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Abstract 
 
Cystic Fibrosis (CF) is a genetic disease that affects the lungs and other organs, causing mucus 
and other fluids to become excessively thick. The F508Del mutation is the most common variant 
of CF, and the Elexacaftor/tezacaftor/ivacaftor (ETI) therapy is frequently used to treat this 
specific mutation. Despite this recent advancement, patient variability leads to differences in 
individual response to ETI, regardless of sharing the F508Del mutation. This study addresses 
the gap in CF machine learning models to predict treatment response by developing a logistic 
regression model to detect the responsiveness of a CF patient following the ETI Treatment. 
Specifically, the research will answer the question: to what extent can a Logistic Regression 
model accurately classify responsive and unresponsive cases of CF patients with the F508Del 
Mutation following ETI treatment? The study implements a two-part quantitative method, 
including a Differential Gene Expression (DGE) Analysis experimental approach and a Logistic 
Regression Model evaluation approach. The DGE Analysis found that LDLR, TNF, and PSMD5 
were the differentially expressed genes (DEGs) across the CF genetic data. The model 
evaluation leveraged a confusion matrix, McNemar’s Test, and an ROC Curve. The model 
achieved an 85.71% accuracy, a 66.67% sensitivity, and a 100% specificity. The Area Under the 
ROC Curve (AUC) was 91.67%. The study concluded these evaluation factors as statistically 
significant (p-value = 0.00548). These findings suggest that machine learning can assist in 
personalized treatment prediction, and further validation with larger and more diverse cohorts is 
warranted to enhance generalizability. 
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1.​ Introduction 
 
Approximately 3.5% to 5.9% of individuals worldwide have 1 of nearly 7, 000 rare or genetic 
conditions (Lichstein et al., 2022). Cystic Fibrosis (CF) is one of these rare genetic diseases, 
affecting fewer than 200,000 patients globally. Nevertheless, its infrequency does not diminish 
the urgency to address the substantial clinical issue. CF is a genetic disease caused by a 
mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene. Due to 
this genetic alteration, defective proteins are generated and affect the production of bodily fluids, 
such as sweat and mucus. In CF patients, mucus is significantly thicker, causing blockages, 
damage, and internal organ infections, and as a result, diminishes the efficiency of critical 
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functions of the airways and digestive tract. CF is a serious issue for carriers, as it is a 
life-threatening disease that decreases the average life expectancy from 71.3 years to 61 years 
as recorded by the National Heart, Lung, and Blood Institute (“What is Cystic Fibrosis?”, 2024). 
Beyond life longevity, CF significantly reduces life quality. The American Lung Association stated 
that patients affected with CF require an above-average amount of calories for weight 
maintenance and growth. CF patients are not allowed to smoke, consume alcoholic beverages, 
and are required to maintain physical health to maintain respiratory functionalities (“Learn About 
Cystic Fibrosis”, 2024). Though several genetic mutations lead to the development of CF, the 
most common mutation is the F508Del Mutation–Phenylalanine at Position 508 of the CFTR 
gene, accounting for roughly 82% of all CF cases (Lopes-Pacheco, 2020). 
 
2.​ Literature Review 
 
2.1 The Problem of Patient Variability 
 
Treatments for CF, including antibiotics, airway clearance techniques, lung transplants, and 
breathing support, help alleviate CF’s effects as therapies advance. In more recent endeavors, 
the Elexacaftor/Tezacaftor/Ivacaftor (ETI) Treatment is a triple combination therapy consumed 
orally, and is widely used for patients with at least one F508Del Mutation. Although emerging 
treatments and other triple combination therapies beyond ETI are being introduced, patient 
variability prohibits these medications from being effective for every individual. Batsheva Kerem 
and Eitan Kerem, researchers at the Department of Genetics at Hebrew University, described in 
their review of CF that “there is a substantial variability in disease expression among patients 
carrying the same mutation” (Kerem & Kerem 1996). Moreover, Mei-Zahav et al., experienced 
researchers in genetics, CF, and lung research, conducted a study to determine the variability in 
disease severity of CF patients with mutations that exhibit residual function. Within their study, 
they tested patients with a heterozygous version of the F508Del mutation (one mutated copy) 
against patients who had a homozygous version of the F508Del mutation (two mutated copies). 
The study found significant variability in disease severity, despite containing the same CF 
variant (Mai-Zahav et al., 2025). This suggests that CF patients with the same mutation may 
respond differently to ETI, as factors like modifier genes, environmental factors, allelic variation, 
and complex genetic and environmental interactions also influence variability (Lobo, 2008). 
 
