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1. Introduction 
 

​ Maintaining safe physical 

distances between individuals is a 

fundamental consideration in both 

public health and event 

management. While physical 

distancing gained global attention 

during the COVID-19 pandemic as 

a key strategy to reduce the 

spread of infectious diseases, the 

importance of spacing is not 

limited to pandemics. For 

example, in crowded concerts or 

music festivals, ensuring a 

minimum distance between 

attendees can reduce the risk of 

trampling, panic-related injuries, 

and logistical hazards. Similarly, in 

emergency evacuation planning or 

fire safety scenarios, appropriate 

distancing is crucial to prevent 

congestion and facilitate swift 

movement to exits. Whether to 

reduce viral transmission, prevent 

crowd-related injuries, or ensure 

general safety, determining the 

optimal number of people that can 

occupy a given space while 

maintaining safe distances is a 

problem with broad and lasting 

relevance. 

The pigeonhole principle is a 

fundamental concept in 

combinatorial mathematics that 

states that if you distribute more 

objects into fewer containers, at 

least one container must contain 

more than one object. This 

principle, also known as the 

Dirichlet box principle or the 

drawer principle, has its roots in 

ancient mathematics but was 

formally recognized and named 
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after Peter Gustav Lejeune 

Dirichlet in 1834 (Miller et al., 

2021). Early in the 17th century, 

Jean Leurechon indirectly 

referenced the same principle as 

well. (Leurechon, 1622; 

Mersenne, 1625; Rittaud & 

Heeffer. 2014; Jacquet & Baratgin, 

2023).  

The history of the pigeonhole 

principle can be traced back to 

ancient civilizations, where it was 

implicitly understood and used in 

various contexts. For example, an 

Indian text, the Mahabharata, 

describes a situation where five 

arrows are shot at a target, and 

each arrow ends up in a different 

part of the target (Murthy, 2003). 

This example demonstrates that if 

there are more arrows than 

distinct target regions, at least two 

arrows must land in the same 

region. The principle's underlying 

idea is intuitive and can be 

observed in everyday situations, 

such as assigning students to 

seats in a classroom or organizing 

items in drawers. However, its 

formalization and mathematical 

proof came much later. The 

pigeonhole principle was formally 

named and popularized by the 

German mathematician Peter 

Gustav Lejeune Dirichlet in the 

early 19th century. Dirichlet used 

the principle in number theory and 

analysis to prove the existence of 

solutions to various mathematical 

problems. His work laid the 

foundation for the development of 

the pigeonhole principle as a 

powerful tool in combinatorics. 

Since then, the pigeonhole 

principle has found numerous 

applications in various branches of 

mathematics, computer science, 

and other fields. It is frequently 

used to prove the existence of 

patterns, repetitions, or constraints 

in different settings. The principle 

has been applied in areas such as 

graph theory, cryptography, data 

analysis, scheduling problems, 

and more. 

In this research paper, I will 

introduce the pigeonhole principle 

through several examples to 

 



 
highlight its utilization and 

showcase its practical application 

across different scenarios, 

including a proposed research 

problem related to physical 

distancing. There will be two main 

methods to solve the research 

problem. First, I will showcase the 

theoretical approach to calculate 

the critical distance in different 

segmentations. Secondly, I will 

conduct a computational approach 

to simulate the random plotting 

process in a simulation using 

Java.   

 

2. Theory 
 

2.1. Pigeonhole principle 
 

The pigeonhole principle can be 

explained using the analogy of 

pigeons and pigeonholes. If there 

are N pigeons and M pigeonholes, 

and N is greater than M, then at 

least one pigeonhole must contain 

more than one pigeon. For 

instance, consider five pigeons 

and four pigeonholes as shown 

below.  

 

 

 

Figure 1. The illustration of the 

pigeonhole principle in the case of 

N = 5, M = 4. 

 

After distributing the four 

pigeons equally among the four 

pigeonholes, one pigeon will 

remain like the figure below. This 

pigeon can only be placed in one 

of the four pigeonholes, which 

explains how if there are N 

pigeons and M pigeonholes, then 

at least one pigeonhole must 

contain more than one pigeon. 

The following section explains the 

two example problems that the 

pigeonhole principle can be 

applied.  

 

2.1.1. Example 1: Colors of 
socks problem 
 

Consider a set of socks with 

 



 
four different colors: orange, 

yellow, green, and blue. If one 

sock is randomly pulled out of the 

drawer each time, how many 

socks must be pulled out to 

guarantee a matching pair? The 

pigeonhole principle can be 

applied to this problem by treating 

the socks as pigeons and each 

color as a pigeonhole. 

 

 

Figure 2. Two example problems 

can be solved by the pigeonhole 

principle. (a) colors of socks 

problem, and (b) the subset 

problem. 

 

This demonstrates that once the 

four socks are distributed to each 

of the pigeonholes if another 

pigeon is distributed there must be 

at least one pigeonhole with more 

than one pigeon. Therefore, if five 

socks are drawn, there must be at 

least one pair of the same color. 

This conclusion is supported by 

the pigeonhole principle, and thus, 

the answer is 5. 

 

2.1.2. Example 2: Subset 
problem 
 

Another problem involves 

selecting a subset from the set of 

numbers from 1 to 100 such that 

no two chosen numbers add up to 

a multiple of 7. What is the largest 

possible size of this subset? To 

solve this problem, I must look at 

the remainders when an integer 

chosen from 1 through 100 is 

divided by 7. To begin with, the 

total number of integers with a 

remainder of 0, is 14. This is 

because it starts off with 7, which 

is the smallest integer that leaves 

a remainder of 0 when divided by 

7 and ends with 98 which is the 

largest. By utilizing the same logic, 

the smallest integer with a 

remainder of 1 is 1 and the largest 

it 99. This implies the total is 15 

integers. By repeatedly using the 

same logic on integers that leave 

a remainder of 2 through 6, there 

are 15 integers with remainder of 

 



 
2, 14 integers with remainder of 3, 

14 integers with remainder of 4, 

14 integers with remainder of 5, 

and 14 integers with remainder of 

6. 

