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‭Abstract‬
‭Over the years, there has been a rapid development of UAVs, but there is still limited‬

‭research on their function in low pressure/high altitude systems. This is mostly because of‬
‭limited access to low pressure testing environments, technological constraints, and high‬
‭research and development costs. However, UAVs in low pressure environments can be‬
‭extremely beneficial for space exploration and even search-and-rescue missions on high peaks‬
‭like Mount Everest. In such environments, reduced air density makes it difficult for UAVs to‬
‭maintain lift. [1] Specially designed UAVs, however, could provide aerial support as well as‬
‭payload delivery. To facilitate the design of UAVs capable of flying in low pressure environments,‬
‭this paper investigates previous related missions and lays the groundworks for dynamics and‬
‭control of these unique vehicles.‬

‭1.‬ ‭Introduction‬
‭Unmanned aerial drones (UAVs), commonly known as drones, have evolved from first‬

‭being used for military purposes and recreational uses to now being specialized for cutting-edge‬
‭planetary exploration and other industries. Operating drones in low pressure atmospheres like‬
‭Mars and high altitude locations on Earth presents its own set of challenges. As pressure,‬
‭temperature, and air density decreases with increasing altitude, drones will need to adapt‬
‭through their structural design, propulsion, and energy management systems to perform‬
‭effectively. By exploring the FlyCart 30, a drone developed by DJI that carried two oxygen tanks‬
‭from Base Camp to Camp 1, and the Ingenuity Mars Helicopter, an autonomous helicopter‬
‭developed by NASA, insight can be gained into how UAVs can be engineered to perform in‬
‭low-pressure environments, both on Earth and on other planets with similar conditions. [1, 2, 3]‬

‭This paper explores the control and dynamic model of the spring-mass-damper system‬
‭and the 2D Quadrotor model. Through a SPYDER Python simulation, the behaviors of the‬
‭systems changed as the dampening coefficient, initial conditions, and other control strategies‬
‭were altered.‬

‭2.‬ ‭Problem Statement‬
‭Controlling system dynamics can be challenging when the system dynamics exhibit extreme‬
‭changes under specific operating conditions, specifically under low-pressure control. The‬
‭variation in dynamics makes it necessary to have adaptive control strategies, since the fixed‬
‭system gains may not be optimal. The system gains must be adjusted to maintain desired‬
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‭performance and stability. For example, a quadcopter that’s intended to hover at sea level on‬
‭Earth may be unstable at very high altitude because of the significantly lower air density. The‬
‭control gains would need to be adjusted to compensate for the reduced aerodynamic forces so‬
‭that the quadcopter can maintain its position and orientation. The simulation results in this paper‬
‭illustrate how the net thrust and torque need to be altered to get the desired results.‬

‭3.‬ ‭Drones in Extraterrestrial Low-Pressure Environments‬
‭NASA’s Ingenuity Helicopter‬

‭Mars has a notably thin atmosphere, about 1% of Earth’s, which makes generating lift‬
‭extraordinarily difficult.[2] NASA’s Ingenuity helicopter, however, overcame this by developing a‬
‭lightweight, carbon-fiber design and fast-spinning coaxial rotors (about 2,500 rpm), allowing‬
‭autonomous flight on Mars despite air density of about 0.017 km/m^3 and temperature of‬
‭around -60 degrees Celsius. [2, 7] This proves that flight in an extremely low pressure‬
‭atmosphere is feasible with innovative rotorcraft engineering and autonomous navigation.‬

‭Figure 1: Mars Helicopter (‬‭NASA/JPL - Caltech‬‭) This figure highlights the structure of the Mars‬
‭Helicopter. As noted previously, the Ingenuity Helicopter has carbon fiber blades, making this‬
‭helicopter lightweight and easier to maneuver. The fuselage, which is about the size of a tissue‬
‭box, is packed with computers, batteries, sensors, heaters, and telecommunications. [5]‬
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‭Dragonfly‬