The matter of patient variability is not only noted in CF but also found in several uncured genetic 
and rare conditions. Thus, many researchers have sought to leverage the AI revolution to 
develop machine-learning models to predict a patient’s response to a treatment. Implementing 
these predictive algorithms substantially improves the clinical diagnosis of patients. To 
elaborate, Mohamed Khalifa, a researcher at multiple medical institutions in Australia, and Mona 
Albadaway, a researcher at the School of Population Health at the University of New South 
Wales, conducted a study on AI in clinical prediction, and discussed that treatment response 
prediction with AI “helps healthcare professionals in selecting the most appropriate treatment 
plan for each patient, maximising efficacy and reducing the risk of complications” (Khalifa & 
Albadaway, 2024, p. 4).  
 
Because the ETI treatment may not be effective for every patient with the F508Del mutation, the 
proposed study aims to answer the following research question: to what extent can a Logistic 
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Regression model accurately classify responsive and unresponsive cases of CF patients with 
the F508Del Mutation following ETI treatment? The conclusions yielded from this study will lead 
to a new understanding of the capability of this model to predict the response to ETI of F508Del 
patients, which will indicate their application in the broader context of clinical diagnosis and 
treatment prognosis. 

 
2.2 The Research Gap 
 
2.2.1 AI Treatment Response Algorithms for Other Genetic Diseases 
 
AI has been increasingly applied in healthcare, particularly for genetic and rare conditions. In 
oncology, AI models are being developed to predict treatment response. Postdoctoral fellow at 
NYU Langone Health Theodore Sakellaropoulos and their colleagues designed a workflow of a 
series of DNNs (Deep Neural Networks)–a type of AI Algorithm–to forecast drug response and 
patient survival. The DNN model retrieved up to a 70% Area Under the ROC Curve (AUC), or 
the model’s ability to distinguish between two categories (Sakellaropoulos et al., 2019). 

 
Beyond cancer, other conditions and diseases have been addressed, particularly with Logistic 
Regression Models, to predict treatment response. As a binary classification tool, logistic 
regression has demonstrated strong utility in identifying patient outcomes. For instance, Bisaso 
et al., researchers with strong backgrounds in data science, HIV, and infectious diseases at 
Makerere University, developed a logistic regression model to predict early virological 
suppression, which describes how effectively and quickly the treatment reduces HIV in patients. 
The model was proven functional with an accuracy of 92.9% and an AUC of 0.878 (Bisaso et al., 
2018). Similarly, Bilancia et al., researchers at the University of Foggia in fields including 
regenerative medicine and medical and surgical sciences, programmed a logistic regression 
model to characterize the response to therapy in severe eosinophilic asthma, facilitating 
personalized treatment strategies (Bilancia et al., 2024). 
 
Moreover, logistic regression models have even been implemented to predict CF patients’ 
response to ETI. Molin Yue, a researcher at the UPMC Children’s Hospital of Pittsburgh, worked 
with colleagues with backgrounds in Cystic Fibrosis and Pulmonology to develop transcriptomic 
risk scores (TRSs) that significantly improved the ability to forecast changes in lung function and 
BMI following ETI treatment for CF patients, achieving an ~85% accuracy rate (Yue et al., 
2024). The researchers develop a regression model, however, it does not use binary 
classification. In fact, it provides the extent to which the patient responded to the treatment 
rather than whether the patient was a responder or a non-responder. 
 
While prior studies have applied AI to predict treatment response in diseases such as cancer, 
HIV, and asthma, a gap remains in the context of CF. Existing CF research has focused 
primarily on the degree of response to ETI therapy, rather than categorizing patients as 
responsive or unresponsive. This study addresses the gap by applying binary classification to 
predict ETI responsiveness, with the potential to enhance clinical conclusions and treatment 
efficiency. 
 
