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Abstract 

C++ remains a dominant language for performance-critical systems, yet its reliance on 
manual memory management from the developer introduces significant safety risks. Memory 
leaks and dangling pointers can result in a constant increase in memory usage, eventually 
making a system crash. Such leaks and errors can also allow malicious individuals to access 
the internal RAM of the system and change any data as they choose, making such errors 
extremely dangerous and a security liability. This paper will evaluate the memory safety and 
integrity/stability of C++, focusing on the latter mentioned common vulnerabilities. Through a 
custom benchmarking suite, the study assesses the trade-offs between performance and safety 
while using several features and programming techniques. This analysis highlights the 
effectiveness and limitations of current mitigation techniques, offering insights into the feasibility 
of securing C++ applications without compromising their runtime or memory usage, along with a 
comparison with a standard managed language, Java. 

Introduction 

Memory management is a critical and challenging aspect of software development, 
particularly in C++, a language widely used for performance-intensive applications such as 
operating systems, game engines, and embedded applications. Unlike modern programming 
languages that incorporate automatic memory management (such as Java), C++ relies on 
manual memory allocation and deallocation, providing developers with fine-grained control over 
system resources. However, this flexibility comes at a cost: the increased chance of 
memory-related errors such as leaks, buffer overflows, and use-after-free vulnerabilities [1]. This 
means that security-sensitive projects that could have otherwise benefited from C++'s speed will 
not be able to employ this benefit, as a potential memory leak will give malicious users a way to 
modify content directly on RAM. 

One of the fundamental trade-offs in C++ memory management is the balance between 
performance and security. Raw pointers and manual memory allocation, while highly efficient, 
can introduce significant risks such as undefined behavior and exploitable security flaws [2]. 
Smart pointers, introduced as a safer alternative, automate memory deallocation through 
reference counting and ownership semantics, reducing memory leaks. However, studies show 
that these mechanisms introduce performance overhead, particularly in scenarios where any 
general optimization techniques are not applied. In Babati and Pataki's paper on C++'s smart 
pointers, it was measured that without proper optimization shared\_pointers can take up to five 
seconds for compilation compared to a raw pointer in extremely large programs. Even then, 
optimization only mitigates the issue to an extent with shared_pointers [3]. Similarly, techniques 
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like "Resource Acquisition Is Initialization" (RAII) offer structured memory management, but they 
require disciplined coding practices and do not eliminate all forms of memory errors [4]. 

Despite the availability of tools such as AddressSanitizer and MemorySanitizer, which aid 
in detecting memory-related issues [5], vulnerabilities persist, especially in large-scale, 
performance-critical applications. Memory integrity techniques, including stack canaries and 
memory tagging, have been proposed to mitigate these risks at the hardware level, but their 
adoption remains limited due to compatibility concerns [6]. Moreover, comparisons with 
managed languages such as Python highlight C++’s efficiency at the expense of stability and 
safety,  where Python manages to take 2.02 times the time and 2.03 times the memory usage in 
the best case, and 10.85 times the difference in the average case due to the interpreted nature 
of the language [7]. 

Methods 

The evaluation methodology combines controlled experiments with real-world memory 
management patterns to assess performance and safety trade-offs. All tests were conducted on 
a Debian 12 system using GCC 13.2 with -O2 optimization unless otherwise specified. The 
program includes tests RAII programming techniques, Smart Pointers, the fsanitize feature, and 
more. More is explained in the Test Cases section. 

The compiler used for this test was the GNU GCC 13.2 with C++17 standard. The 
sanitizers tested were the inbuilt AddressSanitizer (-fsanitize=address) and MemorySanitizer 
(-fsanitize=memory). The performance measuring tools used were Linux perf and custom 
memory tracking in the program itself. The test system was a Debian 12 virtual machine running 
on Orbstack on an ARM-based Apple Silicon M1 Pro processor. We developed a custom 
benchmarking suite evaluating seven main aspects of C++ memory management: 

● RAII Patterns: Measured resource acquisition/release timing using custom wrapper 
classes 

● Smart Pointers: Compared the performance of unique_ptr and shared_ptr against raw 
pointers [3] 

● Raw Pointer Risks: Intentional creation of memory leaks and dangling pointers to 
demonstrate what happens if a leak does occur. Also used for the fsanitize test 

● Container Safety: Analyzed std::vector boundary checks and reallocation patterns 

● Memory Pooling: Custom allocator performance versus standard heap allocation 

● Move Semantics: Efficiency of std::move and std::swap operations 

● Sanitizer Effectiveness: Detection rates for uninitialized memory access [5] 
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The program used for the test uses nanosecond-resolution timing via std::chrono. 
Memory usage is tracked using malloc and /proc/self/statm. The number of detected 
vulnerabilities per sanitizer and an SLOC analysis of memory management boilerplate was also 
performed. 

● Custom memory allocation tracker using LD_PRELOAD hooking 

● Differential analysis between sanitized and non-sanitized builds 

● Memory access pattern visualization using heatmaps [5] 

This study only focuses on userspace applications and excludes kernel-level memory 
management. The benchmark suite also intentionally simplifies real-world scenarios to isolate 
specific memory operations. Results may vary with different compiler versions or hardware 
architectures [8]. Furthermore, the results could change as the size of the memory pool 
increases, and any perceived gap (or lack thereof) in comparisons between C++ and standard 
managed languages can grow or shrink as well, depending on the use case. Proper 
programming and use of language-specific tools can also play a huge role in runtime and 
memory usage. The GitHub link for the programs used can be found here: 
https://github.com/happysmaran/CPP_Memory_Evaluation 

Results 

The benchmarking suite revealed significant differences in both memory usage and 
execution time between sanitized and non-sanitized builds. All tests were timed with 
nanosecond precision. The updated measurements are summarized below. Memory is 
measured in kilobytes and time is measured in nanoseconds: 
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 The raw pointer test revealed a 4000-byte memory leak, which AddressSanitizer 
successfully detected. This validates the paper’s claim that raw pointers can introduce silent 
vulnerabilities, detectable only through thorough memory analysis. 

