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Abstract 

We present a series of steps that transform reduced equal-mass collisionless planar 

three-body configurations into closed curves in  Exploiting a center-of-mass constraint and a ℝ3.

size constraint, we reduce the original configuration in  to . We then use a rotation and an ℝ6 ℝ4

additional stereographic projection onto . This procedure turns a periodic orbit into a closed ℝ3

curve that can be classified as a knot. We apply our method to the fifteen periodic configurations 
presented by Šuvakov and Dmitrašinović in [4] and show that most of these trajectories become 
the unknot under our projection. However, three orbits become trefoils and one becomes a 
figure-eight. We discuss the direction of possible future work. 
 
1. Introduction 
 This paper answers two questions: 

1. Can we find an orbit in each of the classes listed in the paper of Šuvakov and 
Dmitrašinović which is non-trivially knotted? No. 

2. Can two orbits with the same free group element (for more information about the free 
group, see [4]) have different knot types? Yes. 

 The classical three-body problem has been studied by mathematicians and physicists 
since Newton found the closed-form for the two-body problem. In the 19th century, Poincaré 
showed that the general three-body problem is non-integrable [3]. Nonetheless, families of 
periodic orbits have been discovered and studied for their insights into -body systems. The 𝑛
planar case specifically is interesting to study as the planets of the solar system have been 
shown to roughly lie in a plane [4, 6]. 
 In 2013, Šuvakov and Dmitrašinović [4] made a significant advance by finding twelve new 
distinct collisionless periodic orbits of three unit masses confined to a plane, presenting a total of 
fifteen (including three earlier known orbits) in their paper. Since then, hundreds more planar 
periodic orbits have been discovered [1]. 

 Montgomery, in his paper [2], mapped planar configurations to the shape sphere . 𝑆2 ⊂ ℝ3

One step involved contracting  to  by way of a Hopf fibration. However, some 𝑆3 ⊂ ℝ4 𝑆2

information about the orbit is lost this way. A promising approach to studying these orbits to 

rather represent  as , therefore preserving information. Motivated by 𝑆3 − {(0, 0, 0, 1)} ℝ3

Montgomery’s work, we propose a four-step procedure. Concretely, we start with the space of all 
reduced planar configurations, then: 

1. Impose a center-of-mass constraint, reducing dimension by 2. 
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2. Perform a linear transformation to diagonalize the quadratic form which emerges from the 
previous mapping. 

3. Normalize the surface to . 𝑆3

4. Stereographically project  onto . 𝑆3 ℝ3

By following a periodic solution in time, the image of these maps becomes a closed curve in  ℝ3

whose knot type can be identified. 
 In this paper, we described our steps and illustrate their application to the fifteen orbits of 
Šuvakov and Dmitrašinović. We then provide a table summarizing the orbit classification results. 
We conclude by highlighting possible future work. 
 
2. Assumptions and Constraints 
 We begin with three point masses of unit mass, indexed  each associated with 𝑖 = 1, 2, 3

a position vector  in . Thus, the initial configuration space is  We consider the 𝑃
→

= (𝑥
𝑖
, 𝑦

𝑖
) ℝ2 ℝ6.

set of configurations which adhere to the following two constraints. 
1. Centre-of-mass constraint: 

 
𝑖=1

3

∑ 𝑃
→

𝑖
= (0, 0).

2. Size constraint: 

 
𝑖=1

3

∑ ||𝑃
→

𝑖
||2 = 1.

We call this set reduced. Note that we may translate the center-of-mass of any three-body 
configuration to  due to Galilean invariance. Furthermore, any three vectors may be scaled (0, 0)
down such that they satisfy the size constraint by redefining the points as the following. 

. 𝑃
→'

𝑖
=

𝑃
→

𝑖

𝑖=1

3

∑ ||𝑃
→

𝑖
||2

 The set of all such  adhering to both constraints lies on a -dimensional (𝑃
→

1
,  𝑃

→

2
,  𝑃

→

3
) 4

surface. 
 
3. The Procedure 
 The four mappings are summarised in the following diagram. 

 ℝ6→ ℝ4→ ℝ4→ 𝑆3→ ℝ3

3.1. Fixing Center of Mass 
Since 

 
𝑖=1

3

∑ 𝑃
→

𝑖
= (0, 0).
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we rearrange for  𝑃
→

3
:

 𝑃
→

3
=  − (𝑃

→

1
+  𝑃

→

2
).