2.2.2 The Demand for CF Treatment Response Prediction 
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Several previous research articles use different computational algorithms to develop an 
understanding of treatment response for CF variability. For instance, researcher Hermann 
Bihler, a scientist at the Cystic Fibrosis Foundation, and colleagues published a study that 
elaborates on the influence of the ETI treatment on ~655 CF variants. The results yielded the 
variants with a clinical benefit, had a negligible difference, and showed an extension of disability. 
In this study, researchers used computer diagnostic tools to determine this information and yield 
statistical treatment responses (Bihler et al., 2024). Accordingly, my research fits into the 
conversation of predictive computational algorithms and their assistance in determining 
treatment response to meet the experimental demands. 
 
In addition to the mentioned research, multiple studies in this scope have been conducted to 
understand the effects of different CF medications on the CF-affected population. To elaborate, 
Karina Kleinfelder, a researcher under the Department of Medicine at the University of Verona, 
collaborated with colleagues to determine the ability of in silico tools, or computational methods, 
in matching the ultra-rare CFTR genotypes and variants with an appropriate therapy. Their study 
retrieved the effect of the treatment on these CF patients based on the in silico analysis yield. 
Within this study, computational method accuracy and efficiency were key components in 
ensuring the validity of this conclusion (Kleinfelder et al., 2023). While this study utilizes a type 
of computational algorithm (in silico analysis), it does not implement a form of binary 
classification or logistic regression to retrieve its results. Hence, the proposed model could 
potentially provide greater clinical benefit as well as efficiency. Moreover, the model can be 
applied to various medical conditions or CF variants upon customization of the model’s trained 
and tested data. Therefore, it would be valuable to this particular study, as the researchers 
attempt to conclude the result of a specific group of CF variants aside from the F508Del 
mutation population. 
 
The unique contribution of this work includes the specific focus on the common F508Del 
mutation across the CF population, intending to improve the treatment diagnosis process by 
leveraging logistic regression machine learning to develop a model to predict the patient’s 
response to the frequent CF treatment, ETI. The application of this model to predict treatment 
response for diseases beyond CF. By modifying the genetic data for a different genetic disease, 
the logistic regression can adapt to the specific data input and provide treatment response 
predictions for other diseases which can aid clinical diagnosis. 

 
3.​ Methodology 
 
3.1 Addressing Ethical Concerns: The Use of Open-Source Genetic Data 
 
To acquire the genetic data of CF patients, I will consult the GEO (Gene Expression Omnibus) 
Dataset, an open-source platform that shares genetic data for all users from previous research 
studies. In this case, no sensitive or personal information of the patients will be disclosed in the 
following method.  

 
3.2 The Resources, Variables, and Groups of the Research 
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The major resources used for the study include RStudio, the GEO Database, the STRING 
(Search Tool for the Retrieval for Interacting Genes/Proteins) Database, and the DESeq2 R 
Package. RStudio is a programming Integrated Development Environment (IDE), mainly utilized 
to perform statistical tests with the programming language R. This IDE was applied in this study 
to normalize the datasets, train and test the model, run evaluation tests, and create visual 
representations of the model’s performance.  
 
Furthermore, the GEO Database was used in this study to retrieve both datasets. These 
datasets were published by established studies, including research conducted by Cinek et al., 
established researchers at the Department of Medical Microbiology at Second Faculty of 
Medicine, Charles University, and Motol University Hospital, on the genetic expression of 
intestinal cells of ETI-treated CF patients (Cinek et al., 2025). The data provided by Cinek et al. 
were multiple samples of the gene expression levels of various genes in response to ETI 
treatment. The second dataset used was from De Jong et al.’s study, done by researchers at the 
Telethon Kids Institute Respiratory Research Centre, in which the difference in Ivacaftor and the 
Lumacaftor/ivacaftor treatment for F508Del CF patients was noted. (De Jong et al., 2021). The 
dataset included samples of the F508Del patients treated with Ivacaftor, which is a part of ETI 
and sustains similar characteristics to it. These datasets are similar, as they both include gene 
expression levels, which would later be used to determine the differentially-expressed genes 
(DEGs) and leverage their expression levels to predict response to ETI. 
 
