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Abstract 

This study presents a comprehensive evaluation of lightweight convolutional neural network 
(CNN) architectures for automated retinal disease detection using optical coherence 
tomography (OCT) images, with a specific focus on deployment feasibility for edge computing 
devices. Four distinct CNN architectures were systematically compared: ResNet50, 
EfficientNetB0, MobileNetV2, and a custom TinyCNN model, utilizing a balanced dataset of 
32,064 training images and 968 test images across four disease categories (CNV, DME, 
DRUSEN, and NORMAL). The experimental results demonstrate that while ResNet50 achieved 
the highest test accuracy of 98.44%, the custom TinyCNN model delivered competitive 
performance at 97.29% accuracy with significantly reduced computational requirements (4.73 
MB model size vs. 90.98 MB for ResNet50 and 4.20 seconds inference time vs. 14.53 seconds). 
MobileNetV2 emerged as an optimal balance between performance and efficiency, achieving 
97.92% accuracy with a 9.24 MB model size and 9.05 seconds inference time. Notably, 
EfficientNetB0 exhibited training instability with poor generalization performance (24.48% test 
accuracy), highlighting the importance of architecture-specific optimization for medical imaging 
tasks. The findings provide critical insights for healthcare practitioners and developers seeking 
to implement real-time retinal disease screening systems on resource-constrained edge 
devices, demonstrating that lightweight architectures can maintain diagnostic accuracy while 
enabling practical deployment in clinical settings with limited computational resources. 

Keywords: optical coherence tomography, convolutional neural networks, edge computing, 
retinal disease detection, lightweight architectures, medical image analysis  
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1. Introduction 

Optical Coherence Tomography (OCT) has revolutionized the diagnosis and monitoring of 
retinal diseases by providing high-resolution cross-sectional images of the retina 
(Schmidt-Erfurth et al., 2018). The ability to detect conditions such as Choroidal 
Neovascularization (CNV), Diabetic Macular Edema (DME), and Drusen at early stages is 
crucial for preventing vision loss and improving patient outcomes (Yim et al., 2017). However, 
the interpretation of OCT images requires specialized expertise and can be time-consuming, 
creating bottlenecks in clinical workflows, particularly in resource-limited settings. 

The emergence of deep learning technologies, specifically Convolutional Neural Networks 
(CNNs), has shown tremendous promise in automating medical image analysis tasks (Kermany 
et al., 2018). While large-scale CNN architectures have demonstrated exceptional performance 
in OCT image classification, their computational requirements often limit deployment to high-end 
servers, restricting accessibility in point-of-care settings. The growing demand for real-time 
diagnostic capabilities at the edge of healthcare networks necessitates the development of 
lightweight yet accurate models suitable for resource-constrained devices. 

Edge computing in healthcare offers numerous advantages, including reduced latency, 
improved data privacy, and decreased dependency on network connectivity (Shi et al., 2016). 
For retinal disease detection, deploying models on edge devices such as portable OCT 
scanners or tablet-based diagnostic tools could enable immediate screening results, particularly 
valuable in rural or underserved areas where specialist access is limited. 

This study addresses the critical gap in understanding the performance-efficiency trade-offs of 
different CNN architectures for OCT-based retinal disease detection. By systematically 
comparing models ranging from large-scale architectures to custom lightweight designs, we aim 
to provide evidence-based recommendations for edge deployment scenarios where 
computational resources are constrained but diagnostic accuracy remains paramount. 

2. Related Work 

2.1 Deep Learning in OCT Image Analysis 

The application of deep learning to OCT image analysis has gained significant momentum over 
the past decade. Kermany et al. (2018) demonstrated the potential of transfer learning using 
pre-trained CNN models for multi-class retinal disease classification, achieving performance 
comparable to expert ophthalmologists. Their work established important benchmarks for 
automated OCT analysis and highlighted the value of large-scale datasets for training robust 
models. 