As a result, every configuration is determined by  and  alone. By the size constraint, 𝑃
→

1
𝑃
→

2

 ||𝑃
→

1
||2 + ||𝑃

→

2
||2 + ||𝑃

→

3
||2 = ||𝑃

→

1
||2 + ||𝑃

→

2
||2 + || − 𝑃

→

1
− 𝑃

→

2
||2 = 1.

Equivalently, 

 2𝑥
1

2 + 2𝑥
1
𝑥

2
+ 2𝑥

2
2 + 2𝑦

1
2 + 2𝑦

1
𝑦

2
+ 2𝑦

2
2 = 1.

Hence, this step effectively decreases dimension by two by sending  to (𝑃
→

1
,  𝑃

→

2
,  𝑃

→

3
) ∈ ℝ6

, subject to the above quadratic constraint. (𝑥
1
, 𝑦

1
, 𝑥

2
, 𝑦

2
) ∈ ℝ4

 
3.2. Diagonalizing the Quadratic Form 

Set  and . The previous constraint shows that 𝑋
→

= (𝑥
1
, 𝑥

2
) 𝑌

→
= (𝑦

1
, 𝑦

2
)

. 𝑋
→𝑇

1  2    
2  1( )𝑋

→
+ 𝑌

→𝑇

1  2    
2  1( )𝑌

→
= 1

Call the shared  matrix . We see that  has eigenvalues  and . To 2 × 2 𝐴 𝐴 λ
1

= 3 λ
3

= 1

diagonalise, we must find a  such that the rotation matrix θ

 𝑅(θ) =
sinθ      cosθ    
cosθ  −sinθ( )

satisfies 

 diag . 𝑅(θ)𝑇𝐴𝑅(θ) = (3, 1)
By multiplying out the matrices, we see that  is valid. Thus, θ =  π/4

. 𝑅 = 𝑅( π
4 ) = 1

2 1  1    
1  −1( )

Since  is orthogonal,  Therefore, the new basis vectors are 𝑅 𝑅𝑇 = 𝑅−1.

 and , 
𝑢

2   

𝑢
1  ( ) = 𝑅𝑇

𝑥
2   

𝑥
1  ( ) 𝑣

2   

𝑣
1  ( ) = 𝑅𝑇

𝑦
2   

𝑦
1  ( )

which satisfy 

 𝑢
1
  𝑢

2( )𝐴
𝑢

2   

𝑢
1  ( ) = 3𝑢

1
2 + 𝑢

2
2

and 

. 𝑣
1
  𝑣

2( )𝐴
𝑣

2   

𝑣
1  ( ) = 3𝑣

1
2 + 𝑣

2
2

The constraint becomes 

. 3𝑢
1
2 + 𝑢

2
2 + 3𝑣

1
2 + 𝑣

2
2 = 1
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Therefore, this step places the configuration on a hyperellipsoid in . ℝ4

 

3.3. Normalizing onto  𝑆3

We perform a change of variables to map the quadruple  onto . (𝑢
1
, 𝑢

2
, 𝑣

1
, 𝑣

2
) 𝑆3 ⊂ ℝ4

Define 
. (𝑠

1
, 𝑠

2
, 𝑡

1
, 𝑡

2
) = ( 3𝑢

1
, 𝑢

2
, 3𝑣

1
, 𝑣

2
)

By construction, we have that 

. 𝑠
1
2 + 𝑠

2
2 + 𝑡

1
2 + 𝑡

2
2 = 1

Hence,  must lie on  (𝑠
1
, 𝑠

2
, 𝑡

1
, 𝑡

2
) 𝑆3.

 

3.4. Stereographic Projection of  to  𝑆3 − {(0, 0, 0, 1)} ℝ3

 To perform a stereographic projection, we must remove a point, which we choose to be 

the point  We can do this because none of the trajectories we concern (0, 0, 0, 1) ∈  𝑆3.
ourselves with (e.g. the configurations presented in (Šuvakov)) go through  and the (0, 0, 0, 1)
projection through  yields us a simple formula. Of course, we could have picked any (0, 0, 0, 1)
arbitrary point to do the projection through.  

