each of its predictors splits into how a tree’s branches are grown. It selects 
the optimal decision based on recursive partitioning (a method for constructing binary trees by 
iteratively splitting data into subgroups based on optimal splitting rules) until there is no longer 
further discrimination [6]. 
 
The Random Forest uses the ideas from the Cox and CART models to create a large number of 
decision trees, and the outputs from these trees combine into a voting system for classifying 
problems or averaging the regressions. RF uses randomization in two ways: the first is 
bootstrap sampling (a resampling technique used to estimate the sampling distribution of a 
statistic by repeatedly drawing random samples with replacement from an original sample), and 
the second is at the decision nodes, where it selects a certain number of predictors (decision 
trees). Then the algorithm tests all possible thresholds for all selected variables and chooses the 
variable-threshold combination that results in the best split. This algorithm reduced the number 
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of variables needed to obtain the optimal prediction. There are many applications for when the 
random forest is useful, typically as a medical decision support tool and prediction model for 
stock market prices to make a profit as investors [7]. In this study, we will compare all five 
regressor models to the random forest model, which also predicts stock market prices. 
 
Key Components of RF 
 

1.​ Bootstrap Aggregating: Random sampling with replacement ensures diverse training sets 
for each tree. 

2.​ Ensemble Averaging: The results of all the decision trees are averaged to give a final 
output. 

3.​ Decision Tree: Built upon multiple individual decision trees. Each tree is trained on a 
random subset of the data and makes its prediction. The final result is based on the 
aggregation or average of all trees. 

4.​ Tolerance to Missing Values: The ensemble can still perform well when some input 
features are missing, as not all trees rely on the same features. 

5.​ Random Feature Selection: At each node split within a tree, only a random subset of 
features is considered. This feature creates more randomness and prevents overfitting. 
 

Advantages of RF 
 

1.​ Random Forest can model complex and non-linear interactions between features without 
requiring explicit feature engineering, which is helpful in unpredictable financial data. 

2.​ By averaging the predictions of many decision trees, Random Forest reduces the risk of 
overfitting, especially compared to single decision trees. 

3.​ RF provides measures of feature importance, allowing researchers to identify which 
variables (e.g., past price, volume, technical indicators) are most influential in prediction. 

 
Limitations of RF 
 

1.​ Not ideal for sequential data, RF does not inherently account for temporal dependencies 
in time series data, making it less suited than models like LSTM for capturing trends over 
time unless time-based features are carefully engineered. 

2.​ Training many decision trees with large datasets can become resource-intensive and 
slow, especially when dealing with large stock datasets or numerous hyperparameter 
combinations. 

3.​ Less interpretable compared to linear models, RF is more interpretable than deep 
learning models; however, it still functions as a “black box” model, making its decision 
process harder to explain compared to linear regression. 

4.​ Random forest regression cannot interpolate data, and its maximum and minimum values 
are bound to its highest and lowest training set data, limiting the accuracy of its 
predictions. 

 
Random Forest Classifier vs Random Forest Regressor Model 
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​ Deriving from the same random forest model, it is essential to distinguish the differences 
between the Random Forest Classifier (RFC) and the Random Forest Regressor (RFR). The 
primary differences lie in the outputs of each model and its corresponding prediction strategy. 
The outputs for the RFC are labeled as “yes” or “no”; meanwhile, the RFR outputs a numerical 
value. RFC also differs from RFR by its prediction strategy, where it aggregates the majority 
vote of the decision trees to come to a desired outcome, while RFR uses averaging all of the 
decision trees to come to a prediction [8]. For example, in a scenario of students’ test results, 
RFC will predict if the majority passes or fails, while RFR will try to predict the exact score of the 
sample of students. In this research, we will compare the results of RFR with and without 
features for a comprehensive analysis of the data. 
 
2.4 Prophet Forecasting Model (PFM) 
 
The Prophet forecasting model (PFM) developed by Meta allows for forecasting a desired 
outcome over time [9]. PFM can predict accurately without unnecessarily extensive complex 
parameters like LSTM [9]. This feature increases the functionality of this model to be used 
simply by people without too much knowledge of machine learning. PFM can also perform even 
if there are missing values or extreme outliers, allowing for the overall prediction of the model to 
function more easily than other models. Prophet is ten times easier and learns faster from 
training than other ARIMA (Autoregressive Integrated Moving Average) models, also used to 
forecast and analyze data [10].  
 