The STRING Database was used to analyze the differentially expressed genes. STRING is a 
biological database that provides visual representations of protein-protein interactions based on 
genetic data. STRING will be used in this study to determine the genes with the greatest 
expression in the treated group of CF patients. 
 
Finally, DESeq2 is an in-built package in R, which includes functions, data, and compiled code 
that act as an extension to the default capabilities of R, which is generally used to identify DEGs 
from RNA-Seq data. DEGs refer to certain genes that demonstrate the most significant 
differences in expression levels among two or more cohorts. In the case of this study, DESeq2 
will run a DGE Analysis on the most significant genes, which will be the results from STRING, to 
determine their expression levels. This is important to provide the model with a concept of 
comparison, allowing it to predict the cases with accuracy and evidence. 
 
In this study, the treated CF cohort served as the experimental group and the untreated cohort 
as the control. Gene expression was the dependent variable, while treatment status functioned 
as the independent variable. A key limitation was the inability to control cell type, due to limited 
data availability across the datasets. Still, this minorly influences the outcome of the study, as 
the gene expression seemed to stay constant amongst the datasets, and three of the most 
significant genes in the treatment responsiveness were identified. The genders and ages of the 
CF patients also varied among the datasets, but it did not cause a significant discrepancy in the 
model’s predictive accuracy. 

 
3.3 The Research Design 
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The proposed study will feature a two-part quantitative method to gather the data. The two parts 
of this design are as follows: (1) Differential Gene Expression Analysis (DGE Analysis) and (2) a 
Logistic Regression Model Evaluation to analyze the performance of the model. The DGE 
Analysis enacts an experimental method approach, while the Logistic Regression Model 
Evaluation implements an evaluation method approach. Both will leverage the use of 
computational tools to gather the results.  
 
The DGE Analysis involved two fundamental factors. First, STRING was used to identify genes 
with the strongest interactions with CFTR, highlighting those most likely to influence response to 
ETI and serving as the differentially expressed genes (DEGs). Subsequently, DESeq2 was 
applied to quantify the expression levels of these DEGs before and following ETI treatment, 
providing a reference point for model prediction. To substantiate this decision of leveraging DGE 
Analysis, Yue et al. used a DGE Analysis along with the STRING Analysis of genes to 
investigate the underlying biological processes triggered by ETI treatment (Yue et al., 2024). 
Furthermore, Rosati et al., researchers in Biotechnology and Microbiology at the University of 
Siena and Temple University, conducted a literature review on DGE Analysis, and the 
researchers stated, “This tool [DGE Analysis] can help in identifying genes involved in a 
particular biological process, disease, or response to treatment, thereby providing information 
on gene regulation and underlying biological mechanisms” (Rosati et al., 2024, p. 1155). The 
DGE Analysis will assist in answering the research question and developing my new 
understanding by rationalizing the model's performance, as a poor analysis of the DEGs could 
result in a poor model performance, while a sufficient DGE Analysis will provide the model with 
more specified expression levels and improved precision. 
 
