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Abstract 

    When two galaxies merge together, several phenomena such as starbursts can ensue. 
Studying such phenomena is crucial to understanding how galaxies and stars interact, with the 
analysis of star formation rates providing insight into the many mysteries of our universe. 
Current methods of direct imaging and spectral analysis in analyzing mergers are mostly 
manual and not automated, oftentimes being prone to error as well. With large datasets 
emerging online through more and more readily available simulation data, more efficient 
methods must be developed to study such data. Machine learning techniques can expedite 
such processes, with this paper aiming to evaluate 3 techniques known for successful image 
classification in their success with automating the analysis of images from these datasets: 
Convolutional Neural Networks (CNN), Random Forest Algorithms (RF), and Support Vector 
Machines (SVM). Trained and cross-validated on image data from the Sloan Digital Sky 
Survey, our CNN ”BurstDetector” yielded the most success with an accuracy of 92.7% in 
detecting the occurrence of starbursts, demonstrating that CNNs tend to experience the most 
success in this image classification task of the 3 models evaluated. BurstDetector can also be 
run on a multitude of computers regardless of their GPU, making it computationally efficient. A 
computationally efficient model like BurstDetector is essential to being able to interpret the 
tremendous amount of data online. The study of the resultant stars forming in merging 
galaxies through their images can be pivotal to making new discoveries in the field of physics 
and astronomy, opening the door to revelations in the structure of the universe and even 
progress with dark matter. 

Introduction 

    Galaxy mergers occur when two roughly equally sized galaxies collide against one another, 
resulting in a violent interaction between the contents of the two cosmic bodies. These events 
can cause phenomena such as intense bursts of star formation, known as starbursts. 
Understanding such phenomena is important for advancing our knowledge of galaxy evolution 
and the processes that shape the universe. Predicting when and where starbursts occur in 
merging galaxies could potentially provide insight into the mechanisms that trigger intense 
periods of star formation in the universe. Research on the activity of starburst mergers can 
even reveal the unseen distribution of dark matter within galaxies, which is one of the biggest 
mysteries in astrophysics.  

Rationale  

    Having an accurate and efficient method of knowing which galaxies to study further will save 
time when analyzing mergers. With most current methods on conducting such analysis being 
manual, doing this research is extremely time consuming. Machine learning can enable the 
efficient analysis of vast astronomical datasets, which in recent times have begun to develop 
more and more, and uses algorithms to predict phenomena with greater accuracy and speed. 
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Machine learning techniques can revolutionize the way scientists interpret interactions 
between galaxies, providing predictive power that was previously unavailable through manual 
techniques. The scientific impact of the project extends beyond galaxy evolution, contributing 
to the field of astronomy by accelerating discoveries and improving data analysis techniques. 
Moreover, the predictive power of machine learning can transfer over to various other fields, 
ultimately advancing scientific research processes and technological innovation in society.  

Data Collection  

    Firstly, we constructed an SQL query to filter for galaxy mergers and gather images of galaxy 
mergers in FITS format with their corresponding star formation rates from the Sloan Digital Sky 
Survey (SDSS) SQL image query [1], [2]. Given the limited availability of high-quality merger 
images, TensorFlow-based data augmentation techniques [3] were utilized to artificially expand 
the dataset while preserving astrophysical accuracy. 14517 images were created, and were split 
into 11613 training images and 2904 cross validation images (80/20 split).  

• Geometric Transformations (Rotating, Flipping, Scaling)  

• Color Transformations (Brightness, Saturation Adjustment)  

• Addition of Artificial Noise (Blur, Sharpness)  

 

 
 

Figure 1: Example of how Tensorflow augments images to expand a dataset  

Model Development  

    Three models with three different machine learning algorithms were trained and developed: 
Convolutional Neural Networks (CNN), Random Forest (RF), and Support Vector Machine 
(SVM) [4], [5]. Each model was programmed and executed in VSCode Jupyter Notebooks to 
implement and fine-tune the training process. To determine the most effective starburst 
classification model, the cross-validation dataset was fed through all three models, and their 
performances were assessed using multiple evaluation metrics, including accuracy, precision, 

2 



sensitivity, specificity, and F1-Score. After initial evaluations, we refined the most effective 
model, the CNN, by tuning parameters such as learning rates and improved preprocessing 
techniques to enhance key astrophysical features, such as gas density and tidal tails.  

Results  

 
Figure 2: ROC curves comparing AUC across starburst classification models  

    As seen in Figure 2, the Convolutional Neural Network (CNN) yielded the most 
effectiveness with the highest AUC (Area Under Curve) of 0.91 on the ROC curves. A higher 
AUC signifies a more effective model in making accurate predictions.  
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Figure 3: Confusion Matrices visually representing true and false positives and negatives  

The Confusion Matrix further confirmed the CNN’s success, showing the largest proportion 
of correct predictions, minimizing Type I and Type II errors.  
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Figure 4: Metrics for each classification model. The CNN outperforms both of the other models 
in every metric.  