‭Conversely, one of Saturn’s moon Titan has an atmosphere 4.4 times denser than Earth’s,‬
‭extremely low gravity of about 1.35 m/s‬‭2‬‭, and a mean surface temperature of 94 K,‬
‭approximately -179 degrees Celsius (Lorenz et al., 2018). Although these conditions favor‬
‭generation of lift, thermal protection and a robust energy system is required to prevent failure‬
‭due to freezing. The Dragonfly rotorcraft lander, designed by Johns Hopkins Applied Physics‬
‭Laboratory, will be powered by a radioisotope thermoelectric generator and it will be equipped‬
‭with sampling drills and onboard mass spectrometry to explore Titan’s organic-rich surface (Ata,‬
‭2021; Lorenz et al., 2018).‬
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‭Figure 2: Dragonfly (‬‭Thor Design‬‭) This figure has different parts of the Dragonfly labeled,‬
‭describing each part’s functionality. Unlike the Ingenuity Helicopter, Dragonfly doesn’t utilize‬
‭solar panels and instead utilized a radioisotope thermoelectric generator. [6]‬

‭4.‬ ‭High Altitude UAV Tests on Earth‬
‭Engineers and researchers have also turned to the Himalayas to test drones in‬

‭low-pressure systems. In 2022, Da-Jiang Innovations (DJI) successfully conducted drone‬
‭delivery trials on Mount Everest, the world's tallest mountain with an atmospheric pressure of‬
‭about one-third of the atmospheric pressure at sea level. [1] These trials demonstrated the‬
‭ability to carry oxygen tanks and other supplies between Base Camp and Camp 1, while‬
‭operating in temperatures below freezing and air densities comparable to that of Mars. [3]‬

‭DJI engineers had to account for reduced thrust, shorter battery life, and the difficulty of‬
‭maintaining GPS signal at extreme altitudes.‬

‭Figure 3 (‬‭DJI‬‭) This figure shows how the FlyCart 30 looks. For example, circle one is the‬
‭propellers of the drone, and circle fourteen is where the cargo boxes go. [4]‬

‭5.‬ ‭Problem Statement‬
‭Controlling system dynamics can be challenging when the system dynamics exhibit extreme‬
‭changes under specific operating conditions, specifically under low-pressure control. The‬
‭variation in dynamics makes it necessary to have adaptive control strategies, since the fixed‬
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‭system gains may not be optimal. The system gains must be adjusted to maintain desired‬
‭performance and stability. For example, a quadcopter that’s intended to hover at sea level on‬
‭Earth may be unstable at very high altitude because of the significantly lower air density. The‬
‭control gains would need to be adjusted to compensate for the reduced aerodynamic forces so‬
‭that the quadcopter can maintain its position and orientation. The simulation results in this paper‬
‭illustrate how the net thrust and torque need to be altered to counteract gravity and maintain a‬
‭desired trajectory. This was demonstrated in SPYDER using Python with the equations that will‬
‭be derived in the following section.‬

‭6.‬ ‭Methodology‬

‭This study uses two models, the spring-mass-damper system and the 2D Quadcopter Model to‬
‭simulate how control principles apply to dynamic systems from a foundational model to a more‬
‭complex, nonlinear model. The spring-mass-damper system is a simple, linear system that is‬
‭ideal for understanding basic control topics like dampening and stability. The 2D Quadcopter‬
‭Model, on the other hand, is a nonlinear system that demonstrates the actual complexities of‬
‭UAV flight. It would require advanced control in order to maintain stability. However, if linearized,‬
‭PID would suffice.‬

‭Spring-Mass-Damper System:‬

‭The derivation of the equations of motion for the Spring-Mass-Damper system begins with‬
‭Newton’s Second Law.‬

‭m = mass‬

‭a = acceleration‬

‭F = force‬

‭In Figure 4 the constant c is the damping force, and the constant k is the spring constant. Both‬
‭the damping force and the spring force are acting on this mass, making it the total net force on‬
‭the mass. This means the equation can be rewritten as:‬
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‭(1)‬

‭The forces acting on the mass in the system are:‬
‭1.‬ ‭Spring force (Fs): According to Hooke’s Law, where k is the spring constant and x is the‬

‭displacement from the equilibrium. This force would be negative because the spring force‬
‭acts in the opposite direction of the object’s displacement.‬