Since I want to find the largest 

set which no two integers add up 

to a multiple of 7, I must consider 

the remainder. From this, it can be 

interpreted that numbers with 

remainder of 1 and 6 cannot 

coexist in a set of integers for this 

problem. Additionally, applying the 

same logic, 2 and 5 cannot be 

both in the set of integers. Also, 3 

and 4 cannot be in the same set 

as well. This means that in order 

to get the largest possible number 

of integers in a set, I have to get 

one of each pair. So, I get 15 

integers from remainder of 1, 14 

from either 2 or 5, and 14 from 

either 3 or 4. 

This means that the largest 

possible size of this subset which 

has no two chosen numbers add 

up to a multiple of 7, is 

15+14+14+1= 44. I add 1 because 

I can have 1 multiple of 7 as a 

multiple of 7 and a non-multiple of 

7 added is not divisible by 7. If 

another multiple of 7 is added, 

then they add up in a multiple of 7. 

 

2.2. Research problem: 
distancing points in each 
geometry 
 

These simple problems serve 

as the foundation for utilizing the 

pigeonhole principle to solve more 

complex problems. The same 

principle can be applied to tackle 

more challenging problems, such 

as the triangle problem, which is 

the research problem of this study: 

“There is an equilateral has sides 

of length 1cm. Show that for any 

configuration of five points on this 

triangle (on the sides or in the 

interior), there is at least one pair 

of from these five points such that 

the distance between the two 

points in the pair is less than or 

equal to 0.5 cm”. This problem 

was found in Stanford University 

Mathematics Camp (SUMaC) 

2019 Admission Exam. The proof 

 



 
of this problem is based on the 

pigeonhole principle, and I can 

suggest several follow-up 

questions such as whether the 0.5 

cm can be replaced by a smaller 

number, or what if there are 6, 7, 8 

points or so. 

 

2.3. Proof  
 
2.3.1. Classic proof 
 

I can solve the research 

problem by dividing the 1 cm 

equilateral triangle, to 4 smaller 

triangles like Figure 3 (a). Since 

the four triangles are connecting 

the three mid points, each side of 

the smaller triangle is 0.5 cm. 

Thus, I have 4 small triangles and 

5 points. The pigeonhole principle 

for N = 5 and M = 4 suggests that 

there exists at least one small 

triangle which contains more than 

two points. Because the maximum 

distance inside a small triangle is 

0.5 cm, there is always a pair of 

points which have distance less 

than or equal to 0.5 cm. 

 

 

Figure 3. Classical segmentation 

of an equilateral into 4 smaller 

triangles. (a) The segmentation. 

(b) The distance between vertices 

(x) is always longer than the 

distance associated non-vertex 

points (y). (c) The optimal 

arrangement of 6 points to 

maximize the minimum distance. 

(d) An example of randomly 

placed 6 points. 

 

Initially, the approach was to 

assume that there is a point on the 

three vertices of the triangle, as 

depicted with black dots in Figure 

3 (a). Due to the proof that placing 

points on the vertices is the 

longest possible distance on two 

points chosen as Figure 3 (b), it is 

 



 
shown that any 5 points plotted on 

the big triangle, have a distance 

between one another, less than 

0.5 cm. Detailed discussion on 

this is mentioned in the Appendix. 

What if there are 6 points in the 

equilateral? In Figure 3 (c), the 6 

points are all in the corner of the 

triangle, which maximize the 

minimum distance of two random 

points. Thus, it is proven that the 

points must be on the vertices of 

small triangles to have the 

distance of 0.5 cm. Especially, if 

points were to be randomly placed 

as Figure 3 (d), the distance 

between the points will be uneven 

and not fit the conditions, which 

will be a smaller number than 0.5. 

Therefore, the critical value for 6 

points is also 0.5 cm. If I plot one 

more point in the arrangement of 

Figure 3 (c), I can deduce the 

minimum distance of a pair will be 

less than 0.5 cm for the case of 7 

points. 

What if there are 8, 9 or even 10 

points? In other words, what if N 

equals to 8, 9, or 10? Since the 

pigeonhole principle can only be 

applied if there are at least two 

points in one region, the number 

of regions that the triangle can be 

divided into, can't exceed N-1. 

This means that the most regions 

that the triangle should be divided 

by is N-1, and the more regions 

divided, the smaller distance is 

created between the two points 

chosen. In the Appendix, more 

detailed proof is explained. In 

case of 10 points, I can divide the 

1cm equilateral triangle into 9 

smaller equilateral triangles with a 

side of 1/3 cm. The pigeonhole 

principle for N = 10 and M = 9 

suggests there exists a pair of 

points which distance is less than 

or equal to 0.333 cm. 

 

2.3.2. Alternative segmentations 
 

 



 

 

Figure 4. Segmentations for 

number of points more than 7. (a) 

One possible segmentation for 8 

points. (b) Another possible 

segmentation for 8 points. (c) An 

alternative segmentation using a 

variable length, x. (d) The 

definition of x ', the longest length 

in the pentagons. 

 

For 8 points case, Figure 4 (a) 

consists of 7 regions each can 

have two points on the vertices. 

The goal is to find out the 

maximum distance between two 

points that are possible in the 

diagram. There are five possible 

distances in this segmentation. 

Region 1 has 0.333, region 5,7 

have 0.484, region 2,4 have 0.4, 

region 3 has 0.333, and region 6 

has a distance of 0.4. From this 

observation, the maximum 

possible distance is region 5,7 

which gives a value of 0.484. So, 

it can be said that this method has 

a 3.2% better value, compared to 

the 0.5 cm in the previous 

problem. 

Another possible segmentation 

is Figure 4 (b) for the 8 points 

case. The maximum distance of 

regions 5,7 is about 0.44, regions 

3,6 also have 0.44, and regions 

2,4 are 0.33. Thus, the maximum 

possible distance in this 

segmentation is 0.44, which is 

11% shorter than 0.5. Since the 

value of 0.44 is smaller than 0.484 

of the first segmentation, it implies 

that the second method is better 

by approximately 8 %. 

So far specific division methods 

with numbers were considered, 

but I can also approach the same 

problem with variables. In Figure 4 

(c), the sides of the smaller 

equilateral triangle are set to x, so 

the remaining part would be 1-2x . 