PFM was specifically designed and developed to be accessible for experts and non-experts in 
the machine learning and forecasting world [11]. The main differentiator from other traditional 
models is the clear way to identify patterns, specifically patterns, holidays, and trends, with 
sudden changes seen after training the model. However, the Prophet’s downside from other 
models is that it is not helpful for high-frequency data in finance. Therefore, it would not be able 
to do poorly on short-term volatile patterns. Despite this, PFM is another strong, effective model 
for mid-term to long-term forecasts, and in this study, we will include PFM to compare its SPY 
forecasts to the other four regressor models. 
 
Key Components of PFM 
 

1.​ PFM takes a few seconds to fit the model with tunable parameters. Regularly models 
time series of datasets with trends, seasonality, and holidays. The following formula 
represents PFM: 

a.​ y (t) = g (t) + s (t) + h (t)+ ϵt 
b.​ This is the generalized prediction equation, and it uses the model PFM’s trends, 

seasonality, and holidays (10). 
2.​ Trend: Prophet captures the underlying direction of the market, whether the SPY is 

generally trending upward or downward over time, by fitting either a piecewise linear or 
logistic growth curve. For stock data, the linear model is most commonly used. It can also 
detect structural breaks in trends, such as major crashes or rebounds, through 
automatically selected change points. 

3.​ Seasonality: Prophet models capture recurring patterns, for example, weekly seasonality 
of Monday dips and Friday rallies, or yearly patterns like surges in trading during holiday 
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time. Prophet uses these periodic effects to match the cyclical market behaviors over the 
years. 

4.​ Change Points: The model automatically detects change points, which are moments 
where the trend shifts sharply. Users can also manually specify them if needed. 
 

Advantages of PFM 
 

1.​ Prophet has a built-in seasonality detection that automatically detects and models daily, 
weekly, and yearly seasonality, which is helpful for markets that exhibit varying behavior 
across months, weeks, or even days (e.g., holiday effects, end-of-month volatility). 

2.​ Fast and straightforward to implement with only a few lines of code, users can build and 
deploy a Prophet model without deep knowledge of time series theory or tuning complex 
parameters. 

3.​ Prophet is quick to identify outliers and has robust data handling skills, such as in 
real-world situations where stock data may be incomplete or contain sudden spikes or 
crashes. It can still generate stable forecasts without requiring major preprocessing. 
 

Limitations of PFM 
 

1.​ Prophet is not suitable for intraday forecasting and is optimized for daily or longer 
timeframes. It performs poorly on minute-by-minute or hourly stock data, which is often 
needed in active trading. 

2.​ Prophet models components (trend, seasonality, holidays) as being linearly added 
together, which can oversimplify complex non-linear interactions in daily stock price 
movements. 

3.​ Prophet has limited feature integration and does not support external variables as flexibly 
as models like XGBoost. You cannot easily include factors such as trading volume, 
sentiment scores, or macroeconomic indicators. 
 

2.5 Extreme Gradient Boosting (XGBoost) Prediction Model 
 
XGBoost changed the way gradient boosting operated initially. In XGBoost, individual trees are 
created using multiple cores, and data is organized to minimize the lookup times [12]. The idea 
of boosting started with the idea of a weak learner becoming a better learner with features. First 
introduced as the AdaBoost algorithm, the weak learners (decision trees) were given more 
weights, and the strong learners were given less weight, thereby preventing the prediction 
model from overlearning the sample data. With this algorithm, by repeatedly adjusting the 
weight, a function of gradient boosting was created.  
 
Gradient boosting is divided into three different steps. First is a proper differentiable loss 
function (a function used to measure how far off a prediction is from the result), then a weak 
learner (regression trees) makes predictions, and finally an additive model adds all of the 
projections up and puts it through the loss function and keeps repeating the process until a 
proper optimized value of loss function is reached [12]. XGBoost is similar to having a gradient 
boosting as its core, but it has the additional process of a multi-threaded approach, which uses 
the CPU core of a machine to lead to greater speed and performance than a regular simple 
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gradient boosting (12). XGBoost is a solid model to predict the stock market, and the use of 
gradient boosting will improve the directional accuracy of its results, so the model does not 
overfit like other traditional models. 
 