‭(2)‬

‭2.‬ ‭Damping force (Fd): The damping force is proportional to the velocity, where c is the‬
‭damping coefficient and ẋ is the velocity. The damping force works to dissipate the‬
‭object’s motion and energy.‬

‭(3)‬

‭Substitute equations (2) and (3) into equation (1) to get:‬

‭(4)‬

‭Since acceleration a is the second derivative of position with respect to time‬

‭(5)‬

‭Substitute Equation (5) into Equation (4) to get‬

‭(6)‬

‭This is the‬‭Equation of Motion‬‭.‬

‭Formulating‬‭Equation of Motion‬‭in state-space form:‬
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‭A is the system matrix‬

‭2D Quadcopter Model‬

‭The equations of motion for the 2D Quadcopter Model are derived from Newton’s Second Law‬
‭and for translational dynamics in the y-z plane. It is analyzed by its motion in the z-axis, y-axis,‬
‭and rotational planes.‬
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‭Figure 5: This figure represents the 2D quadrotor with fL and fR representing the forces, fg‬
‭representing the quadrotor’s weight, ϕ representing its orientation above the horizontal, m‬
‭representing the quadrotor’s mass, and finally Ixx representing its rotational inertia.‬

‭System Parameters:‬

‭Forces & Torques‬

‭The control inputs for the 2D quadcopter are the net force and the net torque. The net force‬
‭comes from the right propeller and the left propeller. The net torque comes from the difference‬
‭of forces of the left propeller and right propeller multiplied by the lever arm.‬

‭=‬ ‭(net force)‬‭𝑓‬
‭𝑡𝑜𝑡‬

‭𝑓‬
‭𝐿‬

+ ‭𝑓‬
‭𝑅‬

‭= (‬ ‭)L  (net torque)‬‭τ‬
‭𝑡𝑜𝑡‬

‭𝑓‬
‭𝐿‬

− ‭𝑓‬
‭𝑅‬

‭Equations of Motion‬
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‭●‬ ‭(Y-axis) The horizontal component of the total thrust is responsible for the motion along‬

‭the y-axis. Additionally, ∑‬ ‭by Newton’s Second Law because the double‬‭𝐹‬
‭𝑦‬

= ‭𝑚‬‭𝑑‬‭2‬‭𝑦‬‭/‬‭𝑑‬‭𝑡‬‭2‬

‭derivative is acceleration.‬

‭2‬)‭ ‬‭ ‬
‭●‬ ‭(Z-axis) The vertical component of the total thrust acts upward, opposing the force of‬

‭gravity.  Additionally, ∑‬ ‭by Newton’s Second Law because the double‬‭𝐹‬
‭𝑧‬

= ‭𝑚‬‭𝑑‬‭2‬‭𝑧‬‭/‬‭𝑑‬‭𝑡‬‭2‬

‭derivative is acceleration.‬

‭I‬‭3‬)‭ ‬‭τ‬
‭𝑡𝑜𝑡‬

‭ ‬ = ‭ ‬‭𝑥𝑥‬‭ ‬(‭𝑑‬‭2‬‭ϕ/‬‭𝑑‬‭𝑡‬‭2‬)

‭Next, rewrite the Equations of Motion in terms of the state variables and inputs‬
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‭PID Control Law‬

‭PID (Proportional Integral Derivative) control is a control scheme that works well for linear‬
‭systems, like the spring mass damper, but not necessarily for the nonlinear dynamics of the‬
‭quadcopter, but it doesn’t always work well for nonlinear systems like quadcopters. However, it‬
‭is possible to get around this for small deviations from hover state which is achieved through‬
‭linearization, where the nonlinear system is approximated as linear in a specific region.‬

‭For example,‬ ‭is linearized as‬ ‭at‬‭𝑦‬ = ‭𝑠𝑖𝑛𝑥‬ ‭𝑦‬ = ‭𝑥‬ ‭𝑥‬ = ‭0‬.
‭is linearized as‬ ‭at‬‭𝑦‬ = ‭𝑐𝑜𝑠𝑥‬ ‭𝑦‬ = ‭1‬ ‭𝑥‬ = ‭0‬