There are two different regions on 

 



 
this diagram, one the triangle, and 

two the pentagon. The longest 

distance in the triangle is just x, 

while I need to consider the 

longest possible distance in the 

pentagon as illustrated in Figure 4 

(d). The line of length x ', the 

longest line can be represented as 

1-(3/2) x since the red points are 

defined as the midpoints of the 

small triangles. If I calculate all 

possible values, the longest 

distance turns out to be 0.4. The 

detailed derivation is explained in 

the Appendix. 

 

3. Real World Simulations 
 

3.1. Computation scheme 
 

The simulation is designed to 

simulate the plotting situation of 

the given research problem. It 

creates a triangle and desired 

number of points inside the 

triangle (Figure 5 (a)). The 

imaginary circles have the radius 

of 0.5 cm; thus, the overlapped 

circles imply the existence of a 

pair which distance is less than 

0.5 cm. I conducted simulations of 

the cases when the number of 

points is 2, 3, … 9. The points are 

randomly placed inside the 

triangle 10,000 times, and the 

minimum distance between two 

points chosen is stored in the 

memory. At the end, the average 

values and their standard 

deviations were printed out. The 

standard deviation σ was obtained 

using the definition of population 

standard deviation, assuming the 

data is being considered a 

population on its own. The 

equation is as below. 

 

 σ =
𝑥

1
−μ( )2+ 𝑥

2
−μ( )2+… + 𝑥

𝑁
−μ( )2⎡⎢⎣

⎤⎥⎦
𝑁

 

where  and is μ  =  
𝑥

1
+…+𝑥

𝑁( )
𝑁

the average value for the data 

points . So, I express the 𝑥
1
,  … ,  𝑥

𝑁

measured value as . μ±σ

 

Processing Java is suitable for 

simulating mathematical geometry 

visualization and simulation due to 

 



 
its robust object-oriented 

programming capabilities. Java's 

extensive libraries provide 

powerful tools for handling 

complex geometric calculations 

and rendering graphical 

representations. Additionally, 

Java's platform independence 

allows the simulation to be easily 

deployed across different 

operating systems, making it 

accessible to a wider range of 

users. 

 

 

Figure 5. Processing Java 

Simulation of Plotting Points. (a) A 

screenshot of a random 

arrangement of 5 points. A point 

overlapped by other circles 

represent the pairs of points which 

distance is less than 0.5 cm. (b) 

Minimum distance of a pair of 

points for 3 to 10 points cases for 

each of 10,000 trials. The average 

values and their error bars 

represent the standard deviation. 

 
3.2. Simulation & Test Results 

To assess the real-world 

implications of the pigeonhole 

principle in spatial distancing 

scenarios, a series of simulations 

were conducted. Each model was 

designed to test how often 

randomly generated layouts could 

achieve a minimum safe distance 

between entities—whether 

human, animal, botanical, or 

mechanical. The results, taken 

from 1000 iterations per case, 

provide a probabilistic view of how 

viable spatial safety is under 

uncontrolled conditions. These 

simulations serve to bridge 

abstract mathematical theory with 

real-world applications in crowd 

control, ecological planning, 

disaster prevention, and 

transportation design. 

3.2.1 Concert Audience 
Distancing 

 



 

 

In this simulation, 100 audience 

members begin at randomly 

initialized positions within a 

defined concert venue, with each 

person represented as a colored 

circle. A safe distance of 

approximately 2 

pixels—equivalent to a real-world 

spacing target of around 1 feet—is 

enforced to reflect updated safety 

guidelines aiming for an 80–90% 

safety success rate. Rather than 

resetting positions entirely for 

each trial, individuals shift 

gradually by small, randomized 

pixel amounts from their original 

positions across 1000 iterations, 

simulating realistic 

micro-movements during an 

event. 

A configuration is marked as 

"safe" if no two individuals are 

within the defined unsafe radius. 

The simulation outcomes show 

that a high safety rate is attainable 

only when careful spacing is 

maintained—supporting the 

pigeonhole principle: beyond a 

certain density threshold, avoiding 

overlap becomes mathematically 

constrained. 

This approach is not only 

mathematically informative but 

also introduces a practical 

business perspective. With each 

audience member assigned a 

ticket price of $50, the simulation 

estimates potential revenue under 

safe and unsafe layout conditions. 

This dual focus allows event 

organizers to balance public 

health considerations with 

financial viability, emphasizing the 

need for spatial planning tools that 

combine crowd safety with 

economic forecasting.

 



 

(Simulation result) 

3.2.2 Wildlife Territorial 
Distribution 

 

This simulation models territorial 

spacing for ten gorillas, each 

requiring an exclusive zone with a 

100-foot radius to reflect natural 

avoidance behaviors observed in 

primate populations. To reduce the 

likelihood of conflict and ensure a 

buffer between neighboring 

territories, a safety distance was 

defined as half the territorial 

diameter—50 feet—based on 

established ethological standards 

that prioritize minimum approach 

distances in primate interactions. 

Rather than being randomly 

repositioned, the gorillas move 

smoothly across a 3000 ft × 3000 

ft area with slight, randomized 

changes in direction, simulating 

natural wandering. Their territories 

are visualized as translucent 

circles, making it easy to detect 

overlaps as they interact. 

Despite the expansive terrain, the 

results often reveal multiple 

overlaps in a single frame. This 

highlights a key insight: even 

when animals roam freely across 

what appears to be ample space, 

territorial conflicts emerge 

frequently. The pigeonhole 

principle is once again at 

play—only a finite number of 

non-overlapping zones can fit 

within any bounded region, and 

beyond that, overlaps become 

increasingly likely. 

 



 
Such a simulation is valuable in 

conservation biology and habitat 

planning. By modeling movement 

dynamics rather than static 

placement, it offers a more 

realistic understanding of spatial 

requirements and potential conflict 

zones. This approach can inform 

the design of wildlife corridors, 

protected reserves, and other 

conservation strategies to ensure 

animal welfare and minimize 

territorial stress. 

(Simulation result) 

3.2.3 Traffic Following Distance 

 

In this tunnel traffic simulation, up 

to 10 cars continuously travel 

through a 2500-foot one-lane 

tunnel at randomized speeds 

ranging from 40 to 60 miles per 

hour. The system is designed so 

that whenever a car exits the 

tunnel, a new one enters at the 

start, maintaining a consistent flow 

regulated by a virtual gate. Cars 

are placed at random initial 

positions and move smoothly 

forward. A minimum safe following 

distance of 50 feet is defined, and 

any moment where two cars are 

closer than this threshold is 

recorded as an unsafe condition. 

