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Abstract 

 

This study analyzes observational data from studies regarding distant celestial objects to 
estimate the Hubble Constant. Using distance, velocity, magnitude, and redshift, two best-fit 
models were created within Python applying linear regression. Firstly, a linear regression 
was applied to the entire dataset, but after, the data was separated into 12 chunks, sorted 
by their distances from the Earth. The results align with modern conclusions of the Hubble 
Constant, with the calculated value from the linear regression being 50.585 km/s/Mpc. 

 

Introduction 

 

The Hubble Constant (H0) is a value used to quantify the rate of cosmic expansion, first 
proposed by Edwin Hubble in 1929 as part of Hubble’s Law. According to modern data, the 
current value of the Hubble Constant is around 69.8 km/s/Mpc, which means that for every 
megaparsec of distance, an object’s velocity increases by 69.8 km/s. Hubble’s initial value 
for the constant was inaccurate due to a lack of technology to precisely measure distance 
and velocity, but the relationship he found still holds today [1]. 

 Supernovae, stars that are near the end of their lives that explode, emit a large 
amount of energy, and leave behind a remnant, are central to this study, where the 
relationship between their distance and velocity directly showed the Hubble Constant. 
Specifically, for this experiment, type 1A supernovae were used, which involves white 
dwarfs. They are used to study the Hubble Constant for the limited variability of their 
brightness and are a type of astronomical object known as standard candles [2]. This means 
the light emitted is a constant value, and thus, the distance can be calculated from the 
magnitude value, using the equation relating absolute magnitude (M) and apparent 
magnitude (m) of an astronomical object [3]: 

Equation 1: Distance 
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 The critical density is the theoretical density of the universe that would be 
geometrically flat, defined by: 

 

Equation 2: Critical Density 
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Using the calculated value of the Hubble Constant from the experimental data to get 
an estimate for the critical density and comparing it to the observed density of the universe 
allows us to solve for the density parameter: the dimensionless ratio between the critical and 
observed density. 

Equation 3: Density Parameter 

Ω0 =
𝜌

𝜌𝑐𝑟𝑖𝑡
  

This density parameter can tell us about the future of the universe. If the density 
parameter is less than 1, then the universe is open and will expand forever. If the density 
parameter is greater than 1, then the universe is closed and will eventually collapse. Lastly, 
if the density parameter is equal to 1, then the universe is flat and will expand forever at a 
decreasing rate [4]. 

 The universe can be one of three shapes: flat, spherical, or hyperbolic. If the universe 
were flat, it would be like a flat rectangle folded into a cylinder, then a torus. This means that 
if you were to look far enough ahead, you would see yourself from the back. Light travels 
across an edge, and it appears in the same place, but from a different perspective. If you 
were to look in different directions, you would see infinite copies of yourself. However, 
compared to the two other geometries, the local geometry is the same, meaning we cannot 
tell for certain what the universe’s shape is. Despite this, a flat universe would show 
patterns, and so far, looking at the Cosmic Microwave Background, none have been 
discovered. This means that if there were any, they would be outside the observable 
universe [5]. 

The second option would be a sphere, but not a conventional two-dimensional 
sphere. The universe could be a three-dimensional sphere, meaning that it is a set of points 
that are a fixed distance away from a center point in a four-dimensional space. Each point in 
a three-dimensional sphere has an opposite point. Unlike a flat universe, spherical 
universes can be detected locally by measuring cosmic triangles, created by hot and cold 
spots in the Cosmic Microwave Background. If the angles within these triangles add up to 
more than 180 degrees, then we live in a spherical universe [6]. 

Lastly, hyperbolic geometry means the universe opens outward like a saddle, and 
much faster than flat geometry. This means that a two-dimensional hyperbolic plane cannot 
fit within normal Euclidean space. In a shape known as the Poincaré disk, the triangles near 
the edge appear smaller than those at the center, but from a hyperbolic perspective, they 
would appear the same size. Furthermore, the angles of cosmic triangles in a hyperbolic 
universe would add up to less than 180 degrees [7]. Out of the three possible geometries, a 
hyperbolic universe fits least with known information, and a flat universe has become 
increasingly more likely. It is definitely still possible that we live in a spherical or hyperbolic 
universe, but it is impossible to tell because humans can only see so far into space; locally, 
all these geometries are flat [8]. 

 



Methods 

 

Hubble analyzed measurements of cepheid variables at Mount Wilson Observatory at the 
Carnegie Institution of Washington using estimated distances and recession velocities. 
However, his estimations were inaccurate and resulted in an overestimate of the Hubble 
Constant due to his primitive technology and early, inaccurate understanding of outer space 
[9]. Hubble’s original data was used again in this experiment, but just like Hubble, the 
estimation was inaccurate.  

