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1 Background 
 
1.1 Post-tonal Theory 
 

In Western music, there are 12 tones in an octave. 
 
Definition 1.1. A pitch class is a set of pitches with the same or enharmonic name, and they 
are represented by an integer from 0 to 11.[17] 
 

By convention, 𝐶 is 0, 𝐶♯ is 1, . . . , 𝐵 is 11. This pitch system uses modulo 12, so any 
pitch 𝑥 is equivalent to 𝑥 + 12𝑘, where 𝑘 is an integer. We use modulo 12 because there are 
12 semitones in an octave, and we consider pitches that are separated by octaves to be 
equivalent.[17] 
 
Definition 1.2. A pitch class set is an unordered collection of pitch classes.[17] 
 
Definition 1.3. Let 𝑃 ∶=  {0, 1, 2, . . . , 11} be the set of pitch classes. 
 

The pitch class 0 represents 𝐶, 1 represents 𝐶♯, 2 represents 𝐷, and so on. 
 
Definition 1.4. The transposition of a pitch class 𝑝 by 𝑛 is equal to (𝑝 +  𝑛) 𝑚𝑜𝑑 12.[17] This 
defines a map 𝑇௡ ∶  𝑃 →  𝑃. 
 
Example 1.5. The transposition of 3 by 5 is 3 + 5 = 8. The transposition of 9 by 7 is 9 + 7 = 
16 ≡ 4 (mod 12). 
 

The only transposition that keeps a pitch class the same is the transposition by 0. 
 
Definition 1.6. The inversion of 𝑝 around 𝑛 is equal to (𝑛 −  𝑝) 𝑚𝑜𝑑 12.[17]  This defines a 
map 𝐼௡ ∶  𝑃 →  𝑃. 
 
Example 1.7. The inversion of 3 around 8 is 8 − 3 = 5. The inversion of 8 around 3 is 3 −

 8 =  −5 ≡  7 (𝑚𝑜𝑑 12). 
 

The only inversion that keeps a pitch class the same is the transposition by 2 times the 
pitch class. 
 
Example 1.8. The inversion of 3 around 2 × 3 = 6 is 6 − 3 = 3. The inversion of 6 around 
2 ×  6 =  12 ≡  0 (𝑚𝑜𝑑 12)  is 0 −  6 =  −6 ≡  6 (𝑚𝑜𝑑 12). 
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1.2 Group Theory 
 
1.2.1 Group 
 
Definition 1.9. A group is a set with a binary operation. Let 𝐺 be a group with an operation 
·. Then 𝐺 must follow three group axioms. The first axiom is associativity: for all 𝑎, 𝑏, 𝑐 ∈  𝐺, 
(𝑎 ·  𝑏)  ·  𝑐 =  𝑎 ·  (𝑏 ·  𝑐). The second axiom is that there is a unique identity element 𝑒 ∈

 𝐺 such that for every 𝑎 ∈  𝐺, 𝑒 ·  𝑎 =  𝑎 and 𝑎 ·  𝑒 =  𝑎. The third axiom is that for every 
element 𝑎 ∈  𝐺 there exists an element 𝑏 ∈  𝐺 such that 𝑎 ·  𝑏 =  𝑒 and 𝑏 ·  𝑎 =  𝑒. [2] 
 

Groups can be used to describe the symmetries of geometric objects. 
 

Example 1.10. One example is the dihedral group, which is the rotational and reflectional 
symmetries of a regular polygon.[6] This group can also be thought of as the permutations 
of a polygon’s vertices, and therefore it is a permutation group. 
 
Definition 1.11. The degree of a permutation group is the number of elements of the set 
being permuted.[9] 
 
Definition 1.12. A presentation of a group is a set of generators and a set of relations among 
the generators that completely describe the group.[10] Every element of the group can be 
represented as a product of generators. It is expressed as ⟨𝑆|𝑅⟩ where 𝑆 is a set of 
generators and 𝑅 is a set of relations among the generators. 
 
Definition 1.13. The order of a group 𝐺 is the number of elements it has and is denoted |𝐺|. 
The order 𝑚 of an element 𝑎 in that group is the smallest positive integer such that 𝑎௠ = 𝑒 
where 𝑒 is the identity element of 𝐺 and 

 
means the element 𝑎 operated with itself 𝑚 times.[3] 
 
Definition 1.14. A subgroup is a subset 𝐻 of group elements of a group 𝐺 that satisfies the 
group axioms. This is written as 𝐻 ⊆  𝐺.[20] 
 
1.2.2 Homomorphism and Isomorphism 
 
Definition 1.15. A group homomorphism is a function 𝑓 ∶  𝐺 →  𝐻 between two groups 𝐺 and 
𝐻 such that the group operation is preserved, meaning that 𝑓 (𝑎𝑏)  =  𝑓 (𝑎) 𝑓 (𝑏) for all 𝑎, 𝑏 ∈

 𝐺.[13] 
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Definition 1.16. A group isomorphism is a bijective correspondence between the set of all 
elements of group 𝐺 and the set of all elements of group 𝐻 if the group operation is 
preserved. That is, a relation of the form 𝑔ଵ𝑔ଶ  =  𝑔ଷ being true means that ℎଵℎଶ  =  ℎଷ is also 
true, where ℎଵ, ℎଶ, ℎଷ  ∈  𝐻 are the corresponding elements of 𝑔ଵ, 𝑔ଶ, 𝑔ଷ  ∈  𝐺.[2][16] 
 

If two groups 𝐺 and 𝐻 are isomorphic, then we can write 𝐺 ≅  𝐻. Proving two groups 
are isomorphic is important because we can treat them as essentially the same since they 
have the exact same group structure, the only difference is what we call the groups and their 
elements. 
 
Definition 1.17. Let 𝑓: 𝐴 →  𝐵 be a group homomorphism. The set of all elements 𝑥 ∈  𝐴 
that are mapped by 𝑓 into the identity element of 𝐵 is called the kernel of 𝑓.[2] This is denoted 
as 𝑘𝑒𝑟(𝑓). 
 
1.2.3 Group action 
 
Definition 1.18. A group action  𝜙 ∶  𝐺 ×  𝑋 →  𝑋  1 is a map such that for all elements 𝑥 ∈

 𝑋,  𝜙(𝑒, 𝑥)  =  𝑥 where 𝑒 is the identity element of 𝐺, and 𝜙(𝑔, 𝜙(ℎ, 𝑥))  =  𝜙(𝑔ℎ, 𝑥) for all 
𝑔, ℎ ∈  𝐺. [12] 
 
Definition 1.19. The orbit of an element 𝑥 ∈  𝑋 under a group action 𝜙 of group 𝐺 on set 𝑋 
is 𝑂𝑟𝑏థ(𝑥)  =  {𝑔𝑥 ∈  𝑋 ∶  𝑔 ∈  𝐺}, the set of elements of 𝑋 that is reached by any element of 

𝐺 acting on 𝑥.[14] 
 
Definition 1.20. The stabilizer of an element 𝑥 ∈  𝑋 under a group action 𝜙 of group 𝐺 on 
set 𝑋 is 𝑆𝑡𝑎𝑏థ(𝑥)  =  {𝑔 ∈  𝐺 ∶  𝑔𝑥 =  𝑥}, the set of group elements that send 𝑥 to itself. [19] 

 
Definition 1.21. A group action 𝜙 ∶  𝐺 ×  𝑋 →  𝑋 acting on a subset 𝑆 ⊆  𝑋 means that 𝑔𝑆 =

 {𝑔𝑠 ∶  𝑠 ∈  𝑆}  ⊆  𝑋. 
 