Key Components of XGBoost 
 

1.​ Gradient Boosting: Used in regression and classification problems to build strong 
predictive models by combining many weak models to correct their errors. 

2.​ Sparse Aware Implementation: Involving automatic handling of missing data values to 
support parallelization of decision predictions [12]. 

3.​ Tree Pruning: Unlike some models that grow the decision trees, XGBoost uses 
depth-wise pruning, which builds the trees entirely and removes the splits that don’t 
reduce the loss and improve the model’s simplicity. 

4.​ Parallel and Distributed Computing: XGBoost can train weak learners in parallel, making 
it faster than simple gradient boosting models 
 

Advantages of XGBoost 
 

1.​ XGBoost uses optimized gradient boosting (a machine learning technique that builds 
predictions by combining multiple weak learners, usually decision trees) with parallel 
processing and efficient memory usage, providing high performance and speed 
compared to traditional models. 

2.​ XGBoost uses regularizations (L1: Lasso Penalty, adding a penalty equal to the absolute 
value of coefficients which is helpful in feature selection & L2: Ridge Penalty, adds 
penalty equal to the square of the coefficients which reduces model complexity without 
eliminating essential features) to help prevent overfitting data, which means the model is 
memorizing the training data too much, eventually relying on it when performing on 
testing data. 

3.​ XGBoost has high accuracy and often outperforms other algorithms in structured data 
tasks because of its capability to handle complex patterns. 
 

Limitations of XGBoost 
 

1.​ XGBoost is a black-box model (a model that is not easy to understand how the model 
made the decision), making it hard to interpret and falling behind simpler models like 
decision trees. 

2.​ XGBoost requires careful feature tuning to perform optimally; otherwise, overfitting and 
poor data might result. 

3.​ XGBoost performs best on structured and table-like data, and it is not ideal for sparse 
and unstructured data like audio and images. Although in this study, we are comparing 
XGBoost on numerical values from the SPY, this will not limit the ability to produce poor 
results. 
 

2.6 Features 
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Other than open, close, high, low, and volume for all the data points of the SPY, additional 
features are required for more accurate prediction. The existence of only these features is 
insufficient in capturing complex patterns and daily discrepancies related to the stock market. 
Therefore, additional features must be derived and engineered from the pre-existing ones to 
enhance the predictive power of these models. These features will be used in all five of the 
regressors we will be testing. Results without and with feature engineering. These features 
include the following. 
 
2.6.1 Simple Moving Averages  
 

 𝑆. 𝑀. 𝐴 =  Σ𝐴
𝑛

 
Where A are the stock prices and n is the number of periods. 
 
Simple Moving Averages allow for the model to gauge long-term trends in prices better, 
smoothening out short-term fluctuations. 
 
2.6.2 Exponential Moving Averages 
 

  𝐸. 𝑀. 𝐴 =  2
𝑁+1 × 𝑝

𝑡
+ (1 − 2

𝑁+1 )×𝐸. 𝑀. 𝐴
𝑡−1

Where, 
 Is the price at the given time 𝑝

𝑡
 is the Exponential Moving Average of the previous time period  𝐸. 𝑀. 𝐴

𝑡−1
N is the time period 
 
Exponential Moving Averages are similar to Simple Moving Averages. However, they give more 
weight to recent prices due to their recursive nature. 
The first E.M.A. that is referred to by this recursion is simply the S.M.A of the stock prices at that 
given point in time. 
 
2.6.3 Relative Strength Index 
 
RSI identifies overbought and oversold shares. Overbought shares are usually shares that have 
risen too quickly due to excessive buying and hence signify that the stock may be due for a 
correction or pullback (RSI > 70). Similarly, Oversold shares are usually shares that have fallen 
too quickly due to excessive selling and thus might be due for a rebound (RSI < 30). 
 

   𝑅𝑆𝐼 = 100 −  100
1+ 𝑎𝑣𝑔 𝑔𝑎𝑖𝑛

𝑎𝑣𝑔 𝑙𝑜𝑠𝑠

 
The average loss and average gain are calculated over a 14-day period. 
 
2.6.4 Moving Average Convergence Divergence (MACD) 
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It is a financial indicator used to understand potential buy/sell signals. MACD is derived by 
comparing the E.M.A. values of two prices at different time points. Usually, the MACD is 
calculated by subtracting the 26-period EMA from the 12-period EMA. 
 