Knowing that Hubble’s data was flawed, another set of modern data was used in 
addition to the original. However, Hubble’s original data was what was first analyzed and 
graphed. This dataset contained both distance and velocity values, of which distance was 
graphed as the x-axis and velocity as the y-axis using the Python libraries pandas, seaborn, 
and scipy. Although the value calculated for the slope of the line matched what Hubble’s 
value was and showed a clear relationship, the inaccuracy of the data meant that I needed 
to use more modern and precise data. Thus, the modern data was obtained from the paper 
“Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS 
supernova samples” [10]. The data provided only redshift, magnitude of brightness, stretch, 
and color values. The distance was calculated from the magnitude value, using equation 1, 
which relates absolute magnitude (M) and apparent magnitude (m) of an astronomical 
object. 

 Furthermore, using the redshift value, recession velocity was found using the 
relativistic Doppler formula: 

Equation 4: Doppler Formula 

𝑣 = 𝑐 ×
(1 + 𝑧)2 − 1

(1 + 𝑧)2 + 1
 

 where 𝑐 = 3 × 108 m/s, the speed of light. Once again, the distance value was plotted 
as the x-axis and the velocity as the y-axis.  

 These two values were plotted on a graph, where distance was the independent 
variable and velocity was on the y-axis, and a linear regression was applied to provide an 
estimation for the Hubble constant. This was done using the Pandas, Seaborn, Matplotlib, 
json, SciPy, and NumPy libraries. However, it was found that this estimate was inaccurate, 
and thus, the modern dataset was divided into 12 different sections, with each bin 
containing 36 to 37 supernovae, split by distances. A linear regression was applied to each 
subset individually and the slopes of each were recorded. Since the universe expands at an 
accelerating rate and the Hubble Constant changes over time, the only relatively accurate 
estimate for the Hubble Constant would occur within the first subset, as the observations for 
those objects would be the most recent. 

 

 

 



 

 

 

 

 

 

Results 

 

 

Figure 1. Hubble’s original data plotted in a distance vs. velocity graph. The line of best fit is 
plotted, and the slope is the estimated value of the Hubble constant. 

 

The slope of the linear-fit line in Figure 1 is 454.16 and has an R-value of 0.79, showing a 
strong correlation between the best-fit line and the data itself. However, due to inaccurate 
measurements and the lack of modern technology to help do so, his value for the constant 
itself was about 6.5 times greater than the modern value.  

Applying a linear fit to the dataset as a whole does not give an accurate estimate of 
the Hubble Constant because the data is not linear, but rather, takes the shape of an 
increasing concave down curve. This occurs because the Hubble Constant has been 
increasing over time due to the accelerating expansion of the universe. 

 



 

Figure 2. Data from “Improved cosmological constraints from a joint analysis of the SDSS-II 
and SNLS supernova samples” by Betoule, M., et. al. Data is grouped into distinctly colored 
clusters by distance, and a linear fit is applied to each individually.  

 

Figure 2 is plotted using modern data from “Improved cosmological constraints from 
a joint analysis of the SDSS-II and SNLS supernova samples” by Betoule, M., et. al. Unlike 
Figure 1, it utilizes 12 linear regressions applied to 12 individual subsets of the data, instead 
of a singular linear fit to the entire dataset. Doing so allows for a much better fit for the 
regression and gives a far more accurate estimation of the Hubble Constant. As stated 
within the Methods section, only the first cluster of data will give the most accurate estimate, 

and the slope calculated for that group of data was 50.585  3.460. This value for the 
Hubble Constant closely aligns with current estimates and shows the effectiveness of 
clustering data. 

 

 

Table 1. Dataset from Betoule, M., et. al. divided into 12 groups based on distance with 
each group’s calculated Hubble Constant value 

Distance (megaparsecs): Hubble Constant Value (km/s/Mpc): 

0 50.585 

140.496 49.456 

342.340 50.168 



697.997 39.275 

927.660 51.851 

1133.754 13.066 

1324.727 40.230 

1592.880 28.310 

2046.350 26.580 

3498.685 12.138 

4690.101 15.597 

5742.035 8.521 

 