Definition 1.22. The orbit of a subset 𝑆 ⊆  𝑋 under a group action 𝜙 of group 𝐺 on set 𝑋 is 
𝑂𝑟𝑏థ(𝑆)  =  {𝑔𝑆 ⊆  𝑋 ∶  𝑔 ∈  𝐺}, the set of subsets of 𝑋 that is reached by any element of 𝐺 

acting on 𝑆. 
 
Definition 1.23. The stabilizer of a subset 𝑆 ⊆  𝑋 under a group action 𝜙 of group 𝐺 on set 
𝑋 is Stabϕ (S) = {g ∈ G : gS = S} , the set of group elements that send S to itself. 
 
_______________________ 

1The action inputs a group element of G and a set element of X and outputs a set element of X 
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Definition 1.24. Let 𝐻 be a subgroup of the group 𝐺 and let 𝑥 ∈  𝐺. Define 𝑥𝐻 to be the set 
{𝑥ℎ ∶  ℎ ∈  𝐻}  and 𝐻𝑥 to be the set {ℎ𝑥 ∶  ℎ ∈  𝐻}. A subset of 𝐺 in the form 𝑥𝐻 for some 𝑥 ∈

 𝐺 is a left coset of 𝐻 and a subset in the form 𝐻𝑥 is a right coset of 𝐻.[5] 
 
Theorem 1.25. (Orbit-Stabilizer Theorem) Let 𝐺 be a finite group acting on a set 𝑋 with the 
group action 𝜙, and let 𝑥 ∈  𝑋. Then the number of elements in 𝑂𝑟𝑏థ(𝑥) is equal to the 

number of distinct left cosets of 𝑆𝑡𝑎𝑏థ(𝑥) in 𝐺.[1] 

 
Definition 1.26. A group action 𝜙 ∶  𝐺 ×  𝑋 →  𝑋 is free if, for all 𝑥 ∈  𝑋, 𝑔𝑥 =  𝑥 implies 𝑔 =

 𝑒 where 𝑒 is the identity element of 𝐺.[11] 
 
Definition 1.27. A group action 𝜙 ∶  𝐺 ×  𝑋 →  𝑋 is transitive if there is a group element 𝑔 
such that 𝑔𝑥 =  𝑦 for all 𝑥, 𝑦 ∈  𝑋.[15] 
 
 

2 Transformation and 𝑫𝟏𝟐 Groups 
 
Definition 2.1. Let D12 := {O0, O1, O2, . . . , O11, E0, E1, E2, . . . , E11} be the dihedral group of degree 
12. This group represents the rotational and reflectional symmetries of a regular dodecagon 
(Figure 1). Here, On represents a rotation by 𝑛 points. Let the corners of the dodecagon have 
labels 0, 1, 2, . . . , 11. If 𝑛 is even, then En represents the symmetric reflection over a line 
that passes through the corner n/2. If 𝑛 is odd, then En represents the reflection over a line 

that passes through the midpoint of the side connecting  
(௡ିଵ)

ଶ
 and 

(௡ାଵ)

ଶ
. 

 
 
D12 has the presentation ⟨O1, E0|ord(O1) = 12, ord(E0) = 2, E0O1E0−1 = O1−1 ⟩. 
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Definition 2.2. Let T := {T0, T1, T2, . . . , T11, I0, I1, I2, . . . , I11} with the operation of function 
composition be the transformation group, where Tn is the transposition by n and In is the 
inversion around n. 
 
2.1 Transformation and D12 Groups Are Isomorphic 
 
Lemma 2.3. If ƒ : G → H is a surjective group homomorphism and |G| = |H|, then ƒ is an 
isomorphism. 
 
Proof. ƒ is surjective, so the image of ƒ, Im(ƒ) = H. By the first isomorphism theorem, also 
known as the fundamental theorem on homomorphisms[4], 
 

𝐺/ 𝑘𝑒𝑟(𝑓)  ≅  𝐼𝑚(ƒ) = |𝐻| 
Therefore 

|𝐺/ 𝑘𝑒𝑟(𝑓)| = |𝐻| 
|𝐺|

|𝑘𝑒𝑟(𝑓)|
= |𝐻| 

Since |G| = |H|, 
|𝐻|

|𝑘𝑒𝑟(𝑓)|
= |𝐻| 

|𝑘𝑒𝑟(𝑓)| = 1 
 
The kernel of 𝑓 is only the identity, so 𝑓 is injective.[7] Therefore, 𝑓 is an isomorphism. 
 
Theorem 2.4. T is isomorphic to D12. 
 
Proof. 𝑇 is generated by 𝑇ଵ and 𝐼଴. ord(𝑇1) =  12 and 𝑜𝑟𝑑(𝐼଴)  =  2. I0T1I0 on x is 0 −  (0 −

 𝑥 +  1)  =  𝑥 −  1 ≡  𝑥 +  11 (𝑚𝑜𝑑 12) and 𝑇ଵ
ିଵ  =  𝑇ଵଵ. We have shown that 𝑇 has the 

generators 𝑇ଵ and 𝐼଴ and the relations ord(𝑇1)  =  12, 𝑜𝑟𝑑(𝐼଴)  =  2, 𝐼଴𝑇ଵ𝐼଴  =  𝑇ଵ
ିଵ . 

The map 𝑓 ∶  𝑇 →  𝐷ଵଶ maps the generators and relations of 𝑇 to the generators and 
relations of 𝐷ଵଶ, so 𝑓 extends to a unique surjective group homomorphism. Both 𝑇 and 𝐷ଵଶ 
have 24 elements, so |𝑇|  =  |𝐷ଵଶ|. 

Thus, 𝑇 ≅  𝐷ଵଶ by Lemma 2.3 
 

2.2 Transformation as a Group Action 
 
Definition 2.5. Let 𝑆𝑦𝑚(𝑃) be the symmetric group of 𝑃 consisting of all permutations of the 
elements of 𝑃 .[21] 
 



 

7 

Definition 2.6. Let the set 𝐵 be a subset of the set 𝐴. Then the injection 𝑓 ∶  𝐵 →  𝐴 that has 
the formula 𝑓 (𝑏)  =  𝑏 for all 𝑏 ∈  𝐵 is called the inclusion map.[18] 
 
Definition 2.7. Let 𝑡 ∶  𝑇 →  𝑆𝑦𝑚(𝑃) be the group action of transformation.2  This action takes 
in a transformation in 𝑇 and expresses it as a permutation of the pitch classes in 𝑃. If 𝑇 ⊆

 𝑆𝑦𝑚(𝑃 ) is a subgroup, then 𝑡 ∶  𝑇 →  𝑆𝑦𝑚(𝑃) is an inclusion map with formula 𝑡(𝑔)  =  𝑔 for 
𝑔 ∈  𝑇. 
 

𝑂𝑟𝑏௧(𝑝)  =  𝑃 for all 𝑝 ∈  𝑃 because for any two pitch classes 𝑝ଵ, 𝑝ଶ  ∈  𝑃, the element 
𝑇௣ଶି௣ଵ of group 𝑇 maps 𝑝1 to 𝑝2. 

Only 𝑛 =  0 satisfies 𝑝 +  𝑛 ≡  𝑝 mod 12, so 𝑇଴ is the only transposition in 𝑆𝑡𝑎𝑏௧(𝑝). Only 
𝑛 =  2𝑝 mod 12 satisfies 𝑛 −  𝑝 ≡  𝑝 mod 12, so 𝐼ଶ௣ ୫୭ୢ ଵଶ is the only inversion in 𝑆𝑡𝑎𝑏௧(𝑝). 