The simulation runs in real time, 

with safety violations evaluated 

once per simulated second and 

aggregated to assess overall 

tunnel safety. 

The simulation reveals how even 

modest traffic density within a 

constrained space can frequently 

lead to spacing violations. 

Because each car moves at a 

different speed, faster cars may 

approach slower ones, creating 

 



 
unsafe proximity. The issue 

becomes more pronounced as 

new cars are introduced at regular 

intervals without sufficient space 

to accommodate changing 

speeds. This dynamic reinforces 

the cumulative impact of small 

safety buffers: even when each 

buffer is individually modest, their 

repeated application along a finite 

domain leads to a scenario where 

safe spacing becomes 

unsustainable. 

This outcome exemplifies the 

pigeonhole principle in 

practice—only so many safe 

intervals can fit within a limited 

space, and once that capacity is 

exceeded, collisions or unsafe 

distances become inevitable. The 

model offers practical insights for 

real-world applications such as 

tunnel and highway design, where 

spatial constraints must be 

carefully balanced against 

throughput goals. It also holds 

significance for autonomous 

vehicle platooning algorithms, 

which must continuously manage 

inter-vehicle spacing, and for 

public policy decisions regarding 

road capacity. Ultimately, the 

simulation highlights how small 

changes in minimum required 

distance can have large ripple 

effects on the feasibility of 

maintaining safe, high-density 

traffic flow. 

 

(Simulation Result) 

 

4. Discussion 
 

​ Consider that the critical value 

for the physical distancing is l_c 

(in m) in a room of equilateral 

shape which length is 10 m. Then, 

I can define n as the floor function 

of 10/l_c. The floor function, which 

is equivalent to round down to an 

integer, takes as input a real 

number and gives as output the 

greatest integer less than or equal 

 



 
to the input. If I divide the given 

triangle into multiple smaller 

equilateral triangles in a n-staged 

pyramid-like segmentation just like 

Figure 3 (a), I have a total of n^2 = 

1+3+5+⋯+ (2n-1) small triangles. 

Thus, for (n^2+1) people, there 

exists at least two individuals 

which distance is closer than l_c. 

Thus, the maximum capacity 

based on the pigeonhole principle 

is n^2. For example, of 1 m 

distancing (l_c=1), the maximum 

capacity for an equilateral room of 

10m side length is 100 people. 

The comparison between 

theoretical predictions derived 

from the pigeonhole principle and 

the outcomes of our simulations 

reveals a consistent trend: the 

number of safe configurations 

observed empirically tends to be 

lower than the theoretical 

maximum number of 

non-overlapping placements. This 

discrepancy illustrates that the 

pigeonhole principle, while useful 

for establishing hard constraints, 

often leads to overly conservative 

estimates of required spacing. In 

practice, this means that adhering 

strictly to the principle may result 

in more space being allocated 

than is strictly necessary, 

potentially reducing efficiency or 

feasibility in applied scenarios. 

While this conservatism serves as 

a safeguard in sensitive 

environments (e.g., during a public 

health crisis), it is important to 

recognize that the trade-off 

between safety and utility varies 

by context. For instance, in 

concert audience planning, 

ensuring a three-foot distance 

between every attendee may 

significantly limit capacity and, by 

extension, ticket revenue. A rigid 

application of the pigeonhole 

principle in such a case could be 

financially unsustainable, 

particularly when other risk 

mitigation strategies (e.g., 

vaccination, ventilation, timed 

entry) are also in place. Instead, 

simulation data can be used to 

calibrate more flexible, 

evidence-based thresholds that 

 



 
still maintain a high level of safety. 

In contrast, the application of this 

principle in wildlife territorial 

design layout carries fewer social 

constraints and potentially greater 

consequences for failure. For 

animals that rely on exclusive 

territories to avoid conflict or 

ecological stress, or in 

ecosystems vulnerable to rapid 

fire spread, a conservative 

spacing approach may be fully 

justified—even necessary. Here, 

the pigeonhole principle can offer 

strong preventative guidance by 

helping planners determine the 

minimum number of viable 

territory slots or safe tree 

placements within a finite area. 

The traffic distancing model offers 

another nuanced case. While it 

might seem impractical to enforce 

rigid minimum spacing in 

real-world traffic, particularly in 

congested urban environments, 

such models can inform design 

and policy in automated traffic 

systems, self-driving vehicle logic, 

and highway lane density 

planning. In these domains, the 

conservative assumptions of the 

pigeonhole principle can be 

leveraged for safety without 

significantly compromising 

throughput, especially when 

spacing can be algorithmically 

maintained. 

What emerges from these results 

is not a universal endorsement or 

rejection of the pigeonhole-based 

distancing model, but rather a 

spectrum of scenario-dependent 

viability. The principle proves 

highly applicable in safety-critical 

and spatially unconstrained 

environments (e.g., wildlife 

conservation), moderately 

applicable in structured systems 

like traffic design, and more 

challenging in high-density, 

revenue-sensitive contexts like 

concerts or indoor events. 

Future research should aim to 

refine the balance between 

theoretical models and real-world 

flexibility. Increasing simulation 

 



 
run counts, incorporating irregular 

geometries (e.g., non-rectangular 

venues, natural landscapes), and 

applying agent-based modeling to 

simulate adaptive behavior could 

all improve our understanding of 

how distancing dynamics play out 

under different assumptions. In 

doing so, the pigeonhole principle 

can evolve from a static 

mathematical constraint into a 

dynamic tool for informed, 

context-sensitive spatial planning. 

 
5. Next Steps 
 

While the current simulations 

effectively demonstrate the 

conservative spatial estimates 

imposed by the pigeonhole 

principle, applying these insights 

in real-world decision-making will 

require scenario-specific 

refinement, stronger numerical 

fitting, and alignment with the 

operational constraints of each 

domain. Bridging the gap between 

abstract mathematical models and 

applied outcomes will demand 

both deeper simulation 

customization and stronger 

collaboration with stakeholders 

who manage space-critical 

environments. 