The Logistic Regression Model Evaluation includes three aspects. First, a confusion matrix is 
generated to compare predictions to the correct outcomes, yielding key performance metrics, 
such as accuracy. Following, McNemar’s Test is applied to assess the statistical significance of 
the model’s predictions and eradicate bias or random chance, ensuring balanced classification 
of responders and non-responders. The use of McNemar’s Test is justified by Andrew C. Leon, 
a biostatistician and professor at Weill Cornell Medical College, “The McNemar test is used to 
examine paired dichotomous data. For example, one might compare the symptomatology 
pretreatment and post-treatment” (Leon, 1998, p. 243). The example provided by Leon is similar 
to my study, as I will be assessing the responsive and unresponsive cases and whether they 
had the same significance during model prediction, eradicating model bias. Finally, an ROC 
Curve is created to visualize the model’s discriminative abilities, with the Area Under the ROC 
Curve (AUC) used as a standard metric to assess performance. This metric was also employed 
by Yue et al. to evaluate the performance of their TRS, or scoring algorithm, as stated, “We 
evaluated TRS performance using leave-one-out cross-validation and calculated the area under 
the receiver operating characteristic curve (AUC) and the corresponding performance or 
confusion matrices” (Yue et al., 2024, p. 732). Model evaluation is central to addressing the 
research question, as it determines the extent to which the model can accurately classify 
treatment outcomes. An accuracy above 80% and an AUC near 90% would indicate strong 
predictive performance, comparable to previous successful models. These metrics also 
contribute to a new understanding of AI’s reliability in clinical decision-making contexts. 
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Figure 1: This figure is a flowchart representing the design of the research, including Part I: The 
DGE Analysis, and Part II: The Model Evaluation. The procedures for each part are outlined in 
the order they will be done, including the relation of each part to the initial Research Question. 
 
3.4 Research Procedures 
 
The procedure of the research included the following steps in their respective order: (1) 
retrieving and normalizing the data, (2) running a DGE analysis, (3) training and testing the 
model, and (4) completing the Logistic Regression Model Evaluation. 
 
First, the two datasets will be retrieved from two established studies on the GEO Database. 
Once these datasets have been acquired, the data will be normalized and cleaned, to select the 
relevant samples, reduce the sample size, identify the treated and untreated CF cohorts of the 
data, and label the samples that were treated with ETI with a ‘1’, and the untreated samples with 
a ‘0’. This process will be completed in an Excel file for both datasets, which will later be 
imported into RStudio as a .csv file. Both .csv files used for this specific study can be found in 
Appendix A. 
 
Next, a DGE analysis will be performed on the normalized data using STRING and DESeq2. 
Essentially, the data of the treated group, or the samples containing a numerical value of ‘1’, will 
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be loaded into STRING to identify which genes’ proteins interact directly with the mutant CFTR 
gene protein. This procedure will be completed for the treated group of each dataset, and will 
later be compared to determine the common DEGs amongst both datasets to identify the most 
accurate different genes. Then, the common DEGs will be analyzed by DESeq2 through the 
code in RStudio. 

 
Upon this preliminary process of identifying the relevant data for the model to learn, training and 
testing datasets will be made by the code in RStudio. These datasets are generated from the 
‘.csv’ file, in which 75% of the data will be designated for training the model, while the remaining 
25% is dedicated to testing the model. The training and testing datasets ensure a class balance, 
or contain the same proportion of responders to non-responders. 

 
The evaluation factor is the next and final aspect of this procedure. Once the model has been 
trained and tested, the confusion matrix table will be made to test the model’s predictions 
against the expected outcomes, overall demonstrating the model’s predictive accuracy. It will 
also determine the performance rates: accuracy, specificity, and sensitivity. Sensitivity refers to 
the ability of the model to correctly identify positive cases, while specificity implies the ability of 
the model to identify negative cases. The accuracy of the model is recognized by its ability to 
make correct predictions, whether negative or positive. These metrics are automatically 
calculated using technical equations, which can be found in Appendix B. Then, McNemar’s Test 
will be used to ensure the model does not contain bias during predictions. In addition to the 
performance rates, an ROC (Receiver-operating Characteristic) Curve will be created to 
demonstrate the significance of each gene’s expression and the ability of the model to correctly 
distinguish between responsive and unresponsive, respectively. The AUC is generated upon 
creation of the ROC statistic.  
 
The entire R Program used to analyze the DEGs, train and test the model, and create statistical 
representations can be found in Appendix A. 
 
4.​ Results 
 
4.1 The DGE Analysis 
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Figure 2: Figure 2A represents dataset 1, in which the genes that directly interacted with CFTR 
were LDLR, PSMD5, TNF, ADRB2, CXCLB, GOPC, and KCNN4. Figure 2B represented 2, in 
which the genes that directly interacted with CFTR were LDLRAP1, PSMD5, and TNF. 
 