𝑆𝑡𝑎𝑏௧(𝑝) is the set {𝑇଴, 𝐼ଶ௣} for all 𝑝 ∈  𝑃. 

Under the isomorphism proved in Theorem 2.4, t is the action of 𝐷ଵଶ on a dodecagon by 
left multiplication which is always free and transitive. 

 
2.3 𝑫𝟏𝟐 Group Acting on the Set of Pitch Classes 

 
Definition 2.8. The trajectory of a group element 𝑔 on the set element 𝑥 ∈  𝑋 is the orbit 
𝑂𝑟𝑏థ(𝑥) under the action 𝜙 ∶  ⟨𝑔⟩  ×  𝑋 →  𝑋 where ⟨𝑔⟩ is the cyclic subgroup of 𝑔, a group 

that is generated by only 𝑔. 
 
The trajectory of 𝑂଴ on 𝑝 is {𝑝}, since rotating by 0 leaves everything the same. 
If 𝑛 =  1, 5, 7, or 11, then the trajectory of 𝑂௡ on 𝑝 is equivalent to 𝑃 =  {0, 1, 2, . . . , 11}. 

These four numbers are relatively prime to 0 ≡  12 (𝑚𝑜𝑑 12), so the smallest positive integer 
𝑘 for which 𝑘𝑛 ≡  12 is 12. 

If 𝑛 =  2 or 𝑛 =  10, the trajectory of 𝑂௡ on 𝑝 is determined by the parity of 𝑝. Specifically: 
 

 If 𝑝 is even, the trajectory is {0, 2, 4, 6, 8, 10}. 

 If 𝑝 is odd, the trajectory is {1, 3, 5, 7, 9, 11}. 
 

This is because 𝑂ଶ rotates 𝑝 to each number with the same parity. 𝑂ଵ଴ rotates 𝑝 by 10, which 
is equivalent to rotating backwards by 2 since 10 ≡ −2. 

The trajectory of 𝑂ଷ and 𝑂ଽ on 𝑝 is {0, 3, 6, 9} if 𝑝 ≡  0, {1, 4, 7, 10} if 𝑝 ≡  1, and {2, 5, 8, 
11} if p ≡ 2. 

 
 

_______________________ 
2This is equivalent to t ∶  𝑇 ×  𝑃 →  𝑃 
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The trajectory of 𝑂ସ and 𝑂଼ on 𝑝 is {0, 4, 8} if 𝑝 ≡  0, {1, 5, 9} if 𝑝 ≡  1, {2, 6, 10} if 𝑝 ≡  2, 
and {3, 7, 11} if 𝑝 ≡  3. 

The trajectory of 𝑂଺ on 𝑝 is {𝑝, 𝑝 +  6 (mod 12)}. 
Let’s consider 𝐸଴. The point 0 goes to 0, 1 to 11, 2 to 10. 6 goes to 6, 7 goes to 5, 8 goes 

to 4. We see that for point 𝑝 and its reflection 𝑞, 𝑝 +  𝑞 ≡  0. Thus, the trajectory of 𝐸଴ on 𝑝 
is {𝑝, −𝑝 (mod 12)}. 

Now, let’s consider 𝐸ଵ. The point 0 goes to 1, 1 goes to 0, 2 to 11, 3 to 10. 6 goes to 7, 
7 goes to 6, 8 goes to 7. In this case, 𝑝 +  𝑞 ≡  1. Thus, the trajectory of 𝐸ଵ on 𝑝 is {𝑝, 1 −

 𝑝 (𝑚𝑜𝑑 12)}. 
In general, the trajectory of 𝐸௡ on 𝑝 is {𝑝, 𝑛 −  𝑝 (𝑚𝑜𝑑 12)}. 
 

 

3 Symmetries in Classical Music 
 
3.1 Diatonic Set Class 
 
Definition 3.1. The trajectory of a group element 𝑔 on the subset 𝑆 ⊆  𝑋 is the orbit 𝑂𝑟𝑏థ(𝑆) 

under the action 𝜙 ∶  ⟨𝑔⟩  ×  𝑋 →  𝑋. 
 
Definition 3.2. A 𝑇௡-type is a set consisting of a pitch class set 𝑋 and all of the pitch class 
sets that can be reached by applying 𝑇ଵ repeatedly on 𝑋.  In other words, the trajectory of 𝑇ଵ 
on 𝑋. 
 

In a diatonic scale there are 7 pitch classes. 
 
Definition 3.3. Let 𝐷 ⊆  𝑃 be the 7 diatonic pitches {0, 2, 4, 5, 7, 9, 11}. 
 
Definition 3.4. The diatonic 𝑇௡-type is a 𝑇௡-type specifically with the set 
𝐷: {1, 3, 5, 6, 8, 10, 12 ≡  0}, {2, 4, 6, 7, 9, 11, 13 ≡  1}, . . . , {11, 13 ≡  1, 15 ≡  3, 16 ≡  4, 18 ≡

 6, 20 ≡  8, 22, ≡  10}. 
 

We can think of the diatonic 𝑇௡ type as containing all 12 major scales. 
The translates 𝑔𝐷 of 𝐷 for 𝑔 ∈  𝑇 are all 12 of the major scales. 𝑔𝐷 =  𝐷 when 𝑔 =  𝑇଴ 

or 𝑔 =  𝐼ସ, so 𝑆𝑡𝑎𝑏௧(𝐷)  =  {𝑇଴, 𝐼ସ}. 
Now, let’s find 𝐼ସ(𝐷). 𝐼ସ({0, 2, 4, 5, 7, 9, 11})  =  {0, 2, 4, 5, 7, 9, 11}. 𝐼ସ(𝐷)  =  𝐷 =  𝑇଴(𝐷). Is 

it true that any inversion of 𝐷 is a transposition of 𝐷? 
 

𝐼௫(𝐷)  =  {𝑥, 𝑥 −  2, 𝑥 −  4, 𝑥 −  5, 𝑥 −  7, 𝑥 −  9, 𝑥 −  11} 
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=  {𝑥 +  12, 𝑥 +  10, 𝑥 +  8, 𝑥 +  19, 𝑥 +  17, 𝑥 +  15, 𝑥 +  13} 𝑏𝑦 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 𝑚𝑜𝑑 12 
 

=  {𝑥 +  8, 𝑥 +  10, 𝑥 +  12, 𝑥 +  13, 𝑥 +  15, 𝑥 +  17, 𝑥 +  19} 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔 
 

=  {(𝑥 + 8) + 0, (𝑥 + 8) + 2, (𝑥 + 8) + 4, (𝑥 + 8) + 5, (𝑥 + 8) + 7, (𝑥 + 8) + 9, (𝑥 + 8) + 11} 
 

=  𝑇௫ା଼(𝐷) 
 

Definition 3.5. A 𝑇௡-type 𝐴 is the inverse of the 𝑇௡-type 𝐵 when any pitch class set in 𝐴 can 
be mapped to any pitch class set in 𝐵 by some 𝐼௡. 

 
Therefore, the diatonic 𝑇௡-type is the inverse of itself. 
 

Definition 3.6. A set class is a pair of 𝑇௡-types that are inverses of each other. 
 
𝑆𝑡𝑎𝑏௧(𝐷) has order 2, so a set class can be partitioned into two 𝑇௡-types by the Orbit-

Stabilizer Theorem (Theorem 1.25). Any set 𝑋 with a group action of 𝑇 can be written as a 
union of two of these orbits. 

