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Abstract 

When we think about vaccination, it's not just a medical choice—it's a deeply human one, woven 

with perceptions, risks, and the subtle pull of collective behavior. Building on empirical measles 

data, this work extends a game-theoretic model of the public goods dilemma to capture the 

complexities of real-world hesitancy. We start with a baseline replication, grounding individual 

utilities in observed disease trends, but then layer in misinformation spread, sudden hesitancy 

shocks, and policy levers like subsidies and mandates. Using an agent-based simulation 

coupled with an SIR epidemiological framework, we explore how these factors interplay to 

shape coverage, incidence, and effective reproduction number (R_eff). 

Key findings reveal the fragility of herd immunity: under a hesitancy shock—simulating a surge 

in doubt or misinformation—mean vaccination coverage drops to 6.4%, peak incidence spikes to 

around 59,433 cases, and final R_eff settles at 0.43, far below control thresholds. Sensitivity 

analysis via Sobol indices highlights R_0 as the dominant driver of final R_eff, with first-order 

sensitivity near 1.0, underscoring transmission's outsized role amid behavioral noise. Policy 

frontiers map trade-offs: combining subsidies (up to 0.5) and mandate penalties (up to 0.5) can 

push R_eff down to 0.18 while boosting welfare to 0.08, but intensity matters—overly aggressive 

mandates risk backlash. 

This model advances prior work by incorporating dynamic feedback loops and actionable 

policies, offering a compass for policymakers. It shows that while free-riding persists, targeted 

interventions can tip the balance toward resilience, even in uncertain times. Future extensions 

could integrate network effects or evolving variants for deeper insights. 
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Introduction 

When I reflect on vaccination, I see it as more than a shield against disease—it's a mirror to our 

shared vulnerabilities, where individual choices ripple through communities in ways both 

predictable and profound. We've long known that vaccines save lives, curbing outbreaks 

through herd immunity (Fine et al., 2011). Yet, as coverage climbs, something shifts: people 

start weighing their own small costs against the protection others provide, leading to free-riding 
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that erodes the very safety net we build together (Bauch & Earn, 2004). This isn't just theory; it's 

evident in real drops in uptake, fueled by hesitancy, misinformation, and shifting perceptions 

(Betsch et al., 2013). 

Past models, like the one I explored in my earlier work on measles data and public goods 

games, captured the tipping point where rational actors switch strategies—but they often 

stopped at static assumptions, using fixed payoffs or ignoring external shocks (Patakula, 2025). 

That baseline was a starting point, revealing how disease severity nudges the indifference 

threshold from 71% to 89% coverage as costs rise. But the world isn't static: misinformation 

spreads like a virus itself, policies intervene, and sudden events—like a scandal or pandemic—

can jolt behaviors overnight. 

Here, I push further, blending game theory with dynamic epidemiology to model these layers. 

We incorporate misinformation as a probability distorting perceived risks, hesitancy shocks as 

abrupt parameter shifts, and policies as adjustable levers—subsidies to lower costs, mandates 

to penalize skipping. This isn't about abstract equilibria; it's about simulating real trajectories, 

using Sobol sensitivity to pinpoint what truly drives outcomes like final R_eff. By grounding in 

measles trends yet adding behavioral realism, this approach bridges the gap between theory 

and action, helping us understand not just why hesitancy happens, but how to counter it with 

empathy and evidence. 

The novelty lies in this integration: where prior efforts assumed uniform perceptions, we let 

agents adapt amid noise, revealing policy frontiers that balance health and welfare. For 

scientists and policymakers alike, it's a reminder that leadership in public health means guiding 

choices thoughtfully, turning potential dilemmas into opportunities for collective strength. 

 

2. Methods 

When I contemplate the essence of modeling human choices in the face of disease, I see it as a 

delicate interplay between the predictable rhythms of epidemiology and the unpredictable 

currents of perception and incentive—much like a leader navigating a team through uncertainty, 

armed with both data and intuition. To capture this, I constructed a hybrid framework that 

marries game-theoretic decision-making with dynamic disease spread, extending my baseline 

replication into a more nuanced simulation of real-world complexities. Implemented in Python, 

the model evolves through modular components, allowing for iterative exploration of behaviors, 

shocks, and policies. Below, I outline the key elements, grounded in empirical foundations yet 

infused with behavioral realism. 

Baseline Replication and Benefit Function 

At the core lies a replication of the foundational vaccination game, drawing from observed 

measles trends to define the indirect protection—or benefit—an individual derives from 

community coverage. The herd immunity benefit is modeled as a logistic curve: 

𝑏(𝑥) =
1

1 + exp(−𝑑(𝑥 − 0.5))
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, where x represents vaccination coverage (ranging from 0 to 1), and d is the disease cost 

parameter, varied across {5, 10, 15, 20} to probe sensitivity to perceived severity. Here, baseline 

utility is set at u = 1, with a fixed vaccination cost c = 0.5. 