 Using the first cluster’s slope for the Hubble Constant and the critical density 
equation, the calculated value of critical density is 4.77 x 10-27. First converting the 
calculated Hubble Constant value to metric units by multiplying by 1000 and then dividing by 
3.1 x 1022, then squaring it and multiplying by three. Lastly, I divided that number by 8𝜋G to 
get the final critical density value. Using this Hubble Constant value and comparing it to the 
average observed density of the universe, which is a value of 0.85 x 10-26,  the critical 
density value is smaller than the observed density [11] This means that using just my 
calculations for equation 3, the density parameter is greater than 1; the range of possible 
values as calculated from the error is between 1.550 and 2.038, and the median is 1.782:  

Ω0 =
𝜌

𝜌𝑐𝑟𝑖𝑡
=
0.85 × 10−26

4.77 × 10−27
= 1.782 > 1 

As stated in the introduction, if the density parameter is greater than 1, that means 
that the universe is closed and will eventually collapse back on itself. 

Due to the acceleration of the expansion of the universe, the Hubble Constant has 
been increasing over time. As is shown in the graph of the data, the slopes of clusters of 
more distant supernovae is significantly smaller than those closer, showing that the Hubble 
Constant was once smaller in the past. Looking at the slope of the closest cluster will give 
the most accurate estimate of the Hubble Constant at the present day. The current estimate 
of the Hubble Constant is either 67.7 km/s/Mpc or 73 km/s/Mpc, but the slope of the first 
cluster is around 50.6 km/s/Mpc [12]. While the calculated estimate is around 25% lower 



than the accepted value, it is decently accurate and much more so than Hubble’s initial 
value.  

 

Conclusion 

 

This project used both historical and modern datasets to estimate the Hubble Constant and 
explore the curvature of the universe. By analyzing supernovae data—specifically redshift 
and magnitude—from the Betoule et al. paper, I calculated distances and velocities to 
determine the Hubble Constant using linear regression models. The initial linear regression 
across the entire dataset yielded an overly simplistic and inaccurate estimate due to the 
nonlinear nature of the data. By splitting the data into 12 distance-based clusters and 
performing regressions on each subset, I obtained a more reliable estimate from the nearest 
cluster: 50.58 km/s/Mpc. Though lower than the current accepted values (ranging from 67.7 
to 73 km/s/Mpc), this estimate is a substantial improvement over Hubble’s original 
overestimate and provides valuable insight into the evolving rate of cosmic expansion. 

The figure work in this study demonstrated the importance of segmenting 
astronomical data to account for temporal and spatial variation in universal expansion. One 
area for further improvement could be visualizing the change in slope across each of the 12 
subsets in a composite graph, revealing how the Hubble Constant varies with distance and 
time. Additionally, more rigorous statistical analysis—such as calculating error margins or 
confidence intervals for each cluster’s slope—could enhance the reliability of the findings. 
Future projects could build upon this work by incorporating other standard candles or 
gravitational wave data, which are emerging as powerful tools for independent Hubble 
Constant measurements.  

 

Limitations 

 

Error propagation plays a role in the results. My calculated density parameter is between 
1.550 and 2.038, with the central value being 1.782, but it is very possible that the range of 
possible values could include 1, meaning my results would instead align with modern 
studies showing a flat universe. As of right now, my results show that the universe is closed 
and will eventually collapse back on itself. Using formulae for propagation of uncertainty and 
variance, it is possible to find that uncertainty and arrive at an even more accurate answer 
for the density parameter. 

 

Future Steps 

 

An especially intriguing direction for further study is the “Hubble tension,” the current 
disagreement between values derived from local observations (like supernovae) and those 



extrapolated from the early universe (like cosmic microwave background measurements). 
More specifically, when measuring the Hubble Constant using calibrated distance ladder 
techniques, the value of it is around 73 km/s/Mpc, but when using the Cosmic Microwave 
Background, the Hubble Constant is closer to 67.7 km/s/Mpc. The Hubble Constant must be 
one of these two values, but you cannot simply take the average of 70.35 and declare that 
to be the Hubble Constant. This discrepancy, which remains unresolved, suggests that there 
may be unknown physics influencing cosmic expansion [13]. Investigating this tension using 
refined datasets, alternative regression techniques (e.g., Bayesian methods), or by 
introducing new cosmological parameters could shed light on one of modern cosmology’s 
most compelling mysteries. A new observatory–the Rubin Observatory– in Chile is in the 
process of mapping out the entire visible Southern Hemisphere sky and create a ten-year 
time lapse using photos taken every day to help scientists better understand dark matter, 
dark energy, the Solar System, the Milky Way, and other interstellar objects [14]. The data 
that comes from the Rubin Observatory could very well help scientists clear up the Hubble 
Tension and arrive at a final answer for the value of the Hubble Constant. 
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