 
Definition 3.7. The diatonic set class is the set class with the pair of 𝑇௡-types being two 
copies of the diatonic 𝑇௡-type. 
 
3.2 Diatonic Symmetry Group 
 

Using the dodecagon structure we had for the 𝑇 group, we pick the points that 
correspond to a diatonic scale: 0, 2, 4, 5, 7, 9, 11. Then we define a ”forgetting” operation 
that removes the dodecagon structure, so that there are no known distances between points. 
When this operation acts on the 𝑇 group, the structure now only has seven points with an 
ordering. We can assume that the points lie on a circle and are the same distance apart, and 
so they form a heptagon. There is no reason to use the original numbers as labels, so we 
can now just use 0 to 6.3 

Musically, this is like only looking at the white keys of a piano. The interval between 𝐶 
and 𝐸 is now the same as the interval between 𝐷 and 𝐹 ∶  2 keys apart. 

 
Definition 3.8. Let 𝑃ௗ ∶=  {0, 1, 2, 3, 4, 5, 6} be the set of diatonic pitch classes where 0 is the 
tonic, 1 is the supertonic, 2 is the mediant, etc. 
 
Definition 3.9. Let  𝑇௡

ௗ be the diatonic transposition such that 𝑇௬
ௗ on a diatonic pitch 𝑥 gives 

𝑥 + 𝑦 (𝑚𝑜𝑑 7). 
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_______________________ 
3Our convention is that the diatonic pitch class is the scale degree minus one. 

Definition 3.10. Let  𝐼௡
ௗ be the diatonic inversion such that 𝐼௬

ௗ on a diatonic pitch 𝑥 gives 𝑥 −

𝑦 (𝑚𝑜𝑑 7). 
 
Example 3.11. 𝑇ଷ

ௗ(5) = 1 and 𝐼ଵ
ௗ(6) = 2. 

 

Definition 3.12. Let 𝑇ௗ ∶=  {𝑇଴
ௗ, 𝑇ଵ

ௗ, 𝑇ଶ
ௗ , . . . , 𝑇଺

ௗ, 𝐼଴
ௗ, 𝐼ଵ

ௗ , 𝐼ଶ
ௗ , . . . , 𝐼଺

ௗ} with the operation of function 
composition be the diatonic symmetry group, where 𝑇௡

ௗ is the diatonic transposition by 𝑛 and 
𝐼௡ is the diatonic inversion around 𝑛. 

 

Definition 3.13. Let  𝑡ௗ ∶ 𝑇ௗ  →  𝑆𝑦𝑚(𝑃ௗ)  be the group action of diatonic transformation. This 
action takes in a diatonic transformation in 𝑇ௗ and expresses it as a permutation of the pitch 
classes in 𝑃ௗ. If 𝑇ௗ  ⊆  𝑆𝑦𝑚(𝑃ௗ) is a subgroup, then 𝑡ௗ ∶ 𝑇 →  𝑆𝑦𝑚(𝑃)  is an inclusion map 
with formula 𝑡ௗ(𝑔)  =  𝑔 𝑓𝑜𝑟 𝑔 ∈  𝑇ௗ.  
 

For any 𝑝 ∈  𝑃ௗ: 
 

 The orbit of 𝑝 under 𝑡ௗ,  𝑂𝑟𝑑௧ௗ (𝑝), is equal to 𝑃ௗ for all p ∈  𝑃ௗ because every 

diatonic pitch 𝑞 can be reached from 𝑝 by 𝑇௤ି௣ ௠௢ௗ ଻
ௗ . 

 The stabilizer of 𝑝, 𝑆𝑡𝑎𝑏௧ௗ (𝑝) is: 
 

{𝑇଴
ௗ, 𝐼ଶ௣ ௠௢ௗ ଻

ௗ } 

 
because 𝑝 +  0 =  𝑝 and 2𝑝 −  𝑝 =  𝑝. 

 
When 𝑥 ≠  0, the trajectory of 𝑇௫

ௗ on p is equivalent to 𝑃ௗ because all integers from 1 to 6 

are relatively prime to 7. The trajectory of  𝑇଴
ௗ on 𝑝 is {𝑝}. For any 𝑥, the trajectory of 𝐼଴

ௗ 
on 𝑝 is: 
 

{𝑝, 𝑥 −  𝑝} 
 
because 𝑥 −  (𝑥 −  𝑝)  =  𝑥 −  𝑥 +  𝑝 =  𝑝. 
 
3.2.1 Diatonic Symmetry Group and D7 Are Isomorphic 
 
Definition 3.14. Let 𝐷଻ ∶=  {𝑂଴, 𝑂ଵ, 𝑂ଶ, . . . , 𝑂଺, 𝐸଴, 𝐸ଵ, 𝐸ଶ, . . . , 𝐸଺} be the dihedral group of degree 
7. This group represents the rotational and reflectional symmetries of a regular heptagon 
(Figure 2). 𝑂௡ represents a rotation by 𝑛 points. 
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 If 𝑛 is even, then 𝐸௡ represents the symmetrical reflection over a line that passes 

through the point 𝑛 2⁄ . 
 

 If 𝑛 is odd, then 𝐸௡ represents the reflection over a line that passes through the 

midpoint of the side connecting 
௡ିଵ

ଶ
 and 

௡ାଵ

ଶ
. 

 
Theorem 3.15. 𝑇ௗ is isomorphic to 𝐷଻. 
 
Proof. 𝐷଻ has the presentation ⟨𝑂ଵ, 𝐸଴|𝑜𝑟𝑑(𝑂ଵ) = 7, 𝑜𝑟𝑑(𝐸଴) = 2, 𝐸଴𝑂ଵ𝐸଴

ିଵ =  𝑂ଵ
ିଵ⟩. 

 

𝑇ௗ is generated by 𝑇ଵ
ௗ and 𝐼଴

ௗ.  𝑜𝑟𝑑൫𝑇ଵ
ௗ൯ = 7 and 𝑜𝑟𝑑൫𝐼଴

ௗ൯ = 2.  𝐼଴
ௗ𝑇ଵ

ௗ𝐼଴
ௗ on 𝑥 is 0 −  (0 −

 𝑥 +  1)  =  𝑥 −  1 ≡  𝑥 +  6 (𝑚𝑜𝑑 7) and (𝑇ଵ
ௗ)ିଵ =  𝑇଺

ௗ.  We have shown that 𝑇ௗ has the 

generators 𝑇ଵ
ௗ and 𝐼଴

ௗ and the relations 𝑜𝑟𝑑൫𝑇ଵ
ௗ൯ = 7, 𝑜𝑟𝑑൫𝐼଴

ௗ൯ = 2, 𝐼଴
ௗ𝑇ଵ

ௗ𝐼଴
ௗ = (𝑇ଵ

ௗ)ିଵ. 

The map 𝑓 ∶  𝑇ௗ  →  𝐷଻ maps the generators and relations of 𝑇ௗ to the generators and 
relations of 𝐷଻, so 𝑓 extends to a unique surjective group homomorphism. Both 𝑇ௗ and 𝐷଻ 
have 14 elements, so |𝑇ௗ| = |𝐷଻|. 

Thus  𝑇ௗ  ≅  𝐷଻ by Lemma 2.3. 
 