‭Simulation‬

‭Euler’s Method is used to simulate the system dynamics. The update step for the‬
‭simulation is given by:‬‭𝑥‬

‭𝑘‬+‭1‬
= ‭𝑥‬

‭𝑘‬
+ ‭𝐴‬‭𝑥‬

‭𝑘‬
‭𝚫‬‭𝑡‬

‭Where‬ ‭is the state vector at time step k, A is the system matrix, and 𝚫t is the time step. For‬‭𝑥‬
‭𝑘‬
‭ ‬

‭simulation accuracy, a time step of 𝚫t < 0.01 seconds is recommended. The simulation begins‬
‭with an initial condition‬ ‭and continues for the number of time steps.‬‭𝑥‬

‭0‬

‭The Python code that was used for the simulation results is linked‬‭here‬‭.‬

‭7. Results‬

‭Spring-mass-damper‬

‭Without control‬

‭No Dampening (c = 0)‬
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‭Figure 5: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭Without any damping, the simulation showed persistent oscillations in the position and velocity‬
‭graphs. The amplitude of these graphs remained constant over forty seconds and is implied it‬
‭will stay constant forever which is expected since there is no energy dissipation in this system.‬
‭This demonstrates a need for a control system so that the mass can stabilize and be brought to‬
‭rest.‬

‭Some Dampening‬
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‭Figure 6: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭In the situation when the damping coefficient is 0.03, both the position and velocity start‬
‭decreasing slowly. The graph shows a decreasing amplitude as time goes to infinity which is‬
‭expected because there is some energy dissipation in this system but not quite enough for the‬
‭mass to completely stabilize fast.‬
‭Initial position further from equilibrium‬
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‭Figure 7: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭This motion is different from the other two that were observed. Instead of the continuous‬
‭oscillations, the position and velocity decayed smoothly back to the equilibrium point. The‬
‭motion looks like a smooth gradual decrease until the mass comes to a complete stop.‬
‭If The Spring Would to Push Instead of Pull‬
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‭Figure 8: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭The spring’s position and velocity stayed constant for a long period of time until about t=30‬
‭where they both started increasing exponentially. This is because the spring constant is‬
‭negative which indicates an unstable system because a spring is supposed to pull.‬
‭Feedback Control‬

‭The PID controller is a type of feedback control system that aims to regulate a system’s‬
‭output to a desired setpoint. It’s the most common control system as PID comprises about 70%‬
‭of all control systems. Feedback control is extremely important because it allows a system to be‬
‭dynamic and adapt to disturbances. However, selecting the wrong gains can make the control‬
‭system unstable which can make tuning gains a challenge. An unstable control system can lead‬
‭to extreme failures like satellites going out of orbit or planes crashing. That’s why observing the‬
‭system’s behavior with different gains is a very important step in control system design.‬

‭Deriving the PID Control Law‬
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‭The PID control law is based on proportional, integral, and derivative gains. The control‬
‭input force u is a function of the position, its derivative, and its integral:‬

‭For the closed-loop spring-mass-damper system, the system dynamics can be derived by‬
‭including the control input force u in the net force equation. The total force is the sum of the‬
‭input force, the spring force, and the damping force:‬

‭(7)‬
‭Substituting Equations (2) and (3) into Equation (7) yields:‬

‭This equation can be rearranged to show the dynamics of the closed-loop system:‬

‭With Control‬
‭Lightly Damped‬
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‭Figure 9: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭When the proportional gain Kp was set to 1 and the derivative gain Kd to 0.1, the simulation‬
‭produced a dissipating sinusoidal wave. This demonstrates that the control system was trying to‬
‭bring the mass back to the equilibrium position.‬

‭High Dampening‬

‭Figure 10: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭Increasing the derivative gain Kd to 4, while keeping Kp at 1, caused the system to be highly‬
‭damped. The position and velocity shows a fast decay to its equilibrium position without any‬
‭oscillations. This shows that a high derivative gain can bring a system to its setpoint.‬
‭Negative Gain‬

‭16‬



‭Figure 11: The graph shows the time on the x-axis and the system states on the y-axis. The‬
‭system states just represents the value of the position or velocity. Velocity and position are color‬
‭coded as shown.‬