2.7 Additional Features 
 

●​ MACD Signal: The signal line of the MACD (Moving Average Convergence Divergence) 
indicator, typically a 9-day EMA of the MACD line. Used to identify potential buy/sell 
signals when it crosses the MACD line. 
 

●​ BB Upper: Upper Bollinger Band, calculated as the moving average plus two standard 
deviations. Indicates overbought levels. 
 

●​ BB Middle: Middle Bollinger Band, which is simply the moving average (usually 20-day). 
Acts as a trend baseline. 
 

●​ BB Lower: Lower Bollinger Band, calculated as the moving average minus two standard 
deviations. Indicates oversold levels. 
 

●​ Lagged Return 1D: Previous day’s return (percentage change from the day before). 
Captures short-term momentum. 
 

●​ Close 1d: Closing price of the previous day. Useful for price-level context. 
 

●​ Close 2d: Closing price from two days ago. Helps in modeling short-term trends. 
 

●​ Close 3d: Closing price from three days ago. Adds more context to recent price 
movements. 
 

●​ Return 3d: Return over the last three trading days. Captures short-term performance. 
 

●​ Return 7d: Return over the last seven trading days. Measures weekly trend strength. 
 

●​ Volume Change: Change in trading volume compared to the previous day. Indicates 
unusual market interest or activity. 
 

●​ Volatility 7d: Rolling standard deviation of returns over the past 7 days. Measures 
short-term price fluctuation. 
 

●​ Day Of Week: Numeric representation of the day of the week (0=Monday, ..., 4=Friday). 
Used to detect weekday seasonality or patterns. 
 

●​ Month: Numeric month (1=January, ..., 12=December). Helps identify monthly trends or 
seasonal effects. 

 
2.8 Metrics of Accuracy 
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Various metrics are employed to quantify the deviation between the predicted and actual values 
in dollar terms ($). These also include directional accuracy, which is the prediction accuracy of 
the gain/loss direction- another critical metric. 

 
2.8.1 Mean Average Error  
 
Mean average error is simply the absolute percentage prediction errors in dollar terms ($), 
providing insights into the absolute accuracy of the model across all the predictions and actual 
stock prices. 

 
2.8.2 Root Mean Square Error  
 
Root Mean Square Error follows a similar principle to Mean Average Error, except it punishes 
larger errors more than minor errors. Root Mean Square Error is the square root of the absolute 
error. As a result, greater errors are punished more severely. For example, the Absolute error 1 
v/s 0.1 will have different weightages across root mean square error and mean average error. 

 
2.8.3 R2 Score 

 
The R-squared (R²) or coefficient of determination is a statistical measure that represents the 
proportion of variance in the dependent variable that is explained by the independent variable(s) 
in a regression model. In simpler terms, it indicates how well the model fits the data, with higher 
values indicating a better fit. 

 
2.8.4 Confusion Matrix  
 
A Confusion Matrix is a table that summarizes the classification performance of any given 
model. It divides predicted data into true positives and negatives as well as false positives and 
negatives. While not entirely applicable for all the models tested, with stock market data, 
classification should be done based on directional accuracy, i.e., true or false prediction of an 
upward or downward trend. 

 
3. Methodology 

 
3.1 Data Collection 
 
Historical stock data for SPY was sourced using the yfinance Python package. The training 
dataset spans from 1 January 2014 to 31 December 2018, while the testing dataset includes 
data from 1 January 2019 to 31 December 2019. Each entry contains daily Open, High, Low, 
Close, Volume, and Date information. 

 
3.2 Feature Engineering  
 
To improve the predictive performance of models, a plethora of features were created using the 
pre-existing basic information that was imported using the yfinance Python package. These 
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engineered features were selected based on their widespread use in technical analysis and their 
ability to provide diverse signals related to momentum, trend, volatility, and time structure, which 
are critical for capturing the non-linear behavior of the financial market. The data captured 
across these features was not standardized in the final data collection. 

  
3.3 Standardization 
 
Standardization is a data preprocessing technique used to rescale numerical features so that 
they have a mean of 0 and a standard deviation of 1. This transformation ensures that all 
features contribute equally to the learning process, especially in models that are sensitive to the 
magnitude of input values. All the features in the training dataset were standardized. 