Based on these protein interactions with CFTR (Figure 2), genes LDLR, TNF, and PSMD5 are 
common amongst both datasets, implying that they are the most significantly expressed in a 
treated and responsive CF patient. Consequently, these three genes were chosen for the DGE 
Analysis, which will be done by DESeq2. 
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​  
Figure 3: This figure is a Volcano Plot that depicts the upregulation and downregulation of the 
genes. 
 
A Volcano Plot was created to further depict the highly expressed, or upregulated, genes, and 
the genes with lower expression, or downregulated genes. The -Log10P (y-axis) represents the 
p-value and statistical significance, while the Log2 Fold Change (x-axis) represents the amount 
of upregulation or downregulation of the plotted gene. The plot includes genes with significant 
p-values and insignificant log2 Fold Changes (light pink), significant log2 Fold Changes and 
insignificant p-values (dark purple), significant p-values and log2 Fold Changes (dark pink), and 
insignificant p-values and log2 Fold Changes (dark green).  
 
TNF and ATF3 are significantly upregulated in the plot, and this is consistent with published 
studies. Researchers at the University of Leeds found that mutations in the CFTR Gene often 
lead to exaggerated production of the TNF Gene, which causes the chronic inflammation 
characteristic of CF (Lara-Reyna et al., 2019). Additionally, researchers with strong backgrounds 
in Hepatology and Histology found that ATF3 is upregulated in human and mouse fibrotic livers, 
and the overexpression of the gene is directly associated with CF traits (Shi et al., 2020). This 
validates that the data collected is consistent with the established norm of CF gene regulations 
and that it can be used to determine treatment response. 

 
4.2 Model Evaluation and Performance Metrics 
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Once the model was trained and tested with relevant datasets, a Confusion Matrix was used to 
evaluate performance. The p-value of the model was 0.00548, which is significantly lower than 
the general p-value threshold of 0.05. This indicates that the model’s accuracy is significantly 
higher than that of simply guessing the most common case amongst the data. The McNemar’s 
Test p-value was 0.24821, which is significantly higher than the universal p-value threshold of 
0.05. This implies that there is no strong evidence that the types of misclassifications, such as 
false positives and false negatives, are imbalanced. Therefore, the model has no favoritism in 
predicting a false negative or a false positive over the other, and the model is not biased. The 
entirety of the model evaluation results can be found in Appendix B. The three relevant 
performance rates, accuracy, sensitivity, and specificity, of the model evaluation were 85.71%, 
66.67%, and 100%, respectively. This indicates that the model was 85.71% accurate when 
predicting the patient’s response to the treatment, which demonstrates a well-performing model, 
as it achieved an accuracy above 80%. The model had a rather low sensitivity rate of 66.67%, 
implying that it was not able to correctly predict the case of the responders. Despite this, the 
model correctly predicted every sample of the unresponsive case, with a 100% specificity rate. 
 

 
Figure 4: The figure demonstrates the ROC Curve with an AUC of 91.67%. 
 
The ROC Curve (Figure 4) indicates that, although the model contained flaws, it was overall a 
confident and accurate algorithm. The gray lines running diagonally across the graph represent 
areas in which the false positive rate, or the specificity, is equal to the true positive rate, or the 
sensitivity. The ideal ROC Curve would never drop below these gray lines, creating a 90-degree 
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angle, which implies there is 100% area under the curve, or a 100% AUC. Nonetheless, 
because this model falls below the gray lines (near coordinates (1.0, 0.7) to (0.6, 1.0)), this 
implies that certain threshold ranges disabled the model from distinguishing between the 
responsive and unresponsive cases. The ROC Curve resulted in a 91.67% AUC, demonstrating 
that the model was highly functional, as it was above 90% and often made the correct 
predictions of the treatment response. 
 