Subsequent research has explored various architectural approaches, with particular attention to 
the balance between model complexity and performance. De Fauw et al. (2018) developed a 
multi-stage approach combining segmentation and classification networks, achieving high 
accuracy in diagnosing over 50 retinal conditions. However, their approach required substantial 
computational resources, limiting practical deployment scenarios. 
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2.2 Lightweight CNN Architectures 

The development of efficient CNN architectures has been driven by the need to deploy deep 
learning models on mobile and edge devices. Howard et al. (2017) introduced MobileNets, 
which utilize depthwise separable convolutions to significantly reduce computational complexity 
while maintaining competitive accuracy. This approach has been particularly successful in 
computer vision tasks where real-time inference is required. 

EfficientNet architectures, proposed by Tan and Le (2019), systematically scale network 
dimensions using compound scaling methods to achieve better accuracy-efficiency trade-offs. 
These models have shown promise across various domains, though their performance in 
medical imaging tasks, particularly OCT analysis, requires further investigation. 

2.3 Edge Computing in Medical Imaging 

The integration of edge computing in medical imaging has emerged as a critical research area, 
driven by the need for real-time analysis and data privacy concerns. Chen et al. (2020) 
demonstrated the feasibility of deploying lightweight models for chest X-ray analysis on mobile 
devices, achieving clinically relevant accuracy while maintaining acceptable inference times. 

For retinal imaging specifically, several studies have explored the deployment of AI models on 
portable devices. However, most existing work focuses on fundus photography rather than OCT 
images, leaving a gap in understanding the specific requirements and challenges associated 
with OCT-based edge deployment. 

3. Methodology 

3.1 Dataset Description 

This study utilized a balanced version of the retinal OCT dataset, comprising 32,064 
training/validation images and 968 test images distributed equally across four disease 
categories: Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), Drusen, and 
Normal retina. Each category contained 8,016 training images and 242 test images, ensuring 
balanced representation for fair model comparison. 

The dataset was preprocessed to maintain consistency across all experimental conditions. 
Images were resized to 224×224 pixels to match the input requirements of pre-trained models 
while preserving important clinical features. The balanced nature of the dataset eliminates class 
imbalance bias, allowing for accurate assessment of model performance across all disease 
categories. 

3.2 Model Architectures 

Four distinct CNN architectures were selected to represent different points on the 
performance-efficiency spectrum: 
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ResNet50: A deep residual network with 50 layers, representing large-scale architectures 
commonly used in medical imaging research. The model utilizes skip connections to enable 
training of very deep networks and has demonstrated strong performance across various 
computer vision tasks. 

EfficientNetB0: The baseline model of the EfficientNet family, designed to optimize the trade-off 
between accuracy and computational efficiency through systematic scaling of network 
dimensions. 

MobileNetV2: A lightweight architecture specifically designed for mobile and edge deployment, 
utilizing inverted residual blocks and linear bottlenecks to minimize computational requirements 
while maintaining competitive performance. 

TinyCNN: A custom-designed lightweight CNN with four convolutional layers followed by dense 
layers, representing the minimal end of the complexity spectrum while maintaining sufficient 
capacity for the classification task. 

3.3 Training Configuration 

All models were trained using identical hyperparameters to ensure fair comparison. The training 
configuration included: 

● Optimizer: Adam with an initial learning rate of 0.001 
● Loss function: Categorical crossentropy 
● Batch size: 32 
● Epochs: 10 with early stopping based on validation loss 
● Data augmentation: Rotation (±20°), width/height shifts (±10%), horizontal flips, and 

zoom (±10%) 

Pre-trained weights from ImageNet were used for ResNet50, EfficientNetB0, and MobileNetV2 
to leverage transfer learning benefits. The final classification layers were replaced with 
task-specific dense layers including dropout regularization (0.5) to prevent overfitting. 