 
 
3.2.2 Is 𝑫𝟕 a good symmetry group for classical music? 
 

𝐷଻ does represent the diatonic scale well, and the diatonic scale is a major part of 
classical music, particularly the Baroque (1600–1750) and Classical (1750–1820) eras. 
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Another advantage is that to our ears, an increasing diatonic scale, for example, sounds like 
it goes up one by one, even if in 12-tone it is actually going up by 2, 2, 1, 2, etc. This means 
that we can think about the diatonic scale much more intuitively with the 𝐷଻ model than with 
the 𝐷ଵଶ model. An additional benefit is that the 𝐷଻ model provides us insight into classical 
music by removing the unneeded notes that were present in the 𝐷ଵଶ model and by allowing 
us to model music by focusing on scale degrees (e.g. tonic, dominant) instead of being 
restricted by the specific key that the music is in. 

However, a few disadvantages come to mind. One obvious disadvantage is that there 
are definitely notes not in the key that are used in classical music, especially when 
modulating or using harmonic minor. Another drawback is that the 𝐷଻ model does not have 
a significant characteristic that defines the tonic. This means that major and natural minor, 
which both use the diatonic scale, cannot be distinguished, making this a problem because 
major and minor have very distinct sounds to the human ear. An additional downside is that 
the ratio of frequencies between diatonic intervals of the same size (such as between 𝐶 and  
𝐸 and between 𝐷 and 𝐹) are not the same. This is unlike the 𝐷ଵଶ model, where intervals that 
have the same size will always have the same frequency ratio (given equal temperament). 

 
3.3 Diatonic Circle of Fifths 

 
Given a chord, represented by a pitch class set, we can move it around the circle of 

fifths by repeatedly transposing it up by a perfect fifth. 
 

Example 3.16. 𝑇଻({0, 4, 7})  =  {2, 7, 11} and 𝑇଻({2, 7, 11})  =  {2, 6, 9}. 
 

If we keep transposing the chord we will eventually have the same chord, thus forming 
a cycle known as the circle of fifths. 

We want to make a diatonic version of this circle of fifths, but there is a problem. 
Consider the diatonic scale of C major. A perfect fifth up from 𝐵 is 𝐹♯, which is not part of the 
𝐶 major scale. To get as close as possible to a fifth, we go from 𝐵 to F natural instead.4 
Therefore our diatonic circle of fifths for 𝐶 major is 𝐶 − 𝐺 − 𝐷 − 𝐴 − 𝐸 − 𝐵 − 𝐹 − 𝐶. 

 
 
 
 
 
 
 
 

_______________________ 
4Going from B to G would result in C and F being skipped: B, G, D, A, E, B 
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3.3.1 𝑻𝒅 model 
 

 
 
In our 𝑇ௗ model, the diatonic circle of fifths in general is: 
 

{0, 2, 4}, {4, 6, 1}, {1, 3, 5}, {5, 0, 2}, {2, 4, 6}, {6, 1, 3}, {3, 5, 0}, {0, 2, 4} 
 

This is shown in Figure 3 as a series of ascending chords. We can observe that 
this is 𝑇ସ

ௗ repeatedly. In our geometric heptagon model, this is a rotation by 4 

points. 𝑇଻ = 𝑇ସ
ௗ when the note that the transposition acts on is not scale degree 

7. 
In classical music, often a chord progression or phrase starts on the tonic, goes to the 

subdominant, and ends with the dominant and the tonic. We can obtain this progression with 
our circle of fifths, by going backwards in a ”circle of fourths”: 

 
{0, 2, 4}, {3, 5, 0}, {6, 1, 3}, {2, 4, 6}, {5, 0, 2}, {1, 3, 5}, {4, 6, 1}, {0, 2, 4} 

 
This is shown in Figure 4 as a series of ascending chords. This would be 𝑇ଷ

ௗ repeatedly. 
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3.3.2 Connection between exception to 𝑻𝟕 =  𝑻𝟒
𝒅 and 𝑰𝟒 symmetry of 𝑫 

 
In Section 3.1, it is mentioned that the diatonic pitch class set D has a nontrivial symmetry 

of 𝐼ସ. There could be a connection between this symmetry and the one exception to 𝑻𝟕 =  𝑻𝟒
𝒅 

mentioned in Section 3.3.1. 
Let’s represent 𝐷 geometrically as the polygon formed by connecting 7 points of a 

dodecagon. (Figure 5) 
First, if 7 points on a dodecagon that have distances between them of 1 or 2 have at 

least one reflectional symmetry, then is it true that at least one exception to 𝑻𝟕 =  𝑻𝟒
𝒅 exists? 

In other words, is it true that four adjacent edges of the heptagon have a distance (along the 
dodecagon) that is not 7? In fact, we do not even need the condition of having at least one 
reflectional symmetry. 

 
Theorem 3.17. If we are given 7 vertices of a dodecagon such that the maximum distance 
along the dodecagon between any two of them is 2, there will always be 2 vertices separated 
by 4 edges which have a distance which is not 7. 
 
Proof. The Pigeonhole Principle states that if 𝑛 items are distributed among 𝑚 containers and 
𝑛 >  𝑚, then at least one container must contain more than one item.[8] Consider that there 
are 6 pairs of points which have a distance of 6 between them (both clockwise and 
counterclockwise). Therefore, by the Pigeonhole Principle, there must be at least one pair of 
points that have a distance of 6 between them. Now we consider the ways in which edges of 
length 1 and 2 can cover a distance of 6. 
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1. six 1s: There would have to be an edge of length 6 to cover the remaining 6 distance, 
which is not allowed. 
 

2. four 1s and one 2: Similarly, there would have to be two edges with an overall length 
of 6, which can’t be done with edges of length 1 or 2. 
 

3. two 1s and two 2s: Four edges cover a distance of 6, showing an exception to 𝑻𝟒
𝒅 =

 𝑻𝟕. 
 
4. three 2s: The remaining distance of 6 would have to be covered by the other four 

edges, showing an exception to 𝑻𝟒
𝒅 =  𝑻𝟕. 

 

Thus, there must be an exception to 𝑻𝟒
𝒅 =  𝑻𝟕. 

 
Now let us consider the other direction. If there are 7 points on a dodecagon that have 

distances between them of 1 or 2, and there is at least one exception to 𝑻𝟕 =  𝑻𝟒
𝒅 , then is it 

true that they have at least one reflectional symmetry? 
 

Theorem 3.18. If we are given 7 vertices of a dodecagon such that the maximum distance 
along the dodecagon between any two of them is 2, and there are at least one pair of vertices 
that are separated by 4 edges which have a distance d which is not 7, then the heptagon 
formed by the 7 vertices must have at least one reflectional symmetry. 
 
Proof. We do casework on what 𝑑 equals. 
 

1. 𝑑 >  8: The maximum distance 4 edges can cover is 4 ×  2 =  8, so this is not 
possible. 
 

2. 𝑑 =  8: This can only be done by four 2s. Let’s assume that their 5 vertices are 
0, 2, 4, 6, 8. The remaining 3 edges must then cover a distance of 4, so those 3 edges 
must be one 2 and two 1s. If we have those edges with vertices at: 

 
(a) 0, 11, 9, 8, then there is a symmetry across the line connecting 4 and 10. 

(b) 0, 10, 9, 8, then there is a symmetry across the line connecting 3 and 9. 

(c) 0, 11, 10, 8, then there is a symmetry similar to case b. 

 
3. 𝑑 =  6: The remaining 3 edges must then be three 2s to cover the distance of 6. Let’s 

assume that their 4 vertices are 0, 2, 4, 6. The 4 edges must then be two 2s and two 
1s. If we have those edges with vertices at: 
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(a) 0, 11, 10, 8, 6: then there is a symmetry across the line connecting 5 and 11. 

(b) 0, 11, 9, 8, 6: then there is a symmetry across the line connecting 4 and 10. 