Utilities for strategies are straightforward yet revealing: for vaccinators,𝑈𝑣𝑎𝑥 = 𝑢 − 𝑐; for non-

vaccinators, 𝑈𝑠𝑘𝑖𝑝 = 𝑢 − 𝑑(1 − 𝑏(𝑥)). By sweeping x across [0, 1], I identified tipping points 

where U_vax equals U_skip, marking the threshold beyond which free-riding becomes 

indifferent or dominant. This setup not only replicates prior static analyses but sets the stage for 

dynamic extensions, highlighting how subtle shifts in d can alter collective outcomes. 

 

 
Figure 1: Replication of Baseline Vaccination Game, showing utility curves versus coverage for varying d values 

 

Epidemiological Dynamics 

To embed these choices in a living system, I integrated an age-structured SEIR model, 

reflecting the stratified vulnerabilities of populations—infants shielded by maternal immunity, 

preschoolers at play, school-age children in clusters, and adults in broader networks. 

Compartments include Susceptible (S), Exposed (E), Infectious (I), Recovered (R), Maternal 

immunity (M), and Vaccinated (V1 for one dose, V2 for two doses). The force of infection for age 

group a at time t is 𝜆𝑎(𝑡) = 𝛽 ∑ 𝐶𝑎𝑏𝑏 ⋅
𝐼𝑏

𝑁𝑏
, where β scales transmission, C_ab is a contact matrix 

(generated as a toy representation emphasizing age-assortative mixing), and N_b is subgroup 

size. 
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Key parameters draw from measles biology: latent period of 8 days, infectious period of 7 days, 

and basic reproduction number R_0 varying uniformly between 12 and 18 for sensitivity tests. 

Vaccination follows a two-dose schedule with near-lifelong efficacy, administered seasonally. 

This structure allows disease dynamics to feedback into behaviors, turning abstract utilities into 

tangible consequences. 

 

Behavioral Decision Model 

Individual choices emerge from an extended game-theoretic lens, where agents—or 

representative cohorts—reassess vaccination each season, weighing not just costs but 

perceptions shaped by imperfect worlds. Utilities expand to incorporate heterogeneity: vaccine 

cost c_i (adjusted by subsidies), infection cost d_i, a concave risk aversion term to capture 

diminishing disutility, a social norm bonus α if local coverage exceeds threshold τ, and a 

misinformation distortion π that inflates perceived risks. 

Decisions follow a quantal response equilibrium, softening rational choice with bounded 

rationality: 𝑝𝑣𝑎𝑐𝑐 =
exp(𝜅𝑈𝑣𝑎𝑥)

exp(𝜅𝑈𝑣𝑎𝑥)+exp(𝜅𝑈𝑠𝑘𝑖𝑝)
, where κ is the rationality parameter tuning noise in 

selections. This logit form acknowledges that humans don't always optimize perfectly; instead, 

they probabilistically lean toward higher utility, mirroring the psychological shortcuts we all take 

under pressure. 

 

Imperfect Information and Shocks 

No model of hesitancy would be complete without the fog of uncertainty, so I layered in an 

imperfect information module. Reported cases Ĩ(t) are drawn from a Binomial distribution: 𝐼(𝑡) ∼

Binomial(𝐼(𝑡), 𝑝report), simulating underreporting. Beliefs about risk update via exponential 

smoothing of these reports, blending recent outbreaks with historical memory. 

To evoke real disruptions—like a viral rumor or safety scare—I introduced media shocks: 

abrupt, temporary spikes in perceived d or π following incidence thresholds, akin to hesitancy 

waves that can cascade through societies. 

 

Policy Levers 

Policies act as guiding interventions, implemented as modular switches to test their influence. 

Subsidies reduce effective c_i, easing access; mandates impose a penalty m on U_skip, adding 

consequence to free-riding; school entry requirements enforce minimum doses for certain ages; 

and outbreak alerts temporarily heighten perceived risks, nudging urgency. These levers allow 

exploration of how subtle incentives can redirect trajectories, balancing individual freedoms with 

collective needs. 

 

Simulation Loop 

The model unfolds in a daily or seasonal loop: epidemiological transitions advance via SEIR 

equations, generating true and reported incidence; beliefs update with potential shocks; agents 
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decide via quantal response, updating coverage by age; and the cycle repeats until steady-state 

or persistent oscillations. Outputs track mean and final coverage, peak incidence, welfare 

(average utility minus incidence-derived costs), and effective reproduction number Reff = β 

S_eff, where S_eff accounts for partial immunity. 

Simulations run over extended horizons (e.g., 1800 steps) with a population of 100,000, 

ensuring statistical robustness. 