 

 

 

 

 

 

 

 

Analyzing the timing results, sanitized builds consistently showed substantial increases in 
execution time. For instance, the RAII test, which took 7250 nanoseconds without sanitization, 
ballooned to 2.28 10E5 nanoseconds with AddressSanitizer enabled. Similarly, other tests like 
the STL Containers and Smart Pointers tests exhibited 4–10x increases in runtime under 
sanitization. 

Memory usage exhibited the same stark contrast. In unsanitized runs, all test cases 
utilized between 2736 KB and 2868 KB of memory. With AddressSanitizer enabled, memory 
usage increased dramatically, ranging from 15380 KB to 15764 KB — more than a 5.6x 
overhead. The memory footprint varied slightly depending on the complexity of the test, 
particularly memory pooling and raw pointer handling. 
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Discussion 

The results strongly support the hypothesis that there is certainly a tangible trade-off 
between memory safety and resource overhead, not only in memory consumption but also in 
execution time, but that such trade-off is varying depending on what tools and techniques are 
used to make the program. Tools such as AddressSanitizer significantly improve detection of 
memory misuse but increase memory consumption by over 5.6 times and cause execution time 
to inflate by factors of up to 60x depending on the test. Similar performance penalties have been 
observed in comparative evaluations between unmanaged and managed languages such as 
C++ and Java, where safety often comes at the cost of speed [9, 10]. 

While this overhead can be unacceptable in production environments where memory 
usage can be severely limited (embedded micro-controllers, smaller satellite payloads), it is 
invaluable during testing and debugging. It should also be kept in mind that AddressSanitizer 
should not be used in production, meaning both the memory and execution time overhead 
would not affect production systems where memory issues should already have been corrected. 
This distinction echoes findings in embedded programming benchmarks, where runtime safety 
checks are avoided in release builds to preserve latency-sensitive behavior [11]. 

The consistency of memory usage and fast execution time across the unsanitized tests 
indicates efficient resource handling with techniques like RAII and smart pointers. No memory 
leaks occurred in these cases, reinforcing their role in safer memory management practices. 
Conversely, raw pointers once again demonstrated the risks inherent to manual memory 
management. 

Although the execution time of unsanitized builds was extremely low (generally under 100 
microseconds), the sanitized builds revealed hidden costs that would be critical to consider 
during development cycles for large-scale applications. These patterns are consistent with 
previous studies that have analyzed the optimization limits of C++ compilers and their impact on 
resource usage in performance-critical codebases [12]. 

Further comparison was made with a Java implementation of similar memory tests. The 
results from Java provided valuable insights into the differences between managed and 
unmanaged languages. For instance, the RAII equivalent in Java, which mimics resource 
management, showed execution times of 300950 nanoseconds and a memory usage of 1127 
KB, which is more than an order of magnitude higher than the C++ version without 
AddressSanitizer, but also less than half of the latter's RAM usage (7250 ns, 2736 KB). The raw 
pointer test in Java, simulating memory leaks, demonstrated negligible impact on memory 
usage due to Java’s garbage collection, where unused objects are automatically reclaimed. On 
the other hand, C++’s raw pointer test showed direct risks of manual memory management. 
This means that any cases where there is, in fact, a memory leak, will be managed by the 
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program automatically without any immediate threat to the program's security, although it is still 
generally considered ideal to fix such issues. 

Java’s performance overhead can be attributed to its automatic garbage collection and 
higher abstraction over memory handling, which, while safer and simpler, imposes runtime 
overhead. For example, the Array Allocation test in Java ran in 38374 nanoseconds, 
significantly slower than the C++ equivalent under normal conditions (where the latter executed 
in 500-5000 nanoseconds). Java’s memory management is more predictable but at the cost of 
some execution speed, as evident from tests involving dynamic memory allocation. It should 
also be noted that any memory advantage Java currently has over C++ is highly dependent on 
the size of the program and the program logic itself. Poor use of data can cause significant 
slowdowns and memory usage for either language, and it is up to a developer to determine how 
the program should handle it, with Java providing more safety nets and less tools, and C++ vice 
versa. 

Furthermore, the two programs for Java and C++ are not actually perfectly identical, as 
Java lacks features that C++ has, and features that C++ has are either automated by the JVM 
or not available in Java. 

Although Java’s performance in these tests is slower than C++, especially in 
memory-intensive scenarios, it offers significant advantages in terms of memory safety and 
developer productivity. Java’s managed runtime ensures that developers are less likely to 
encounter memory leaks or undefined behavior, which are risks inherent to C++ programming. 

In the end, the results of this study suggest future research into stress tests or more 
complex workloads to better analyze scaling behavior under sanitization and under realistic 
production loads. Such evaluations can benefit from established practices in statistically 
rigorous performance testing methodologies, as well as more rigorous and identical testing with 
managed languages such as Java [13].  
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