We project the remainder to . Formally, let ℝ3

 (𝑠
1
, 𝑠

2
, 𝑡

1
, 𝑡

2
) ∈ 𝑆3 − {(0, 0, 0, 1)}.

We define 

 (𝑥, 𝑦, 𝑧) =  
𝑠

1

1−𝑡
2

,
𝑡

1

1−𝑡
2

,
𝑠

2

1−𝑡
2

( ).

This yields a bijection from  to . Therefore, under the compositions of the four 𝑆3 − {(0, 0, 0, 1)} ℝ3

previous steps, each configuration  becomes a closed loop in . (𝑃
→

1
, 𝑃

→

2
, 𝑃
→

3
) ℝ3

 
4. Closed Loops and Knot Classification 

 Let  be a periodic collisionless planar orbit with period  𝐿 = (𝑃
→

1
(𝑡), 𝑃

→

2
(𝑡), 𝑃

→

3
(𝑡)) 𝑇 > 0

which adheres to the centre-of-mass condition and the size condition. Represent  as 𝐿
, as described in (3.1). Under the mappings presented in (3.2), (3.3), and (3.4), we (𝑥

1
,  𝑦

1
, 𝑥

2
, 𝑦

2
)

are given a continuous curve 

 𝐶: [0, 𝑇] → ℝ3,
where 

, 𝐶 (𝑡) = (𝐼𝑉 ◦ 𝐼𝐼𝐼 ◦ 𝐼𝐼)(𝑥
1
, 𝑦

1
, 𝑥

2
, 𝑦

2
) 
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mappings , , and  represent the mappings outlined in (3.2), (3.3), and (3.4), respectively, 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉
and  We can now classify  as a knot. 𝐶(0) =  𝐶(𝑇). 𝐶
 
4.1 Application to Šuvakov and Dmitrašinović’s Orbits 

We attempt to classify the trajectories which Šuvakov and Dmitrašinović discovered in 
[4]. We first numerically approximated each configuration with a Runge-Kutta algorithm with 
linear step size 0.0001 until a period elapsed. Restriction to one period made error and deviation 
practically negligible. Subsequently, we translated and scaled the collection or positions to follow 
the size and center-of-mass constraints before applying the mappings in (3.2), (3.3) and (3.4). 
To determine knot type, we projected the orbit to an orthogonal unit basis, then applied 
Reidemeister moves. 

Some orbits are easily determinable, such as I.A.2 butterfly II, while others are more 
difficult, such as I.A.1 butterfly I. Both trajectories are shown in Figure 1. Figure 2 shows how a 
curve can be simplified using Reidemeister moves. 

 
Figure 1. I.A.2 butterfly II (left) and I.A.1 butterfly I (right). Lighter colours denote higher elevation 
(when viewed in 3D after Step IV). 
 

 
Figure 2. I.A.2 butterfly II being deformed into the unknot. The red circles show the crossings 
being acted upon. Operations I, II, and III represent their corresponding Reidemeister moves. 
 
The following table summarises our classifications of each orbit. We include the initial velocity 
parameters, , the free group element, as given in [5], and the resulting knot type. We �̇�(0),  �̇�(0)
see that class II.C does not have an orbit which is non-trivial—thus, not every class has a 
non-trivial knot. We also notice that I.A.1 butterfly I and I.A.2 butterfly II have the same 
free-group element, yet have different knot types, therefore answering both of our questions. 
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Table 1. Initial conditions of the three-body orbits and knot classification. Labelling for the orbits 
follow what is written in (Šuvakov 2013). Quantities and  are the th body's initial  �̇�

𝑖
(0) �̇�

𝑖
(0) 𝑖

velocities in the  and  direction, respectively. The values  and  are the th body's 𝑥 𝑦 𝑥
𝑖
(0) 𝑦

𝑖
(0) 𝑖

positions in the  direction and  direction, respectively. The initial velocities of the bodies are 𝑥 𝑦
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Class, Number and 
Name 