 
3.4 Data Training & Testing 
 
The regressor models were trained on data from January 2014 to December 2018 and tested on 
data from January 2019 to December 2019. The following datasets were chosen to simulate a 
real-world setup, wherein models are often trained to predict future prices and price movements 
based on significant historical data.  
 
 

4. Results 
 

Table 1: Regression Models with Technical Indicators 
Model MAE RMSE R² Score Directional 

Accuracy 
Confusio
n Matrix 

Random 
Forest 

Regressor 

10.8505 14.3005 -0.3475 54.35% TP: 74 
FP: 46 
TN: 51 
FN: 59 

 

Prophet 
(Meta) 

11.2047 14.9070 
 
 
 

-0.0277 54.62% TP: 82 
FP: 47 
TN: 54 
FN: 66 

XGB 
Regressor 

11.3988 14.9603 -0.4748 53.91% TP: 73 
FP: 46 
TN: 51 
FN: 60 

Gradient 
Boosting 

Regressor 

11.6802 15.3718 -0.5349 53.68% TP: 69 
FP: 42 
TN: 55 
FN: 65 
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Simple Linear 
Regressor 

1.5618 2.0688 0.9722 51.08% TP: 83 
FP: 62 
TN: 35 
FN: 51 

 
 
 
 
 
 
 

Table 2: Regression Models without Technical Indicators 
Model MAE RMSE R² Score Directional 

Accuracy 
Confusio
n Matrix 

Random 
Forest 

Regressor 

9.5332 13.3086 0.1808 45.78 
 

TP: 43 
FP: 29 
TN: 72 

FN: 105 
 

Prophet 
(Meta) 

16.8988 20.1956 -0.8422 49.20% TP: 76 
FP: 55 
TN: 47 
FN: 72 

 

XGBRegresso
r 

9.9552 13.6746 0.1352 47.79% TP: 42 
FP: 24 
TN: 77 

FN: 106 

Gradient 
Boosting 

Regressor 

2.2326 2.8269 0.9630 51.00% TP: 88 
FP: 62 
TN: 39 
FN: 60 

Simple Linear 
Regressor 

9.3510 13.0489 0.2125 46.59% TP: 41 
FP: 26 
TN: 75 

FN: 107 
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5.  Analysis 
 

Classification Performance 
 

 
 

Figure 1: Directional Accuracy (%) across Features v/s No Features 
 

The comparative analysis in Graph 1 shows the directional accuracy of five regression models- 
Random Forest, Prophet, XGBoost, Gradient Boosting, and Simple Linear Regression- across 
two scenarios: with engineered technical features (blue line) and with only closing price data 
(orange line). 
 
Across all models, the inclusion of features yielded a better directional accuracy (Prophet being 
the highest (54.62%), slightly outperforming Random Forest (54.35%) as well as XGBRegressor 
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(53.91%), followed by Gradient Boosting Regressor (53.68%) and Simple Linear Regression 
(51.08%). 
 
When using only closing prices, Gradient Boosting achieved the highest accuracy (51.00%), 
followed by Prophet (49.20%). However, the absence of features reduced performance 
significantly in most models, with XGBoost showing a drop from 53.91% to 47.79% and Random 
Forest from 54.35% to 45.78%. 
 
Therefore, the use of features improves the directional accuracy of each of the models. 
Moreover, the directional accuracy without features is more volatile compared to models with 
added technical features, which depicts consistency in predictions when using additional 
features. The overall accuracy of this simulation remains lower than expected because of the 
limitations in the dataset, which was purposely designed to ensure fair and consistent conditions 
across all the models, truly capturing the impact of features of each model. 
 
From Graph 1, the Random Forest regressor has the highest improvement in direction accuracy 
with additional features. Starting at its base model accuracy of 45.78% it reached one of the 
highest in the study of 54.35% through feature engineering. That is nearly a 10% jump from its 
baseline prediction result to its results when additional features have been added. This 
showcases knowing how to use feature engineering in prediction models can improve their 
results significantly, and proves how it is worth the time to add them.  
 
Overall, Gradient Boosting Regressor remains the most consistent model across both simulation 
conditions (53.68% and 51%), followed by Prophet, which performs reasonably well across both 
setups (54.62% and 49.3%). This portrays the importance of features that depend on the model 
itself. Models arranged according to their significance on features (ascending) are as follows: 
Gradient Boosting Regressor (2.68%), Simple Linear Regression (4.49%), Prophet (Meta) 
(5.42%), XGBRegressor (6.12%), and Random Forest Regressor (8.57%). 