For concert venue planners, the 

simulation highlights the tension 

between public safety and 

economic viability. Future work 

could include adaptive simulations 

that account for hybrid distancing 

policies—where only certain 

zones (e.g., near the stage or at 

entrances) enforce strict spacing 

while others allow for moderate 

clustering. By overlaying revenue 

optimization models onto these 

simulations, planners could 

quantify how distancing policies 

affect capacity, ticket pricing, and 

overall profitability. Integration with 

venue-specific blueprints and 

crowd flow models would further 

refine these predictions. This work 

could evolve into a software tool 

that planners use to test layout 

scenarios before each event, 

balancing safety thresholds with 

 



 
financial targets. 

In the case of wildlife territorial 

management, the findings can be 

expanded with ecological data 

such as species-specific 

behavioral radii, migration 

tendencies, and landscape 

features. A more 

biologically-informed simulation 

could help conservationists model 

not just the physical spacing, but 

also the stress levels and 

movement patterns of animals in 

bounded habitats. Geographic 

information systems (GIS) could 

be integrated to map simulations 

directly onto real terrain, enabling 

planners to forecast sustainable 

population limits in a given wildlife 

reserve. 

Traffic spacing models can be 

evolved by introducing variable 

vehicle sizes, speeds, and driver 

reaction profiles. Especially with 

the rise of autonomous vehicles, 

future simulations can test how 

strict distance enforcement 

algorithms impact highway 

throughput, accident probability, 

and fuel efficiency. These results 

could feed into DOT safety 

regulations, road design policies, 

or AV company testing protocols. 

More broadly, one direction for 

future development is the creation 

of a generalized spatial planning 

simulator grounded in the 

pigeonhole framework but 

equipped with adjustable 

constraints, stakeholders' goals 

(e.g., revenue, ecological 

sustainability, public safety), and 

domain-specific physics. Such a 

tool could assist professionals 

from event organizers to city 

planners in quickly stress-testing 

layouts and making informed 

tradeoffs between capacity and 

safety. 

Ultimately, the goal is to move 

from theoretical validation to 

practical utility: helping real-world 

stakeholders like public health 

officials, entertainment 

companies, transportation 

engineers, and environmental 

 



 
planners make decisions that are 

not only safer, but also smarter. By 

continuing to refine these models 

with more accurate physical 

parameters, behavioral logic, and 

business constraints, this research 

can become a foundation for more 

resilient and responsive spatial 

design across industries.  

 

 

 

 

 

 

 
6. Conclusion 
 

In conclusion, the pigeonhole 

principle emerges as a valuable 

tool for determining key 

parameters in physical distancing, 

aiding in the optimization of 

people capacity in various 

settings. The principle provides a 

framework to analyze and identify 

the appropriate minimum distance 

required between individuals to 

mitigate the transmission of 

infectious diseases effectively. 

Furthermore, the study findings 

demonstrate a strong agreement 

between the minimum distance 

data obtained from simulations 

and the theoretical predictions, 

validating the accuracy and 

reliability of the models employed. 

This correspondence further 

supports the efficacy of the 

pigeonhole principle in guiding 

decisions regarding physical 

distancing measures. Moving 

forward, future research can focus 

on exploring the application of the 

pigeonhole principle to different 

geometries and spatial 

configurations. Investigating the 

impact of various room shapes 

and layouts on optimal people 

capacity can enhance our 

understanding of how physical 

distancing guidelines can be 

adapted to diverse environments, 

thus enabling more tailored 

strategies for disease prevention 

and control.  
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7. Appendix: Detailed Proof of 
the Research Problem 
 

An equilateral has sides of length 

1 cm. 

(a)​ Show that for any 

 



 
configuration of five points on 

this triangle (on the sides or in 

the interior), there is at least 

one pair of from these five 

points such that the distance 

between the two points in the 

pair is less than or equal to 

0.5 cm. 

(b)​ Show that 0.5 cm cannot be 

replaced by a smaller number 

even if there are 6 points. 

(c)​ If there are eight points, can 

0.5 be replaced by a smaller 

number? Prove your answer. 

This problem was found in 

Stanford University Mathematics 

Camp (SUMaC) 2019 Admission 

Exam. 

 

7.1 Part A 
 

This first problem can be 

approached by dividing the 1 cm 

side equilateral triangle, to 4 

smaller triangles like shown below. 

Since the four triangles are made 

by connecting the three mid 

points, each side of the smaller 

triangle is 0.5.  

 

 

 

By doing this, each side of the 

smaller triangles becomes 0.5, 

which is the desired value. Initially, 

the approach was to assume that 

there is a point on the vertices of 

the triangle, as depicted below. 

 

 

 

By doing this, the three points 

have been arranged in a way that 

maximizes their distance from 

each other within the triangle. By 

drawing a line X and Y as shown 

below, it can be proven that when 

one point is on a vertex, the other 

points must also be on vertices. 

 



 
 

 

 

Alternatively, even if this proof is 

valid, it still rests on the 

assumption that one of the points 

must be located on a vertex of the 

triangle. Therefore, I must also 

establish the reasoning behind 

why a point must necessarily be 

situated on a vertex. 

Since I do not have a proof of 

whether choosing points on 

vertices results in the longest 

length, I must consider and 

compare the points inside the 

triangle and on the edge of the 

triangle and figure out the 

maximum distance between the 

points.  

To determine if the maximum 

distance between the points must 

be less than 0.5, it is necessary to 

examine the distance between two 

points on a small triangle and 

compare the values. The most 

effective approach is to 

demonstrate that the points must 

lie on the edge of the smaller 

triangle, and then explain why 

they must be situated at the 

corner of the edge. 

To begin, the points can be 

located either on, or in the 

triangle. To show that the points 

have to be in the edges, the 

triangle below can be drawn. 

 

 

 

Here, two points labeled b are 

plotted inside the triangle. Drawing 

a line that passes through both 

points shows that there are two 

more sets of points labeled a on 

the edges. This demonstrates that 

any points chosen inside the 

 



 
triangle will have a greater 

distance than two points on the 

edge. Therefore, it is proved that 

the points must be on the edge to 

be the maximum distance apart. 

To prove that the two points 

must be on the vertices, three 

cases need to be confirmed. 