5.​ Discussion 
 
5.1 Fulfillment of the Gap in the Research 
 
By developing a model to predict the treatment response of CF patients, this model further 
elaborates on the identified research gap. Several predictive tools are recognized for CF 
treatment response, yet fail to develop ML models that can be applied to clinical environments 
and used to quickly assess a patient’s response. For instance, Yue et al.’s study, although it 
develops a scoring mechanism to provide the extent to which the patient responded, it may 
pose a few gray areas. This score by Yue et al. does not depict a clear line between the 
responsive and unresponsive patients, and thus, may be difficult for a medical official to provide 
the patient’s next steps. However, the model aims to bridge this gap by developing a logistic 
regression binary classification algorithm, which classifies the patient’s responsiveness into one 
of two categories: responsive or unresponsive. The proposed model can initiate research in this 
gap and allow for future advancements.  

 
5.2 Limitations 
 
It is significant to recognize the limiting factors of this study and interpret the results in the 
broader context of the presented research. To begin, the limited accessibility of CF patients 
undergoing ETI treatment provided by the GEO Database was identified as a constraint, as few 
published datasets contained the necessary data. As a result of restricted accessibility, the 
sample size was smaller than ideal. With greater availability of relevant datasets, the predictive 
model may have achieved a superior performance. A larger training dataset would have 
reinforced the model with greater predictive power, thereby enhancing accuracy. 
 
Furthermore, the disparity between the datasets utilized constitutes another limitation. Dataset 1 
comprised data from the affected intestinal organoid of the CF patients, whereas Dataset 2 
concentrated on affected nasal epithelial cells. Although this study does not inquire into the 
impact of varying cell types, homogenizing this factor may have led to marginal improvements in 
the model’s performance. Consistency in cell type could have reduced slight variations in gene 
expression, as similar cell types often share comparable genetic profiles for analogous 
functions. Nonetheless, the examined cell types exhibit similar characteristics, and expression is 
not substantially divergent.  

 
5.3 Implications 
 
The proposed research and the results can motivate similar developments in clinical AI. 
Regarding communal impact, the study proposes a novel approach and diagnostic tool that, 
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upon refinement, can establish an accurate diagnosis and treatment for F508Del CF patients. 
This can assist experts in the medical industry and improve clinical treatment depending on the 
individuality of the CFTR mutation. The application of this tool also proposes greater access to 
treatment and improved patient survival rates. The application and further research upon this 
model and others can improve the ability for patients to seek assistance and gain valuable 
insight into personalized future medication. By leveraging binary classification, doctors and 
healthcare professionals can assess the patient’s response to ETI to provide future directions 
for the patient to promote optimum care.  
 
Moreover, DGE analysis demonstrated a profound impact on the performance metrics of the 
genetic scaling method. Through comprehension of the proposed research, DGE Analysis can 
be employed before predictive model test runs, allowing for greater accuracy of the model when 
examining the treatment response of genetic disease. 
 
5.4 Future Directions 
 
An important aspect of this model is that the variables can be modified to suit a larger range of 
patients. For instance, the model can be generated to produce the responsiveness to treatments 
aside from ETI. In addition, the algorithm can be modified to complement other CF variants, 
which can clinically benefit the broader CF community. 
 
Finally, this specific algorithm could improve accuracy through the integration of multi-omics 
data. Multi-omics data refers to the combination of genomics, transcriptomics, proteomics, etc., 
to create a multi-layered dataset deriving from protein, genetic, RNA, and other biological agent 
expressions. Considering the accessibility to relevant data, multi-omics was not a possibility for 
the framework of this model. Nonetheless, multi-omics has been proven to significantly enhance 
predictive model performance. For example, in a study by Hua Chai and fellow researchers at 
Sun-Yat Sen University in China, the paper aimed to develop a multi-omics approach to 
accurately predict cancer prognosis. The study retrieved notable results on the implementation 
of multi-omics data for predictive model accuracy, as the model accuracy improved by 6.5% with 
the addition of multi-omics data (Chai, 2021). 