3.4 Evaluation Metrics 

Model performance was assessed using multiple metrics to provide comprehensive evaluation: 

● Accuracy: Overall classification accuracy on the test set 
● Precision, Recall, and F1-score: Calculated per class and averaged (macro average) 
● Confusion matrices: To analyze class-specific performance patterns 
● Model size: Memory footprint in megabytes 
● Training time: Total time required for model training 
● Inference time: Time required for predictions on the test set 

4. Results 

4.1 Model Performance Comparison 
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Table 1 presents a comprehensive comparison of all evaluated models across key performance 
and efficiency metrics. 

Table 1: Comprehensive Model Performance Comparison 

Model Test 
Accuracy 

Precision 
(Macro) 

Recall 
(Macro) 

F1-Score 
(Macro) 

Model 
Size 
(MB) 

Training 
Time (s) 

Inference 
Time (s) 

ResNet50 0.9844 0.9849 0.9844 0.9844 90.98 1492.08 14.53 

EfficientNetB0 0.2448 0.0797 0.2510 0.1011 16.08 1520.84 9.82 

MobileNetV2 0.9792 0.9802 0.9792 0.9794 9.24 1453.09 9.05 

TinyCNN 0.9729 0.9730 0.9730 0.9728 4.73 1311.83 4.20 

The results reveal significant variations in both performance and efficiency across the evaluated 
architectures. ResNet50 achieved the highest test accuracy at 98.44%, demonstrating the 
benefits of deep residual architectures for complex medical imaging tasks. However, this 
performance came at the cost of substantial computational requirements, with the largest model 
size (90.98 MB) and longest inference time (14.53 seconds). 

Surprisingly, EfficientNetB0 exhibited severe performance degradation with only 24.48% test 
accuracy, indicating training instability or poor generalization despite its theoretical efficiency 
advantages. This unexpected result highlights the importance of architecture-specific 
optimization for medical imaging applications. 

MobileNetV2 delivered excellent performance at 97.92% accuracy while maintaining reasonable 
computational efficiency with a 9.24 MB model size and 9.05 seconds inference time. This 
represents an optimal balance for many edge deployment scenarios where both accuracy and 
efficiency are critical. 

The custom TinyCNN model achieved remarkable results, reaching 97.29% accuracy with the 
smallest model size (4.73 MB) and fastest inference time (4.20 seconds). This demonstrates 
that carefully designed lightweight architectures can maintain high diagnostic accuracy while 
enabling deployment on severely resource-constrained devices. 

4.2 Training Dynamics Analysis 

Figure 1 illustrates the training and validation accuracy curves for all models throughout the 
training process. 
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[Figure 1: Training and validation accuracy curves showing convergence patterns for all four 
models. ResNet50 and TinyCNN demonstrate stable convergence, while EfficientNetB0 shows 

training instability and MobileNetV2 exhibits gradual improvement.] 

The training dynamics reveal important insights into model behavior. ResNet50 and TinyCNN 
both demonstrated stable convergence with validation accuracy closely tracking training 
accuracy, indicating good generalization. MobileNetV2 showed gradual but consistent 
improvement throughout training, reaching optimal performance in later epochs. 

EfficientNetB0's training curves revealed the source of its poor performance, with validation 
accuracy remaining consistently low despite high training accuracy, indicating severe overfitting 
that was not mitigated by the applied regularization techniques. 

Figure 2 shows the corresponding loss curves, further confirming the training stability patterns 
observed in the accuracy plots. 
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[Figure 2: Training and validation loss curves demonstrating convergence patterns and potential 
overfitting issues across all evaluated models.] 

4.3 Class-Specific Performance Analysis 

Figure 3 presents confusion matrices for all models, providing detailed insights into 
class-specific performance patterns. 
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[Figure 3: Confusion matrices for all four models showing classification performance across the 
four disease categories (CNV, DME, DRUSEN, NORMAL).] 

ResNet50 demonstrated excellent performance across all classes with minimal 
misclassification. The model showed particular strength in Normal retina classification (100% 
precision) and strong performance in Drusen detection (99.59% recall). Minor confusion 
occurred between CNV and DME classes, which is clinically understandable given some 
overlapping imaging characteristics. 