(c) 0, 11, 9, 7, 6: then there is a symmetry across the line connecting 3 and 9. 

(d) 0, 10, 9, 8, 6: then there is a symmetry across the line connecting 3 and 9. 

(e) 0, 10, 9, 7, 6: then there is a symmetry similar to case b. 

(f) 0, 10, 8, 7, 6: then there is a symmetry similar to case a. 

 
4. 𝑑 <  6: The remaining 3 edges must then cover a distance greater than 6, which is 

not possible since 3 ×  2 =  6. 
 
 
3.3.3 12-tone 𝑻 mode 
 

In our 𝑇 model, the diatonic circle of fifths in general is: 
 

0, 7, 2, 9, 4, 11, 5, 0 
 
Notice that, apart from 6 to 0, each interval is 𝑇଻. The interval from 6 to 0 is 𝑇଺, or a tritone. 
 
Definition 3.19. Let 𝑆𝐶௣ be the pentatonic set class and be comprised of the transpositions 

and inversions of {0, 2, 4, 7, 9}. 
 
Definition 3.20. Let 𝑆𝐶௧ be the tritone set class and be comprised of the transpositions and 
inversions of {5, 11}. 
 

A diatonic fifth is then within either set class or a 𝑇଻ between the set classes. 
 
Example 3.21. In 𝐶 major, we start with 0 and then reach every pitch class in the pitch class 
set {0, 2, 4, 7, 9} which is in 𝑆𝐶௣: 0, 7, 2, 9, 4. Then we take 𝑇଻ on 4 to get 11. Then we reach 

every pitch class in the pitch class set {11, 5}: 11, 5. {11, 5} is in 𝑆𝐶௧. We then take 𝑇଻ on 5 to 
get 0. 
 

Musically, the pentatonic scale is known to be very consonant (not dissonant) mainly 
because of its lack of tritones or minor seconds. The tritone is known as one of the two basic 
dissonant intervals. When it is added to the pentatonic scale, the diatonic scale is formed. 
The dissonant notes add minor seconds, which help to lead up to resolution. For example, 
in 𝐶 major, 𝐹 and 𝐵 are the notes of the tritone, and 𝐹 leads down to 𝐸 and 𝐵 leads up to 𝐶. 
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3.4 Triads 
 

Definition 3.22. The form of a chord is defined as the pitch class set which has the root note 
of the chord as 0 and the other notes as pitch classes relative to the root note. 
 

A major triad has the form {0, 4, 7}. A minor triad has the form {0, 3, 7}. 𝐼଻({0, 4, 7})  =

 {0, 3, 7} which is the form for a minor triad. Thus, a major triad is just the inverse of a minor 
triad. 

A diminished triad (such as 𝐵 − 𝐷 − 𝐹) has the form {0, 3, 6}. 𝐼଺({0, 3, 6}  =  {0, 3, 6}, so 
the inverse of a diminished triad is a diminished triad. If we have the diminished triad 𝑑𝑖𝑚 =

 {𝑥, 𝑥 +  3, 𝑥 +  6} which has root 𝑥, then 𝑆𝑡𝑎𝑏௧(𝑑𝑖𝑚)  =  {𝑇଴, 𝐼ଶ௫ା଺}. 
An augmented triad (such as 𝐶 − 𝐸 − 𝐺♯) has the form {0, 4, 8}. Similar to the diminished 

triad, 𝐼 ({0, 4, 8}  =  {0, 4, 8}, so the inverse of an augmented triad is an augmented triad. 
 

Definition 3.23. Let 𝑎𝑢𝑔 ∶=  {𝑥, 𝑥 +  4, 𝑥 +  8} be the augmented triad which has root 𝑥. 
 

𝑆𝑡𝑎𝑏௧(𝑎𝑢𝑔)  =  {𝑇଴, 𝑇ସ, 𝑇 , 𝐼ଶ௫ , 𝐼ଶ௫ାସ, 𝐼ଶ௫ା଼}. 
 
Definition 3.24. Let 𝑇௔௨௚ := {𝑇଴, 𝑇ସ, 𝑇 , 𝐼ଶ௫ , 𝐼ଶ௫ାସ, 𝐼ଶ௫ା଼} be the augmented triad symmetry 
group on 𝑎𝑢𝑔. 
 
Definition 3.25. Let 𝐷ଷ ∶=  {𝑂଴, 𝑂ଵ, 𝑂ଶ, 𝐸଴, 𝐸ଵ, 𝐸ଶ} be the dihedral group of degree 3. This 
group represents the rotational and reflectional symmetries of an equilateral triangle. 𝑂௡ 
represents a rotation by 𝑛 points. If 𝑛 is 0 or 2, then 𝐸௡ represents the symmetrical reflection 
over a line that passes through the point 𝑛/2. 𝐸ଵ represents the reflection over a line that 
passes through the midpoint of the side connecting 0 and 2. 
 
Theorem 3.26. 𝑇௔௨௚ is isomorphic to 𝐷ଷ. 
 
Proof. 𝐷ଷ has the presentation ⟨𝑂ଵ, 𝐸଴|𝑜𝑟𝑑(𝑂ଵ)  =  3, 𝑜𝑟𝑑(𝐸଴)  =  2, 𝐸଴𝑂ଵ𝐸଴

ିଵ  =  𝑂ଵ
ିଵ⟩. 

 
𝑇௔௨௚ is generated by 𝑇ସ and 𝐼ଶ௫.  𝑜𝑟𝑑(𝑇ସ)  =  3 and 𝑜𝑟𝑑(𝐼ଶ௫)  =  2. 𝐼ଶ௫𝑇ସ𝐼ଶ௫ on 𝑎𝑢𝑔 is 
 

{2𝑥 −  (4 +  (2𝑥 −  𝑥)), 2𝑥 − (4 + (2𝑥 −  (𝑥 +  4))), 2𝑥 −  (4 +  (2𝑥 −  (𝑥 +  8)))} 
=  {2𝑥 −  (4 +  𝑥), 2𝑥 −  (4 +  𝑥 −  4), 2𝑥 −  (4 +  𝑥 −  8)} 

=  {𝑥 −  4, 𝑥, 𝑥 +  4} 
=  {𝑥 +  8, 𝑥 +  12, 𝑥 +  16} 

 
which is 𝑇 . (𝑇ସ)ିଵ  =  𝑇 . We have shown that 𝑇௔௨௚ has the generators 𝑇ସ and 𝐼ଶ௫ and the 
relations 𝑜𝑟𝑑(𝑇ସ)  =  3, 𝑜𝑟𝑑(𝐼ଶ௫)  =  2, 𝐼ଶ௫𝑇ସ𝐼ଶ௫ =  (𝑇ସ)ିଵ. 
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The map 𝑓 ∶  𝑇௔௨௚  →  𝐷ଷ maps the generators and relations of 𝑇௔௨௚ to the generators 
and relations of 𝐷ଷ, so 𝑓 extends to a unique surjective group homomorphism. Both 𝑇௔௨௚ 
and 𝐷ଷ have 6 elements, so |𝑇௔௨௚| =  |𝐷ଷ|. 

Thus 𝑇௔௨௚  ≅  𝐷ଷ by Lemma 2.3. 
 
3.4.1 Musical inversions of a generic triad 
 

Let {𝑎, 𝑏, 𝑐} be a generic triad where 𝑎, 𝑏, and 𝑐 are unique. Then the first musical 
inversion5 of this triad is {𝑏, 𝑐, 𝑎} and the second inversion is {𝑐, 𝑎, 𝑏}. If we forget the 𝐷ଵଶ 
structure, then the triad is now just three ordered points. The first inversion and the second 
inversion would then be two permutations of these points. Combining these with the identity 
permutation gives us the cyclic group of order 3, 𝐶ଷ, acting on {𝑎, 𝑏, 𝑐}. 