 

Sensitivity Analysis 

To uncover what truly drives fragility or resilience, I employed global sensitivity analysis using 

SALib's Saltelli sampling. Parameters varied include R_0, p_report, α (norm strength), π 

(misinformation intensity), κ (rationality), and subsidy levels. For each of 1024 samples, I 

computed first-order (S1) and total-order (ST) Sobol indices on metrics like mean coverage, 

peak incidence, and final Reff, revealing interactions and dominances—such as R_0's outsized 

role amid behavioral noise. 

 

 
Figure 2: Sobol indices for final Reff, displaying S1 and ST bars for each parameter 
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Policy Trade-Offs 

Finally, to map actionable insights, I generated policy frontiers: sweeping combinations of 

subsidy and mandate intensities, plotting trade-offs between final Reff and welfare. These 

curves highlight sweet spots—moderate interventions that minimize disease while preserving 

autonomy—underscoring the philosophical balance between coercion and encouragement. 

The entire framework is modularized across Python files (epi.py for SEIR, behavior.py for 

utilities, etc.), leveraging libraries like NumPy, SciPy, Matplotlib, Pandas, and SALib for 

reproducibility and visualization. Results are auto-saved, inviting deeper scrutiny into how these 

elements weave together to shape our shared health destinies. 

 

 

3. Results 

The baseline replication confirmed the original tipping dynamics: utilities intersect at ~82% for 

d=10, shifting right with higher d, mirroring how perceived severity sustains vaccination (Figure 

1). 

But introducing complexities paints a starker picture. Under hesitancy shock, coverage 

plummets—mean 6.4%, final 7.6%—driving peak incidence to 59,433 and final R_eff to 0.43 

(from demo_summary.csv). Incidence surges early then flattens, while modified policies temper 

the drop (Figures 3-4). 

 
Figure 3: Incidence comparison: hesitancy_shock                       

                                                                                              Figure 4: Coverage comparison: hesitancy_shock 

Sobol analysis exposes vulnerabilities: R0 dominates final R_eff with S1 ≈1.0, ST ≈1.0, followed 

by p_report (S1 ≈1.0, but with bars suggesting interactions), while misinformation (pi_misinfo) 

and subsidy show negligible direct effects (near 0), hinting their influence emerges through 

feedbacks (Figure 2, from sobol_raw_results.csv aggregates). 
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Figure 5: Sobol indices for final Reff, displaying S1 and ST bars for each parameter 

 

 

Policy frontiers reveal trade-offs: low R_eff (0.18) demands high intensity (subsidy+mandate 

~0.8), but welfare peaks at moderate combos (0.076 at intensity 0.4). A sweet spot at subsidy 

0.3, mandate 0.2 yields R_eff 0.195, welfare 0.075 (Figures 5-6). 

 
Figure 6: Policy frontier (final R_eff) 

                                                                                              Figure 7: Policy frontier: Welfare vs R_eff 
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Metric Value 

Mean Coverage 0.099 

Final Coverage 0.076 

Mean Incidence 28.07 

Final R_eff 15.00 

(Demo) Final R_eff 0.426 

(Demo) Mean Coverage 0.064 

(Demo) Peak Incidence 59433 

(Demo) Welfare 0.063 

 

4. Discussion 

These results don't just quantify risks—they illuminate the human elements at play. The 

hesitancy shock's collapse in coverage to under 10% echoes real outbreaks, where doubt 

cascades, spiking incidence to unsustainable peaks. Unlike the baseline's static thresholds, this 

dynamic setup shows how misinformation amplifies free-riding, but policies can redirect: 

subsidies ease entry, mandates add gentle pressure, together forging frontiers where low R_eff 

coexists with decent welfare. 

Compared to prior studies, including my own, this model's strength is its realism—

misinformation isn't assumed away, shocks are simulated, sensitivities quantified. Where Bauch 

& Earn (2004) focused on equilibria, we trace paths, revealing R0's dominance: even behavioral 

tweaks pale if transmission runs unchecked. Yet, low pi_misinfo sensitivity suggests 

interventions work best preemptively, aligning with Brewer et al. (2007) on perception's power. 

Limitations persist: uniform agents overlook diversity, no spatial networks, measles-specific 

params. Still, it's a step toward actionable insights, persuasion over coercion. 

 

5. Conclusion 

In essence, this work transforms vaccination modeling from isolated games to interconnected 

systems, showing that while hesitancy can unravel progress, smart policies rebuild it. By 

quantifying shocks and frontiers, it equips leaders to foster trust, turning dilemmas into guided 

choices. 

Looking ahead, integrating social networks or adaptive learning could deepen empathy for 

varied behaviors. Testing on other diseases or real-time data might refine, ultimately sharpening 

our collective response to threats unseen. 
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