EfficientNetB0 showed severe classification bias, predominantly predicting the Normal class 
regardless of true labels. This behavior explains the poor overall performance and confirms the 
model's failure to learn meaningful disease-specific features. 

MobileNetV2 exhibited strong performance with balanced classification across all categories. 
The model showed excellent discrimination between disease classes with minimal 

8 



misclassification, particularly strong in DME detection (100% precision) and robust Normal 
retina identification. 

TinyCNN achieved balanced performance across all classes despite its minimal architecture. 
The model demonstrated consistent classification capability with slight confusion between 
related disease categories, maintaining diagnostic utility while operating with minimal 
computational resources. 

4.4 Efficiency Analysis 

Figure 4 presents the critical trade-off between model accuracy and computational efficiency. 

 

[Figure 4: Scatter plot showing the relationship between model size (MB) and test accuracy, with 
annotations for each model highlighting the efficiency-performance trade-off.] 

The efficiency analysis reveals clear patterns in the accuracy-size trade-off. TinyCNN emerges 
as the most efficient model, achieving high accuracy (97.29%) with minimal computational 
footprint (4.73 MB). MobileNetV2 offers a middle-ground solution with slightly larger size (9.24 
MB) but comparable accuracy (97.92%). 
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ResNet50 represents the traditional approach of maximizing accuracy through increased model 
complexity, resulting in substantial computational requirements that may limit deployment 
scenarios. EfficientNetB0's poor performance makes it unsuitable for this specific application 
despite its theoretical efficiency advantages. 

Figure 5 compares inference times across all models, highlighting the practical implications for 
real-time clinical use. 

 

[Figure 5: Bar chart comparing inference times across all models, demonstrating the significant 
speed advantages of lightweight architectures.] 

4.5 Clinical Relevance Analysis 

Table 2 provides detailed per-class performance metrics for the three successful models 
(excluding EfficientNetB0 due to poor performance). 

Table 2: Detailed Class-Specific Performance Metrics 

Model Class Precision Recall F1-Score 
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ResNet50 CNV 0.9957 0.9504 0.9725 

 DME 0.9603 1.0000 0.9798 

 DRUSEN 0.9837 0.9959 0.9897 

 NORMAL 1.0000 0.9915 0.9957 

MobileNetV2 CNV 0.9414 0.9959 0.9679 

 DME 1.0000 0.9545 0.9767 

 DRUSEN 0.9794 0.9835 0.9814 

 NORMAL 1.0000 0.9829 0.9914 

TinyCNN CNV 0.9793 0.9793 0.9793 

 DME 0.9827 0.9380 0.9598 

 DRUSEN 0.9757 0.9959 0.9857 

 NORMAL 0.9542 0.9786 0.9662 

All three successful models demonstrated clinically relevant performance across all disease 
categories, with F1-scores consistently above 0.95 for most classes. This level of performance 
is suitable for clinical screening applications, where high sensitivity and specificity are crucial for 
patient safety. 

5. Discussion 

5.1 Performance-Efficiency Trade-offs 

The experimental results reveal nuanced trade-offs between diagnostic accuracy and 
computational efficiency that have important implications for clinical deployment. The finding 
that TinyCNN achieved 97.29% accuracy with only 4.73 MB model size challenges the 
conventional assumption that high medical imaging performance requires large, complex 
architectures. 

The 1.15 percentage point accuracy difference between ResNet50 (98.44%) and TinyCNN 
(97.29%) must be weighed against the 19.2x reduction in model size and 3.5x improvement in 
inference speed. For many clinical screening scenarios, this trade-off strongly favors the 
lightweight approach, particularly when considering deployment costs, battery life, and real-time 
processing requirements. 