We can generalize this to a chord with any number of elements. Let {𝑝ଵ, 𝑝ଶ, . . . , 𝑝௡} be a 
chord where 𝑝ଵ, 𝑝ଶ, . . . , 𝑝௡ are unique. Then the 𝑖-th inversion of this chord is 
𝑝௜ାଵ, 𝑝௜ାଶ, . . . , 𝑝௡, 𝑝ଵ, . . . , 𝑝௜. If we forget the 𝐷ଵଶ structure, then the chord is now just 𝑛 ordered 
points. The inversions of the chord are then 𝑛 − 1 inversions of these points. Combining 
these with the identity permutation gives us the cyclic group or order 𝑛, 𝐶௡, acting on 
{𝑝ଵ, 𝑝ଶ, . . . , 𝑝௡}. 

 
 

3.5 Seventh Chords 
 
3.5.1 Dominant seventh chord 

 
A dominant seventh chord, such as 𝐶, 𝐸, 𝐺, 𝐵♭, has the form {0, 4, 7, 10}.  

𝐼଻({0, 4, 7,10})  =  {0, 3, 7, 9}, or 𝐶, 𝐸♭, 𝐺, 𝐴. This is the minor added sixth chord. 
 

3.5.2 Major seventh chord 
 
A major seventh chord, such as 𝐶, 𝐸, 𝐺, 𝐵, has the form {0, 4, 7, 11}. 𝐼ଵଵ({0, 4, 7, 11})  =

 {0, 4, 7, 11}, so the inversion of a major seventh chord is a major seventh chord. If we have 
the major seventh chord 𝑀7 =  {𝑥, 𝑥 + 4, 𝑥 + 7, 𝑥 + 11}, then 𝑆𝑡𝑎𝑏௧(𝑀7)  =  {𝑇଴, 𝐼ଶ௫ାଵଵ}. 

 
3.5.3 Minor seventh chord 

 
A minor seventh chord, such as 𝐶, 𝐸♭, 𝐺, 𝐵♭, has the form {0, 3, 7, 10}. 𝐼ଵ଴({0, 3, 7, 10}  =

 {0, 3, 7, 10}, so the inversion of a minor seventh chord is a minor seventh chord. If we have 
the minor seventh chord 𝑚7 =  {𝑥, 𝑥 +  3, 𝑥 +  7, 𝑥 +  10}, then 𝑆𝑡𝑎𝑏௧(𝑚7)  =  {𝑇଴, 𝐼ଶ௫ାଵ }. 
_______________________ 

5Not to be confused with 𝐼௡, this refers to a rearrangement of notes such that the root note changes 



 

19 

3.5.4 Diminished seventh chord 
 
A diminished seventh chord (such as 𝐶, 𝐸♭, 𝐹 ♯, 𝐴) has the form {0, 3, 6, 9}. 

𝐼ଽ({0, 3, 6, 9})  =  {0, 3, 6, 9}, so the inverse of a diminished seventh chord is a diminished 
seventh chord. 

 
Definition 3.27. Let 𝑑𝑖𝑚7 ∶=  {𝑥, 𝑥 +  3, 𝑥 +  6, 𝑥 +  9} be the diminished 7th chord which 
has root 𝑥. 
 

𝑆𝑡𝑎𝑏௧(𝑑𝑖𝑚7)  =  {𝑇଴, 𝑇ଷ, 𝑇଺, 𝑇ଽ, 𝐼ଶ௫ , 𝐼ଶ௫ାଷ, 𝐼ଶ௫ା଺, 𝐼ଶ௫ାଽ}. 
 
Definition 3.28. Let 𝑇ௗ௜௠଻ ∶=  {𝑇଴, 𝑇ଷ, 𝑇଺, 𝑇ଽ, 𝐼ଶ௫ , 𝐼ଶ௫ାଷ, 𝐼ଶ௫ା଺, 𝐼ଶ௫ାଽ} be the diminished 7th chord 
symmetry group on 𝑑𝑖𝑚7. 
 
Definition 3.29. Let 𝐷ସ ∶=  {𝑂଴, 𝑂ଵ, 𝑂ଶ, 𝑂ଷ, 𝐸଴, 𝐸ଵ, 𝐸ଶ, 𝐸ଷ} be the dihedral group of degree 4. 
This group represents the rotational and reflectional symmetries of a square. 𝑂௡ represents 
a rotation by 𝑛 points. If 𝑛 is 0 or 2, then 𝐸௡ represents the symmetrical reflection over a line 
that passes through the point 𝑛/2. If 𝑛 is 1 or 3, 𝐸௡ represents the reflection over a line that 

passes through the midpoint of the side connecting 
௡ିଵ

ଶ
 and 

௡ାଵ

ଶ
. 

 
Theorem 3.30. 𝑇ௗ௜௠଻is isomorphic to 𝐷ସ. 
 
Proof. 𝐷ସ has the presentation ⟨𝑂ଵ, 𝐸଴|𝑜𝑟𝑑(𝑂ଵ)  =  4, 𝑜𝑟𝑑(𝐸଴)  =  2, 𝐸଴𝑂ଵ𝐸଴

ିଵ  = 𝑂ଵ
ିଵ ⟩. 

 
𝑇ௗ௜௠଻ is generated by 𝑇ଷ and 𝐼ଶ௫. 𝑜𝑟𝑑(𝑇ଷ)  =  4 and 𝑜𝑟𝑑(𝐼ଶ௫)  =  2. 𝐼ଶ௫𝑇ଷ𝐼ଶ௫  on 𝑑𝑖𝑚7 is 
 

{2𝑥 − (3 +  (2𝑥 −  𝑥)), 2𝑥 −  (3 +  (2𝑥 − (𝑥 +  3))), 

2𝑥 −  (3 +  (2𝑥 −  (𝑥 +  6))), 2𝑥 −  (3 + (2𝑥 −  (𝑥 +  9)))} 

=  {2𝑥 −  (3 +  𝑥), 2𝑥 −  (3 +  𝑥 −  3), 2𝑥 −  (3 +  𝑥 −  6), 2𝑥 −  (3 +  𝑥 −  9)} 

=  {𝑥 −  3, 𝑥, 𝑥 +  3, 𝑥 +  6} 

=  {𝑥 +  9, 𝑥 +  12, 𝑥 +  15, 𝑥 +  18} 

which is 𝑇ଽ. (𝑇ଷ)ିଵ  =  𝑇ଽ. We have shown that 𝑇ௗ௜௠଻ has the generators 𝑇ଷ and 𝐼ଶ௫ and the 
relations 𝑜𝑟𝑑(𝑇ଷ)  =  4, 𝑜𝑟𝑑(𝐼ଶ௫)  =  2, 𝐼ଶ௫𝑇ଷ𝐼ଶ௫ =  (𝑇ଷ)ିଵ. 

The map 𝑓 ∶  𝑇ௗ௜௠଻  →  𝐷ସ maps the generators and relations of 𝑇ௗ௜௠଻ to the generators 

and relations of 𝐷ସ, so 𝑓 extends to a unique surjective group homomorphism. Both 𝑇ௗ௜௠଻ 

and 𝐷ସ have 8 elements, so |𝑇ௗ௜௠଻|  =  |𝐷ସ|. 