Additionally, the CNN model achieved an overall accuracy of 92.7% in detecting starbursts, 
indicating its high reliability and effectiveness in identifying the phenomena of starbursts. 
These observations as well as the direct comparisons in precision, recall, accuracy, F1-score, 
sensitivity, and specificity between the 3 techniques make it clear that the Convolutional 
Neural Network was the most effective, and underscores the potential of machine learning 
techniques to improve astronomical predictions.  

The Convolutional Neural Network (CNN) used multiple layers to progressively learn and 
extract important features from the galaxy merger images. The strength of CNNs lies in their 
ability to automatically learn hierarchical features from raw image data, without the need for 
manual feature extraction [5].  

• 1. Edge Detection and Low-Level Features: The initial convolutional layers were 
responsible for detecting basic visual features such as edges and textures. Filters were 
applied to identify simple structures like gradients and pixel intensity, which allows the 
model to detect the boundaries between merging galaxies.  

• 2. Shape Recognition and Mid-Level Features: As the image data passed through 
subsequent convolutional layers, the network recognized more complex patterns, such as 
shapes and spatial relationships. These features include the identification of spiral arms, 
elliptical galaxy shapes, and merging tidal tails.  

• 3. Gas Density and High-Level Features: The deeper layers of the network were critical in 
detecting astrophysical phenomena such as gas density. By analyzing regions with high 
gas concentration and star formation activity, the model recognized features of starburst 
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events, where star formation occurs due to gravitational interactions.  

• 4. Starburst Classification: After extracting the layered features (edges, shapes, gas 
density) and combining the respective SFR data, the model used a fully connected layer 
to combine the learned information into a final classification. The final classification 
decision was based on the recognition of specific astrophysical features like tidal tails, 
gas density variations, and the morphology of interacting galaxies that typically precede 
starburst events  

Processing each image in just 23 milliseconds, the CNN algorithm proves to be significantly 
faster than traditional human manual analysis. Such swift classification not only makes the 
process more efficient, but also allows for the rapid analysis of vast datasets. The resultant 
combination of high accuracy, speed, and ability to handle large datasets positions the CNN as 
a highly effective tool for astronomical research, saving time and resources.  

 

 
Figure 5: Region of high gas concentration in merger  

The main sequence of star-forming galaxies (SFMS) is an observed relationship between 
stellar mass (Mstar) and star formation rate (SFR) for galaxies that are actively forming stars. 
It describes how the majority of star-forming galaxies follow a nearly linear correlation between 
their SFR and stellar mass, meaning more massive galaxies tend to form stars at a higher 
rate. The SFMS is typically expressed as a power-law relation [6]:  

 

The slope was set to 0.7 to suggest that more massive galaxies have slightly lower SFRs 
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than lower-mass galaxies—meaning they form stars less efficiently relative to their mass. The 
intercept of -7 ensures that at M* = 1010 MO, the observed SFR is close to 1 MO/yr. Starburst 
galaxies lie significantly above the main sequence, so the threshold for starburst formation 
from the SDSS data was 5 times the SFMS.  

Figure 6: Correlation between SFR and Stellar Mass  

Conclusion / Future Research  

    Since dark matter is theorized to shape the structure of the universe, understanding its role 
and connection to star formation is vital to the future of astronomy. Developing an efficient and 
accurate algorithm for classifying starbursts, such as BurstDetector, presents a unique 
opportunity to improve the accuracy of research in galaxy evolution and the role dark matter 
halos play in the universe. Starbursts, rapid periods of intense star formation, are often 
observed in galaxies influenced by the gravitational pull of dark matter halos which can trigger 
these explosive bursts of star activity. Missions such as the James Webb Space Telescope 
(JWST), Nancy Grace Roman Space Telescope, and upcoming NASA supported deep-sky 
surveys aim to study the structure and evolution of galaxies across cosmic time. Integrating 
our classification model, BurstDetector, with data from these missions could assist 
astronomers understand how dark matter-driven interactions shaped early galaxy formation. 
Additionally, our solution can be deployed to analyze data from NASA’s Euclid mission, which 
is dedicated to studying dark energy and dark matter by mapping billions of galaxies.  

Overall, our model BurstDetector is a necessity in today’s world where classifications of 
star bursts are manual, slow, and inaccurate. BurstDetector not only opens up new 
possibilities for scientists to shift their focus and time from classifying starbursts to researching 
them, but also allows computers of any GPU to perform these classifications. This results in 
discoveries relating to the field of physics and astronomy being made at a much faster rate.  
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