These cases are illustrated below. 

 

 

 

The three cases are both points 

being on vertices, one being on 

the corner and the other on edge, 

and both points being on edges. 

By comparing the second and the 

third triangle, then the first and the 

second triangle cases, the first 

triangle being the maximum case 

will be proven.  

First, by comparing the case 2 

and case 3, the diagram can be 

drawn like below. 

 

 

 

To prove that the distance 

between two points as shown in 

case 2 is longer, I have to see that 

both the dots of the green line, is 

not in the corner; the base of the 

triangle that can be made is 

smaller than the blue line. From 

this, Pythagorean theory can be 

used by setting the base of the 

green line triangle as X and blue 

line triangle as X’. Applying the 

Pythagorean theorem, the length 

of the blue line is  and 𝑥'( )
2

+ ℎ2

the green line is, . 𝑥( )2 + ℎ2

Since X < X’, and X, X’, h are all 

positive, > . 𝑥'( )
2

+ ℎ2 𝑥( )2 + ℎ2

This means that the blue line is 

longer than the green line, 

Although the blue line has one 

 



 
point that does not go to the 

corner, it can be seen that in order 

for a line to be longer, the point 

has to be on the edge, as closely 

as possible to the corner. There is 

no specific place the point is, but 

the points from the green line will 

meet with the point of the blue 

line.  

Next, comparing the case of 

both points being in vertices, and 

one being in corner and the other 

in an edge, a diagram like the one 

below can be drawn.  

 

This diagram shows two lines 

that is made by connecting the 

two points. It is noticeable that the 

X’ line can be drawn anywhere 

across the edge. But it can’t 

overlap the line X. Here, the same 

logic as when the 2nd and 3rd case 

was proved, can be applied. By 

using the Pythagorean theorem, 

the same way, it is proven that the 

line X is longer than the line X'.  

Now, case 1, where both points 

are in the vertices, is where the 

two points are plotted so that it 

has the maximum distance 

possible. This proof relates to the 

pigeonhole principle since now I 

can divide the triangle into many 

sections with the points on edges. 

Additionally, the proof can be now 

used to move on to the next step 

of, using this distance to what I 

originally wanted to do, prove that 

any 5 points plotted on the big 

triangle, have a distance between 

one another less than 0.5. 

 
7.2 Part B  

The second question to the 

problem was to show that .5 (in 

part (a)) cannot be replaced by a 

smaller number even if there are 6 

points. In order to prove this, the 

drawing like below can be made.  

 



 

 

 

Here, the 6 points are all in the 

corner of the triangle. It has to be 

drawn like this because, from 

above, it is proven that the points 

have to be on the vertices to have 

the desired 0.5. So, this means 

that the other 1 point must also be 

in the vertices. As the drawing 

shows, there is at least one pair of 

points that still have 0.5. 

Specifically, if points were to be 

randomly placed like below, the 

distance between the points will 

be uneven and not fit the 

conditions, which will be a smaller 

number then 0.5. 

 

 

 

7.3 Part C 
 

The final question is, if there 

are eight points, can 0.5 be 

replaced by a smaller number? 

Prove your answer.  

Since, the pigeonhole principle 

can only be applied if there are at 

least two points in one region, the 

number of regions that the triangle 

can be divided into, can't exceed 

7, because it is given that there is 

8 points. This means that the most 

region that the triangle should be 

divided, to apply the pigeonhole 

principle, is 7, and the more 

regions divided, the smaller 

distance is created between two 

points chosen. 

 

 



 
7.3.1 Approach 1 
 

Since the maximum regions for 

the triangle to be divided to use 

pigeonhole is 7, there has to be 

some values that is given, in order 

to find the distance between two 

points chosen. The first approach 

is the drawing below.  

 

 

 

Here, the drawing consists of 7 

regions that each can have two 

points on the vertices. The goal is 

to find out the maximum distance 

between two points that are 

possible in the diagram. There are 

5 possible distances in this 

drawing.  

First, the two dots at region 1 

as drawn below, have the distance 

of 0.33 or , since the side of the 1
3

triangle is 1, and the drawing is 

drawn so that the lines are 

dividing the side into three equal 

parts. 

 

 

7.3.1.1 Regions 5,7 
 

Next, another set of points can 

be drawn like below. 

 

 

 

I don’t calculate region 7 

because it has a symmetry with 

region 5, which means they are 

the same. 

 

 



 

 

 

Here, to calculate the line Y, the 

two right triangles above have to 

be drawn. To begin, the height of 

the triangle X can be found by 

looking at the height of the entire 

equilateral triangle. The equilateral 

triangle has the height of  since 3
2

the I have the hypotenuse of 1 

and the base of . So, by 1
2

applying the Pythagorean 

theorem, it leads to . Then, the 3
2

height of the triangle X, which is  1
3

of the total height of the equilateral 

triangle, becomes . Next, to 3
6

find the base, the triangle X’ has 

to be used. The height ratio of the 

triangle X’ to the small triangle 

inside the triangle X is 2:1. This 

means that the base of the small 

triangle is half the base of the 

triangle X’. Looking at the 

diagram, it can be seen that the 

line that contains both bases has 

the length of 1/3. The line that is 

parallel to it on the top, has the 

length of 1/9. This means that if I 

subtract 1/3 by 1/9, then divide it 

by 2, the base of the triangle X’ is 

found. The value of the triangle X’ 

base is 1/9, so if I divide it by 2 

again, it becomes 1/18 which is 

the base value of the small 

triangle. Finally, the total value of 

the triangle X’s base is 1/3 added 

to 1/18, which leads to .  7
18

Since now the base and the 

height of the triangle X is known, 

the line segment’s length can be 

calculated by the Pythagorean 

theorem. If I apply , 𝑎2 + 𝑏2  =  𝑐

the value becomes , which is 19
9

about 0.484. This means that the 

diagram drawn is a decent 

solution, but not the best since it 

slightly decreased from 0.5.   

 

7.3.1.2 Regions 2, 4 
 

 



 
Next, another set of possible 

distance is drawn below. 

 

 

The region 4 is not calculated 

because of the symmetry in region 

2. Region 2 can be calculated 

from the diagram below.  