 �̇�(0)  �̇�(0) Free Group Element Knot 
Classification 

I.A.1 butterfly I 0.30689 0.12551  (𝑎𝑏)2(𝐴𝐵)2 trefoil 

1.A.2 butterfly II 0.39295 0.09758  (𝑎𝑏)2(𝐴𝐵)2 unknot 

I.A.3 bumblebee 0.18428 0.58719  1 unknot 

I.B.1 moth I 0.46444 0.39606  𝑏𝑎(𝐵𝐴𝐵)𝑎𝑏(𝐴𝐵𝐴) figure-eight 

I.B.2 moth II 0.43917 0.45297  (𝑎𝑏𝐴𝐵)2𝐴 (𝑏𝑎𝐵𝐴)2 unknot 

I.B.3 butterfly III 0.40592 0.23016  (𝑎𝑏)2(𝐴𝐵𝐴)(𝑏𝑎)2(𝐵𝐴𝐵) unknot 

I.B.4 moth III 0.38344 0.37736  (𝑏𝑎𝑏𝐴𝐵𝐴)2𝑎(𝑎𝑏𝑎𝐵𝐴𝐵)2𝑏 unknot 

I.B.5 goggles 0.08330 0.12789  (𝑎𝑏)2𝐴𝐵𝐵𝐴(𝑏𝑎)2𝐵𝐴𝐴𝐵 trefoil 

I.B.6 butterfly IV 0.350112 0.07934  ((𝑎𝑏)2(𝐴𝐵)2)6𝐴((𝑏𝑎)2(𝐵𝐴)2)6𝐵 unknot 

I.B.7 dragonfly 0.08058 0.58884  (𝑏2(𝐴𝐵𝑎𝑏𝐴𝐵))(𝑎2(𝐵𝐴𝑏𝑎𝐵𝐴)) unknot 

II.B.1 yarn 0.55906 0.34919  (𝑏𝑎𝑏𝐴𝐵𝑎𝑏𝑎𝐵𝐴)3 trefoil 

II.C.2a yin-yang I 0.51394 0.30474  (𝑎𝑏)2(𝐴𝐵𝐴)𝑏𝑎(𝐵𝐴𝐵) unknot 

II.C.2b yin-yang I 0.28270 0.32721  (𝑎𝑏)2(𝐴𝐵𝐴)𝑏𝑎(𝐵𝐴𝐵) unknot 

II.C.3a yin-yang II 0.41682 0.33033  (𝑎𝑏𝑎𝐵𝐴𝐵)3(𝑎𝑏𝑎𝐵𝐴𝑏𝑎𝑏)(𝐴𝐵𝐴𝑏𝑎𝑏)3(𝐴𝐵)2 unknot 

II.C.3b yin-yang 0.41734 0.31310  (𝑎𝑏𝑎𝐵𝐴𝐵)3(𝑎𝑏𝑎𝐵𝐴𝑏𝑎𝑏)(𝐴𝐵𝐴𝑏𝑎𝑏)3(𝐴𝐵)2 unknot 



, The initial �̇�
1
(0) = �̇�

2
(0) =  �̇�(0),  �̇�

3
(0) =− 2�̇�(0), �̇�

1
(0) =  �̇�

2
(0) =  �̇�(0) �̇�

3
(0) =− 2�̇�(0).  

positions of the bodies are ,  The 𝑥
1
(0) =− 𝑥

2
(0) =− 1, 𝑥

3
(0) =  0 𝑦

1
(0) = 𝑦

2
(0) = 𝑦

3
(0) = 0.

gravitational constant  is taken to be 1 and the masses are equal and taken to be 𝐺 𝑚
1
,  𝑚

2
,  𝑚

3
 

1. 

 1(𝑏(𝐴𝐵𝑎𝑏)^2 𝐴^2 (𝑏𝑎𝐵𝐴)^2 𝑏𝑎) (𝐵^2 (𝑎𝑏𝐴𝐵)^2 𝑎^2 (𝐵𝐴𝑏𝑎)^2 𝐵𝐴)
 
5. Conclusion 
 We presented a series of four steps that turn a planar periodic equal-mass three-body 

system into a closed curve in , whose knot type can then be identified. Afterwards, we applied ℝ3

the mappings to the fifteen trajectories Šuvakov and Dmitrašinović displayed in [5], showing that 
the majority of the orbits can be classified as the unknot. But, three yield the trefoil knot and 
another produces the figure-eight, showing that non-trivial knottedness is possible. 
 Future work could be dedicated to applying the mappings described previously to more 
periodic orbits, such as the results presented in [1] to see if more complicated knot types 
emerge or proving that only a certain set of knots are able to appear. Another avenue to 
consider would be to generalize the mappings to non-identical masses. 
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