5.2 EfficientNetB0 Performance Analysis 
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The unexpected poor performance of EfficientNetB0 warrants detailed discussion. Despite its 
strong theoretical foundation and success in general computer vision tasks, the model failed to 
achieve meaningful performance in this OCT classification task. Several factors may contribute 
to this outcome: 

1. Training instability: The compound scaling approach may require different optimization 
strategies for medical imaging data 

2. Transfer learning mismatch: The pre-trained weights may not transfer effectively to the 
specific characteristics of OCT images 

3. Hyperparameter sensitivity: EfficientNet architectures may require more careful 
hyperparameter tuning for medical applications 

This result highlights the importance of empirical validation rather than relying solely on 
architectural advantages demonstrated in other domains. 

5.3 Clinical Deployment Implications 

The strong performance of lightweight architectures has significant implications for clinical 
deployment strategies. TinyCNN's results suggest that effective retinal disease screening can 
be achieved on devices with minimal computational resources, potentially enabling: 

● Point-of-care diagnosis: Immediate screening results in clinical settings without cloud 
connectivity 

● Rural healthcare access: Deployment on portable devices for use in underserved areas 
● Cost-effective screening programs: Reduced hardware requirements enabling broader 

adoption 
● Battery-powered operation: Extended operation on mobile devices without frequent 

charging 

5.4 Generalization and Validation Considerations 

While the balanced dataset used in this study provides reliable comparative results, several 
considerations are important for clinical translation: 

1. Dataset diversity: Real-world deployment requires validation on diverse patient 
populations and imaging conditions 

2. Multi-institutional validation: Performance should be confirmed across different OCT 
devices and clinical settings 

3. Longitudinal validation: Long-term performance monitoring is essential for maintaining 
clinical utility 

4. Regulatory considerations: Clinical deployment requires validation under appropriate 
regulatory frameworks 

5.5 Limitations 

Several limitations should be acknowledged in interpreting these results: 
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1. Single dataset evaluation: Results are based on one specific OCT dataset and may not 
generalize to all clinical scenarios 

2. Limited disease categories: Only four categories were evaluated, while clinical practice 
involves a broader spectrum of retinal conditions 

3. Computational environment: Inference times were measured on specific hardware and 
may vary across different edge devices 

4. Training epochs: The 10-epoch training limit may not have allowed EfficientNetB0 to 
reach optimal performance 

6. Conclusion 

This comprehensive evaluation of lightweight CNN architectures for OCT-based retinal disease 
detection provides valuable insights for edge computing deployment in clinical settings. The key 
findings demonstrate that carefully designed lightweight models can achieve clinically relevant 
diagnostic accuracy while meeting the computational constraints of edge devices. 

Key Contributions: 

1. Performance validation: Demonstrated that TinyCNN achieves 97.29% accuracy with 
4.73 MB model size, challenging assumptions about the necessity of large architectures 
for medical imaging 

2. Comparative analysis: Provided systematic comparison across four architectures, 
revealing MobileNetV2 as an optimal balance point for many scenarios 

3. Clinical relevance: Achieved F1-scores above 0.95 for most disease categories across 
successful models, indicating suitability for clinical screening applications 

4. Deployment insights: Identified specific performance-efficiency trade-offs critical for 
edge deployment decision-making 

Clinical Impact: 

The results support the feasibility of deploying automated retinal disease detection systems on 
resource-constrained edge devices, potentially transforming access to specialized care in 
underserved populations. The demonstrated performance levels are sufficient for screening 
applications, where the goal is identifying patients requiring specialist referral rather than 
providing definitive diagnosis. 

Future Directions: 

Future research should focus on multi-institutional validation, expanded disease category 
coverage, and optimization of training procedures for medical imaging applications. Additionally, 
investigation of hybrid approaches combining multiple lightweight models may further improve 
the accuracy-efficiency balance. 

The findings provide a strong foundation for clinical translation efforts and offer practical 
guidance for healthcare technology developers seeking to implement edge-based diagnostic 
solutions. As edge computing capabilities continue to advance, the integration of these 
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lightweight models into clinical workflows represents a promising path toward democratizing 
access to specialized retinal care.  
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