 

 

 

Here, the line Y is  due to it 2
9

being  of the long line, which is a 1
3

equilateral triangle with a side 

length of . To find the base of 2
3

the triangle X, two parts of the 

base, has to be found separately 

then added. The smaller part can 

be calculated by subtracting  1
9

from , then dividing it by 2. This 2
9

leads to the value of the small part 

of the base of triangle X being . 1
18

Then to find the longer part, it is 

just  . So now, the value of the 2
9

base of triangle X is ,  which is 1
18

2
9

. The height of the triangle X is 5
18

 since it was calculated in the 3
6

previous part. When the 

Pythagorean theorem is applied, 

the distance between the two 

points become about 0.4, This 

means that region 4 and region 2 

is possible, but not the best. 

 

7.3.1.3 Region 3 
 

To continue, the next possible 

region is region 3. The diagram 

can be drawn as below. 

 

 



 

 

 

To calculate the region the 

diagram below must be drawn. 

 

 

 

Here, the same values used 

before can be utilized to calculate 

the distance between the two 

points. The height of the triangle X 

is  , as it has the same height 3
6

as region 2, 5. The line Y was 

already calculated with the value 

of . So, if the line Y is subtracted 2
9

by , then divided by 2, it will give 1
9

the small part of the line  that does 

not consist the red base. The 

value is , so if the  is 1
18

2
9

subtracted by it, it gives  or , 3
18

1
6

which is the value of the base. 

Now if Pythagorean theorem is 

applied, the distance between the 

two point is . This means that 1
3

region 3 is not possible, as I want 

the value to be bigger than 0.33.  

 
7.3.1.4 Region 6 

 

Finally, the last region to be 

calculated is the region 6. The 

region 6’s diagram can be drawn 

as below. 

 

 

 

Here, in order to calculate the 

 



 
distance between the two points, 

the drawing like below has to be 

created.  

 

 

 

The distance between the two 

points can be calculated from, 

using the Pythagorean theorem. 

The height of the triangle X is just 

 as calculated in the previous 3
6

regions. Since the small line that 

does not fit in the base of triangle 

X but is  of the upper side that 1
3

was calculated as , is , the 1
9

1
18

base of the triangle X is , 1
3 − 1

18

which is . So the hypotenuse, 5
18

which is the desired value, is 

. This leads to 5
18( )2

+ 3
6( )2

the distance being about 0.4. 

To sum up, the best distance 

that is possible out of the model, is 

region 5,7 which gives a value of 

0.484. So it can be said that this 

method has given a 3.2% better 

value, then the 0.5 in the previous 

problem.  

 

7.3.2 Approach 2 
 

A diagram which can be drawn, 

to get a smaller value is a drawing 

like below which only has points 

that intersect the edges at 1/3 

value points. 

 

 

 

Here, there are three places 

that must be tested, in order to 

make sure there are no 

exceptions. 

 



 
 

7.3.2.1 Region 5,7 
First, the two points below has 

to be tested. 

 

 

 

Here, only region 5 is 

calculated since 7 is symmetric to 

it. The diagram like below can be 

drawn to visualize the needed 

values to calculate the distances. 

 

 

 

To figure out the distance, the 

value of height and the base has 

to be found to use the 

Pythagorean theorem. The base is 

1/3 because the lines were divided 

that way, and the height is 1/3 of 

the height of the entire equilateral 

triangle. As explained in the 

previous method, the values is 3
6

. After using the Pythagorean 

theorem, the value of the distance 

between two points is , which is 7
6

about 0.44.  

 
7.3.2.2 Region 3,6 
 

Next, the second possible way, 

is the two points below.  

 

 

Only region 3 is calculated 

because region 6 has a symmetry 

with it. The distance between the 

two points can be figured out by 

making the diagram like below. 

 



 
 

 

 

 

The line Y, which is what is to 

be found, is on a triangle that has 

the height of  and the base of 3
6

. Pythagorean theorem can be 1
3

applied in the same way to find 

the hypotenuse, which becomes 

the value of , which is about 7
6

0.44.  

 

7.3.2.3 Regions 2,4 
 

Finally, the last regions to be 

tested are 2, 4. Since 4 is 

symmetric to region 2, I only 

calculate one of them. The 

drawing like below can be drawn 

to calculate the distance. 

 

 

Region 2 has the longest line 

as it is the side. This means that 

the distance is just 0.33, which is 

smaller than the other regions. 

To sum up, the best possible 

distance in this approach is 0.44, 

which is 11% better than 0.5. 

 

7.3.2.4 Comparison between 
two approaches 

 

Since the value of 0.44 is 

smaller than 0.484, it means that 

this way is a better way than the 

first approach. The second 

approach is better by about 8 

percent. 

 

7.3​ Approach 3 (with variables) 
 

Another drawing that can be 

 



 
drawn to get a good value is the 

diagram below. 

 

 

 

Here, each side of the 

equilateral triangle is 1. So, if the 

sides of the smaller equilateral 

triangle are set to x, the remaining 

part would be . There are 1 − 2𝑥 

two different regions on this 

diagram, one the triangle, and two 

the pentagon. The longest 

distance in the triangle is just x, 

while to calculate the longest 

distance in the pentagon, the 

drawing like below can be made. 

 

 

 

The drawing above shows the 

longest possible distance in the 

pentagon. 

Here, only the line X’ is 

calculated because it is the 

longest line. This can be proven 

by the drawing below. 

 

 

 

First, comparing the green line 

and the purple line, the base and 

the altitude make the hypotenuse 

longer for the green triangle. This 

means that inside the pentagon, 

 



 
the green line is a longer line 

choice. Next, the red line contains 

the same altitude as the green line 

but has a longer base, leading to 

the red line being the longest 

choice inside the pentagon. 

The red line, which is the 

longest distance in the region, is 

. This is due to since, by 1 − 3𝑥
2

connecting the blue and red lines, 

it creates a side of a new triangle. 