 
6.​ Conclusion 
 
Ultimately, the research adds to the cornucopia of treatment response prediction, specifically 
concentrating on CF F508Del mutants. The study addresses the gap for predictive models to aid 
CF treatment diagnosis and permits further research to resume ML algorithmic prediction for 
treatment personalization. My research also intensified my initial assumption that AI is beneficial 
in healthcare, due to its high accuracy despite a small sample size and limited accessibility to 
optimum CF Genetic data. Due to the high performance of the model, with an accuracy rate of 
~86%, I was able to develop my new understanding that a logistic regression model using 
binary classification can generally predict F508Del-mutated CF patients’ response to ETI. This 
can help assist further research in this niche field by also leveraging this tool and elaborating on 
this tool to improve clinical diagnoses, treatment prognosis, and understanding differences 
amongst responders and non-responders. It is significant to acknowledge the limitation of a 
minimal sample size, which emphasizes the requirement to optimize this study in future 
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research to ensure that a functional logistic regression model persists with a high accuracy rate 
when substantiated with a greater data population and multiple datasets. Despite this, the 
accomplishment demonstrates in a broader context that AI is capable of automating current 
systems to eradicate human error and time-consuming operations in the healthcare field. 
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9. Appendix A 
 

9.1 CSV Files with Relevant Samples 
 

Dataset ID Citation Link to Original 
Dataset 

Link to Modified Version Used in 
This Study 

GSE263022  Cinek et al., 
2025 

https://www.ncbi.nlm.ni
h.gov/geo/query/acc.cgi
?acc=GSE263022 

https://docs.google.com/spreadshee
ts/d/18n6Rfkw0D9Y9z0fOzZNVBMH
7FvzUr3HIVr1xeflZ3Ks/edit?gid=0#g
id=0 

GSE139078  De Jong et 
al., 2021 

https://www.ncbi.nlm.ni
h.gov/geo/query/acc.cgi
?acc=GSE139078 

https://docs.google.com/spreadshee
ts/d/1L0BBPjMAcZU022e0d3zXcqM
B_GnqG4cv2vEEG-Tu5To/edit?usp
=sharing 

 
9.2 GitHub Repository of the R Program for Model Development 
 
Github repository link: https://github.com/rk-hue/Cystic-Fibrosis-Treatment-Response-Model 
 
9.3 Figure of The R Program 
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Figure 5: This program is the same code as in the GitHub Repository. The figure was added to 
address the potential inability to access the GitHub link. 
 
10. Appendix B 
 
10.1 Technical Equations to Calculate the Performance Rates 
 

Performance Evaluator Equation 

Accuracy Rate (True Positives + True Negatives)/(True Positives + True 
Negatives + False Negatives + False Positives) 

Sensitivity Rate True Positives/True Positives + False Negatives 

Specificity Rate True Negatives/True Negatives + False Positives 
Table 1: A True Positive is an actual responder, while a False Positive is the model’s incorrect 
prediction of a responder. A True Negative is an actual non-responder, while a False Negative is 
the model’s incorrect prediction of a non-responder. 
 
10.2 Extended Results From the Model Evaluation 
 
Metric Value Interpretation 

Confidence Interval 95% CI: 
(0.6366, 
0.9695) 

The program is 95% confident that the accuracy 
of the model lies between 63.66% and 96.95%. 
This is a wide range due to the small sample size. 

Kappa Value 0.6957 This implies that the agreement between the 
model’s predictions and the true labels is on a 
good level. The closer the kappa value is to 1, the 
less likely that the agreement of the predictions 
with the true labels was by chance. 

Positive Predictive 
Value 

1.0000 
(100.00%) 

Whenever the model predicts a positive case or a 
responsive case, it is correct 100% of the time.  

Negative Predictive 
Value 

0.8000 
(80.00%) 

Whenever the model predicts a negative case, or 
an unresponsive case, it is correct 80% of the 
time. 

Prevalence 0.4286 
(42.86%) 

~42.86% of the data belongs to the positive class, 
or is a responsive case. There is about a 50/50 
split between both cases, which eradicates 
possibilities for the model to guess on random 
chance or bias. 
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Detection Rate 0.2857 
(28.57%) 

28.57% of the data were true positives. 

Detection Prevalence 0.2857 
(28.57%) 

The model predicted 28.57% of the cases as 
positive, or responsive. Because this value is 
equivalent to the detection rate, it implies that the 
model was able to predict all of the positive cases 
correctly. 

Table 2: This table presents a comprehensive summary of the mode evaluation, incorporating 
additional factors not discussed in the main text to maintain focus and relevance. 

21 