Thus 𝑇ௗ௜௠଻  ≅  𝐷ସ by Lemma 2.3. 
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3.5.5 Example of using the symmetries of diminished 7th chords 

 
In Chopin’s ́ Etude in 𝐶♯ minor, Op. 10, No. 4, there is a descending pattern of diminished 

7th chords, as shown in the third and fourth measures of Figure 6. 
 

 
 
In the left hand, the pattern starts on the second beat with 𝐺♯, 𝐷, 𝐵, 𝐸♯. This is a sequence 

where first 𝑇଺ acts on 𝐺♯: 𝑇଺(8)  =  2  which is 𝐷. Then 𝑇ଽ acts on 𝐷: 𝑇ଽ(2)  =  11 which is 𝐵. 
Then 𝑇଺ acts on 𝐵: 𝑇଺(11)  =  5 which is 𝐹 =  𝐸♯. The same sequence is then repeated in 
the next beat but down 3 pitches, or equally up 9 pitches and down an octave. This is 
essentially a 𝑇ଽ of the four-note sequence. After four of these four-note sequences, we 
observe that the notes repeat but down an octave. We can also observe that all of the notes 
in this pattern are always one of four notes 𝐷, 𝐸♯, 𝐺♯, 𝐵. Why are these observations true? 
Well, the four pitches form a diminished 7th chord, and all of the transpositions are elements 
of 𝑇ௗ௜௠଻, so any other pitches formed by these transpositions acting on the four pitches will 

have to be one of those notes. Additionally, since 𝑇ௗ௜௠଻  ≅  𝐷ସ, we can think of these four 
notes as the four corners of a square. Then, the transpositions from one note to the next are 
rotational symmetries of the square.  

 
3.6 Whole tone scale 

 
A whole tone scale (such as 𝐶, 𝐷, 𝐸, 𝐹 ♯, 𝐺♯, 𝐴♯, (𝐶)) has the form {0, 2, 4, 6, 8, 10}. 
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Definition 3.31. Let 𝑤𝑡 ∶=  {𝑥, 𝑥 +  2, 𝑥 +  4, 𝑥 +  6, 𝑥 +  8, 𝑥  +  10} be the whole tone scale 
which has root 𝑥. 
 

𝑆𝑡𝑎𝑏௧(𝑤𝑡)  =  {𝑇଴, 𝑇ଶ, 𝑇ସ, 𝑇଺, 𝑇 , 𝑇ଵ଴, 𝐼ଶ௫ , 𝐼ଶ௫ାଶ, 𝐼ଶ௫ାସ, 𝐼ଶ௫ା଺, 𝐼ଶ௫ା଼, 𝐼ଶ௫ାଵ଴}. 
 
Definition 3.32. Let 𝑇௪௧ ∶=  {𝑇଴, 𝑇ଶ, 𝑇ସ, 𝑇଺, 𝑇 , 𝑇ଵ଴, 𝐼ଶ௫ , 𝐼ଶ௫ାଶ, 𝐼ଶ௫ାସ, 𝐼ଶ௫ା଺, 𝐼ଶ௫ା଼, 𝐼ଶ௫ାଵ଴} be the 
whole tone scale symmetry group on 𝑤𝑡. 
 
Definition 3.33. Let 𝐷଺ ∶=  {𝑂଴, 𝑂ଵ, 𝑂ଶ, 𝑂ଷ, 𝑂ସ, 𝑂ହ, 𝐸଴, 𝐸ଵ, 𝐸ଶ, 𝐸ଷ, 𝐸ସ, 𝐸ହ} be the dihedral group of 
degree 6. This group represents the rotational and reflectional symmetries of a regular 
hexagon. 𝑂௡ represents a rotation by 𝑛 points. If 𝑛 is even, then 𝐸௡ represents the 
symmetrical reflection over a line that passes through the point 𝑛/2. If 𝑛 is odd, 𝐸௡ represents 

the reflection over a line that passes through the midpoint of the side connecting 
௡ିଵ

ଶ
 and 

௡ାଵ

ଶ
. 

 
Theorem 3.34. 𝑇௪௧ is isomorphic to 𝐷଺. 
 
Proof. 𝐷଺ has the presentation ⟨𝑂ଵ, 𝐸଴|𝑜𝑟𝑑(𝑂ଵ)  =  6, 𝑜𝑟𝑑(𝐸଴)  =  2, 𝐸଴𝑂ଵ𝐸଴

ିଵ  = 𝑂ଵ
ିଵ ⟩. 

 
𝑇௪௧ is generated by 𝑇ଶ and 𝐼ଶ௫. 𝑜𝑟𝑑(𝑇ଶ)  =  6 and 𝑜𝑟𝑑(𝐼ଶ௫)  =  2. 𝐼ଶ௫𝑇ଷ𝐼ଶ௫  on 𝑤𝑡 is 

 
{2𝑥 −  (2 +  (2𝑥 −  𝑥)), 2𝑥 − (2 +  (2𝑥 −  (𝑥 +  2))), 2𝑥 −  (2 +  (2𝑥 −  (𝑥 +  4))), 

2𝑥 − (2 +  (2𝑥 −  (𝑥 +  6))), 2𝑥 −  (2 +  (2𝑥 −  (𝑥 +  8))), 2𝑥 −  (2 +  (2𝑥 −  (𝑥 

+  10)))} 

=  {2𝑥 −  (2 +  𝑥), 2𝑥 −  (2 +  𝑥 −  2), 2𝑥 −  (2 +  𝑥 −  4), 

2𝑥 −  (2 +  𝑥 −  6), 2𝑥 −  (2 +  𝑥 −  8), 2𝑥 −  (2 +  𝑥 −  10)} 

=  {𝑥 −  2, 𝑥, 𝑥 +  2, 𝑥 +  4, 𝑥 +  6, 𝑥 +  8} 

=  {𝑥 +  10, 𝑥 +  12, 𝑥 +  14, 𝑥 +  16, 𝑥 +  18, 𝑥 +  20} 

 
which is 𝑇ଵ଴. (𝑇ଶ)ିଵ  =  𝑇ଵ଴. We have shown that 𝑇௪௧ has the generators 𝑇ଶ and 𝐼ଶ௫ and the 
relations 𝑜𝑟𝑑(𝑇ଶ)  =  6, 𝑜𝑟𝑑(𝐼ଶ௫)  =  2, 𝐼ଶ௫𝑇ଶ𝐼ଶ௫ =  (𝑇ଶ)ିଵ. 

The map 𝑓 ∶  𝑇௪௧  →  𝐷଺ maps the generators and relations of 𝑇௪௧ to the generators and 
relations of 𝐷଺, so 𝑓 extends to a unique surjective group homomorphism. Both 𝑇௪௧ and 𝐷଺ 
have 12 elements, so |𝑇௪௧|  =  |𝐷଺|. 

Thus 𝑇௪௧  ≅  𝐷଺ by Lemma 2.3. 
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3.7 Pentatonic scale 
 

A pentatonic scale (such as 𝐶, 𝐷, 𝐸, 𝐺, 𝐴, (𝐶)), has the form {0, 2, 4, 7, 9}. 
𝐼ସ({0, 2, 4, 7, 9})  =  {0, 2, 4, 7, 9}, so the inversion of a pentatonic scale is a pentatonic scale. 
If we have the pentatonic scale 𝑝𝑡 =  {𝑥, 𝑥 +  2, 𝑥 +  4, 𝑥 +  7, 𝑥 +  9}, then 𝑆𝑡𝑎𝑏௧(𝑝𝑡)  =

 {𝑇଴, 𝐼ଶ௫ାସ}. 
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