This triangle is an equilateral 

triangle with a side of either 

 or 𝑥 + 1 − 2𝑥( ) + 𝑥 𝑥
2 + 𝐴( ) + 𝑥

2

. So if the A is the desired value, 

the equations have to be set to 

equal. Which means the equation 

of  = +(A)+  𝑥 + 1 − 2𝑥( ) + 𝑥 𝑥
2

𝑥
2

is created. When calculated, the A 

becomes . After the red 1 − 3𝑥
2

line is calculated, this has to be 

applied to the main purpose. The 

focus on this method is, finding 

the value of x or  so that 1 − 3𝑥
2

the bigger one is the smallest 

possible. This means that when 

they are equal, it is the value 

desired. 

When they are set to equal, the 

equation of  is 𝑥  =  1 − 3𝑥
2

created. By adding to both 3𝑥
2

sides, the equation becomes 

. This leads to x being . 5𝑥
2  = 1 2

5

This means that the x has a value 

of 0.4. Looking at this value, it is 

better than the value of 0.5 by 

20%.  

 

7.3.1 Comparison to 
approaches before 

 

Now it can be seen that the 3rd 

approach which gives a value of 

0.4 is better than the other two by 

a significant amount of about 10% 

and 18%. This concludes how the 

last approach is the best approach 

to calculate the minimum distance 

that is over 0.33 but below 0.5. 
 

7.4 An addition to the first 
approach 

 
Originally, the first approach 

had a set value of  on each 1
3

section like below. 

 



 
 

 

 

On the other hand, is each 

section having the side length of 

 in this shape, really the best 1
3

possible length?  

To find that out, each section of 

the triangle must be labeled like 

below.  

 

 

 

Here, two sides are given the 

value of x and the other has the 

value of . This is done this 1 − 2𝑥 

way because, since region 5 has 

to longest value if the side length 

of it is decreased and the other 

two sides are increased, then the 

value will be the smallest length p 

possible which is the best length 

out of the regions.  

To figure out what value the x 

must be, the following diagram 

has to be drawn. 

 

 

 

Here, by using the law of 

cosine, 

𝑎2  =  𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝑐𝑜𝑠 𝑎𝑛𝑔𝑙𝑒( ) 

, the regions’ distances can be 

represented in x. Region 1 is just x 

since it is just the side of the 

triangle. When the law of cosine is 

applied to region 2,4, the equation 

produced is 

𝑎2  =  𝑥2 + 𝑥
3( )2

− 2𝑥 𝑥
3( ) cos 𝑐𝑜𝑠 120( ) 

 



 
. This can be shown in the 

drawing below. 

 

 

 

 This leads to 𝑎2  =   10
9 𝑥2 + 𝑥2

3

. Since the value of “a” is desired, 

the equation has to be square 

rooted on both sides which 

becomes .  𝑎  =   10
9 𝑥2 + 𝑥2

3

Next, the region 5,7 can also be 

calculated by using the law of 

cosine. When I apply it, the 

equation of 

𝑎2  =   1 − 2𝑥( )2 + 2𝑥
3( )2

− 2 1 − 2𝑥(

is made. The law of cosine is from 

the drawing below. 

 

 

 

Now if both sides of the 

equation are square-rooted and 

simplified, it gives the equation of 

. 𝑎 = 7𝑥2−10𝑥+3
3

Now that the longest distance 

of each region is calculated, the 

app “Desmos” can be used to 

draw graphs for each one. When 

each equation is inputted, the 

following graphs are drawn. 

 

 

 

Here, graph b is region 1, graph 

a is region 2,4, and graph c is 

region 5,7. The x-coordinate of 

graphs b and c must be equal 

 



 
because the side of the section 

was both set as x. While on the 

other hand, the x-coordinate of 

graph a must be 1-2x. 

Now looking at the graph, the 

goal of this was to minimize the 

longest distance out of the 

regions. That distance would be 

represented as the y-value in the 

graphs. The longest distance 

would be 0.3952. This is because 

the x-value is increased from 

0.3288, and the y-value of the 

graph b will continuously increase, 

which means a higher value. So, 

keeping the intersection of the 

graph a and c is the best option. 

Since the x-value has to be 

0.3288, the 1-2x would be 0.3424. 

This leads to the x-coordinate of 

the green line being 0.3424. Since 

0.3636, which is the y-value, does 

not exceed 0.3952, the largest 

distance would be 0.3952 in this 

case. To sum up, the following 

drawing can be made. 

 

 

 

In conclusion, setting the two 

section’s side lengths as x leads 

to the best possible distance being 

0.3952 at region 2,4. This value is 

about 21% better than 0.5. 

Additionally, this method has a 

better distance than the same 

drawing method that had a side 

that was set as .  1
3

 

7.5 An addition to the second 
approach 
 

Originally, the second approach 

was the drawing below. 

 



 

Since this method was also 

assumed with each section’s side 

as , the sides represented by x 1
3

can be assigned as below. 

 

 

 

The original method had region 

1’s side as the smallest, so if the 

value of x is decreased, the side 

of region 1 will increase which 

leads to the smaller distances of 

the overall region. 

 

7.5.1 Region 3 
 

To begin, region 3, which has 

the longest distance from the 

regions in its row, can be 

calculated by making a drawing 

like below.  

 

 

This is because since the 1-2x 

side creates a small equilateral 

triangle, the base of the triangle 

that needs to be found, has the 

same base as it. Next,  comes 3
18 𝑥

from the previous method as, 

since when the side was , it 1
3

created the height of . Since 3
6

the height to section side ratio is 

always constant (by similar 

triangles), when the section side 

becomes x, the height must be 

divided by 3 and then multi 3 and 

then multiplied. 

 



 
If the Pythagorean theorem is 

applied, the distance between the 

two opposite vertices becomes, 

.  1 − 2𝑥( )2 + 𝑥
108

 

7.5.2 Region 5 
 

Next, region 5 is the same as 

region 3, as when the method was 

done by using , it was equal, 1
3

which means when the side is x, it 

is still the same.   

Now that all regions are 

calculated, it must be graphed in 

DESMOS to calculate the 

maximum distance out of the 

minimized value. 

 

 

 

Here, graph a intersects with 

graph b at . If the value of 1
3 ,  0. 4( )

x is decreased or increased, the 

y-value of either graph a or b will 

increase. This means that the x 

value of graph a, which is , is 1
3

the best x value. 

This shows how the previous 

method had each section side as 

, was the best option for 1
3

minimizing the maximum distance. 

In conclusion, 0.4 is the smallest 

distance between two points. 

 