‭A negative proportional gain Kp = -1 resulted in an unstable system. The simulation showed‬
‭both position and velocity going to infinity. This result demonstrates that incorrect gain tuning‬
‭can lead to failure, causing the system to spiral out of control.‬

‭2D Quadrotor‬

‭To explore open-loop dynamics of the quadrotor, four test cases were simulated with varying‬
‭thrust u1 and torque u2.‬

‭Case 1 (u1 = 0.99*m*g, u2 = 0)‬
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‭Figure 12: The x-axis would be the horizontal position of the quadrotor while the x-axis is the‬
‭vertical position of the quadrotor. The graph demonstrates the quadrotor’s position based on the‬
‭conditions.‬

‭In this case the thrust is one percent less than the weight, so there is no tilt. The vertical‬
‭acceleration is small and negative causing the quadrotor to sink slowly in a straight line‬
‭downward.‬
‭Case 2 (u1 = m*g, u2 = 1)‬
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‭Figure 13: the x-axis would be the horizontal position of the quadrotor while the x-axis is the‬
‭vertical position of the quadrotor. The graph demonstrates the quadrotor’s position based on the‬
‭conditions.‬

‭The thrust matches the weight, but torque is positive. Positive torque means positive phi which‬
‭means the quadrotor will rotate continuously. As phi increases, the thrust gets a horizontal‬
‭component, so it will accelerate sideways while slowly losing altitude because the vertical‬
‭component of thrust decreases.‬
‭Case 3 (u1 = m*g, u2 = -1)‬
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‭Figure 14: the x-axis would be the horizontal position of the quadrotor while the x-axis is the‬
‭vertical position of the quadrotor. The graph demonstrates the quadrotor’s position based on the‬
‭conditions.‬

‭The thrust matches the weight, but the torque is negative. Negative torque means negative phi,‬
‭so this quadrotor will rotate backward. This will cause horizontal acceleration in the opposite‬
‭direction while losing altitude.‬
‭Case 4 (u1 = 2*m*g, u2 = -0.01)‬
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‭Figure 15: the x-axis would be the horizontal position of the quadrotor while the x-axis is the‬
‭vertical position of the quadrotor. The graph demonstrates the quadrotor’s position based on the‬
‭conditions.‬

‭The small negative torque causes a backward tilt, which reduces the vertical component of‬
‭thrust. The quadrotor slows its ascent then falls, creating a downward-opening parabolic‬
‭trajectory in the y-z plane.‬

‭8. Conclusion‬

‭This paper explores the complexity of UAV operation in low-pressure environments through real‬
‭world case studies and dynamic simulations. Exploring NASA’s Ingenuity Rover, DJI’s FlyCart‬
‭30, and the Dragonfly highlights how UAVs can be engineered to operate effectively in extreme‬
‭climate and low pressure environments. The spring-mass-damper system showed control‬
‭principles, while the 2D-Quadcopter Model presents complexities in real life flight dynamics. In‬
‭the situation that was investigated, a positive gain would make the most sense because the‬
‭quadrotor was supposed to produce a positive thrust, so instead of pushing upward, the‬
‭quadrotor would be pushed downward.‬
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‭The principles of control and the careful consideration of system dynamics are crucial for‬
‭designing future aerial vehicles for both terrestrial and extraterrestrial missions.‬

‭The simulation provided a demonstration of the core control principles that were discussed in‬
‭this paper. The spring-mass-damper system, a foundational linear model, was crucial for‬
‭understanding proportional and derivative gains. Tuning these gains provided a visualization of‬
‭an oscillating, undamped system to a system that was highly damped and stable. This simple‬
‭model provided the important insights before moving to a more complex, nonlinear 2D‬
‭Quadrotor. The Quadrotor simulation highlighted the challenges of controlling a vehicle in this‬
‭space. Even a slight change in thrust or torque could significantly alter its position and‬
‭orientation.‬

‭These simulations emphasize the vital connection between theoretical control dynamics and the‬
‭engineering of UAVs in extreme environments. They demonstrate that control theory is‬
‭applicable to solving real-world challenges like maintaining lift and stability in low-density‬
‭atmospheres.‬
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