 
Confusion Matrix Data 
 
The confusion matrix, as shown in the last columns of tables 1 and 2, depicts that the overall 
prediction of true positives proves to be significantly better than the prediction of true negatives, 
which essentially means that the prediction of bullish trends is of substantially higher accuracy 
throughout. Although with features, the accuracy of bearish trends also increases significantly 
(remaining significantly lower than the bullish prediction throughout). This can be explained by 
1-day dips that are often overcome within the same week, giving false bearish signals. As a 
result, the model predicts true-positives and false-negatives at a greater magnitude. 
 
Regression Performance 

 
The R² Score proves to be ineffective in indicating the model’s performance due to the noisy 
dataset and short-term predictions, which lack a clear pattern, rendering the R² score useless.  
 
Previous research demonstrates that models with negative R² values can still provide value in 
price prediction. For instance, in one MDPI study, a KNN regressor achieved R² = –2.42, yet its 
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SMAPE of 14.32% was considered a valid indicator of forecasting ability. While it is helpful to 
see the variance in the dependent variable explained by the score, it is more important to know 
the context in which the regression is taking place (11). 
 
Since the study is taking place in a short-term financial time series in our forecasts and contains 
too much volatility, which became the cause of the low or even negative R2  score, with and 
without feature engineering, this occurs because the R2 score is sensitive to minor deviations 
from the actual values. The presence of the R2 score in our data can be misleading because of 
the poor scores, although our models prove to be improved, as evidenced by improved 
directional accuracy with added features. 
 
RMSE & MAE 

 
Figures 2 & 3: RMSE and MAE across all the models with and without indicators 

 
The RMSE is slightly higher than the MAE throughout, as the RMSE is much higher with higher 
absolute error. This means that there were a fair number of instances where the Absolute Error 
was slightly higher than the RMSE. 
 
With technical indicators (features), RMSE remained around $14. In contrast, the MAE 
remained at around $11 (except in simple linear regression, wherein the RMSE and MAE were 
at $2.0688 and $1.5688, respectively, due to its tendency to find a linear relationship with not 
only the closing price but also technical indicators, capturing underlying trends). With technical 
indicators, XGBRegressor and Random Forest Regressor, RMSE and MAE remain similar, 
Prophet is overshot significantly, which shows its dependence on features for making accurate 
predictions ($20.1956 and $16.8988, respectively).  
 
Simple linear regression is also overshot as it aims to capture a linear relationship between the 
features and time. With only the closing price, this becomes inaccurate due to the lack of 
context of other features, which change with time. Gradient Boosting Regressor captures 
non-linear trends, which ultimately result in a significantly lower RMSE and MAE of 2.8269 and 
2.2326, as evidenced by its consistent directional accuracy. 
 

6. Conclusion 
 
The overall results of the study showcase the impact of feature engineering and reflect the 
volatility of the stock market. The result of directional accuracy showed that there is a 
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measurable impact of the addition of technical indicators overall, making a difference in the 
probability of a coin-flip chance. In the real world, this improvement in accuracy plays a 
substantial role in predicting stock market performance, especially in the short term, such as in 
“day trading.” The overall accuracy was at a lower band than expected, around 50%, which is 
essentially due to the future-like setup in the testing process (testing for a completely different 
year without any context). Moreover, the dataset was limited to ensure a controlled setup while 
evaluating the performance of models. This dataset allowed for the comparative study of the 
models throughout without any changes in the training/testing dataset, without any biases. The 
study also demonstrates that regressor models are worse off in predicting directional trends in 
the short run, despite predicting the data trends (not directional trends) well in the long run (as 
seen by the RMSE and MAE). This is also due to the limitations of predicting the stock market in 
the short term solely based on technical indicators, implying that news and sentiment often play 
a significant role in the movement of the stock market. Therefore, while technical indicators give 
an edge during predictions, they can not fully predict short-term trends without economic, 
financial, and sentimental context. This essentially portrays that a hybrid approach i.e. technical 
indicators + sentiment analysis approach may be necessary for meaningful short-term 
predictions. 
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