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Abstract

        
Figure 1: Graphical Abstract of Study 

 
Alzheimer’s disease (AD) remains one of the most challenging neurodegenerative disorders, 
particularly due to the difficulty of early diagnosis and lack of predictability in the progression of 
the disease in patients who already exhibit mild cognitive impairment (MCI). Recent advances in 
lipidomics and machine learning offer new avenues for uncovering biological markers that may 
be predictive of disease development. This study explores whether a machine learning model 
trained on plasma lipidomic data and select biomarkers can effectively identify MCI patients at 
higher risk of progressing to AD. We used a publicly available dataset of 212 participants, 
focusing specifically on a subgroup of 89 MCI patients who progressed to developing AD. 
Clinical metadata were reduced to retain only lipidomic features and a derived Tau Ratio (CSF 
p-tau / total tau), and machine learning classifiers were trained to predict binary progression 
outcomes. Models evaluated included Random Forest, Logistic Regression, Support Vector 
Machine, Decision Tree, Naive Bayes, and a neural network. The best-performing models 
(Random Forest and Decision Tree) achieved accuracy scores of 0.7778, with balanced 
precision and recall scores. Feature importance derived from the Decision Tree model revealed 
a set of lipidomic variables with high predictive contribution. These findings demonstrate that 
lipidomic profiles, particularly when enriched with biologically relevant ratios like Tau Ratio, can 
contribute meaningful signals to classification models. While exploratory in nature, this work 
supports the utility of machine learning for neurodegenerative disease prediction and offers a 
reproducible pipeline for future studies aiming to integrate lipidomics into clinical screening tools 
for AD risk.  
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1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia, currently affecting over 50 
million people worldwide, with projections estimating that number will triple by 2050 (Nichols et 
al., 2022). One of the most critical challenges in addressing AD is the early and accurate 
identification of patients likely to progress from mild cognitive impairment (MCI) to full clinical 
AD. Traditional methods, such as cognitive tests and imaging, while valuable, are limited by their 
accessibility, invasiveness, and cost. Blood-based biomarkers—particularly lipidomics 
ones—have gained attention as non-invasive, scalable alternatives that may reflect key aspects 
of AD pathophysiology. 

Lipids play essential roles in cellular structure, signaling, and metabolism that are often 
impacted in health and disease. Dysregulation in lipid pathways has been implicated in 
neurodegeneration, with recent studies suggesting that changes in plasma lipid profiles may be 
associated with amyloid and tau pathologies, as well as clinical progression from MCI to AD 
(Dakterzada et al., 2023). For instance, altered sphingomyelin (e.g., SM(36:0), SM(40:1)) and 
diglyceride (e.g., DG(44:3)) levels may affect amyloid precursor protein processing and Aβ42 
aggregation, while reductions in ether-linked lipids are associated with oxidative stress and 
impaired tau clearance. These disruptions not only correlate with biomarker features but may 
also contribute directly to disease progression from MCI to AD (Dakterzada et al., 2023). 
Furthermore, the development of machine learning (ML) models has made it possible to analyze 
complex datasets and extract patterns not easily detected through conventional statistical 
approaches. 

This study evaluates whether a lipidomics-based ML model can successfully predict progression 
to AD in patients with MCI. By training multiple classifiers on lipidomic data and a biologically 
grounded Tau Ratio (CSF p-tau/total tau), we test the capacity of data-driven models to 
distinguish between MCI patients at higher and lower risk of disease conversion. Our findings 
propose supplementation to early Alzheimer’s detection and diagnostic protocol while 
additionally contributing to the growing literature on the use of machine learning for 
high-dimensional omics in neurology. 

 

 

2. Methods 

2.1 Data Source and Ethics 

The dataset used in this study was obtained from the Dataverse CSUC repository (DOI: 
10.34810/data614). It was originally developed by Dakterzada et al. (2023) as part of a study 
examining lipidomic changes related to Alzheimer’s disease (AD) progression. The data 
includes 213 participants: 104 with a diagnosis of AD, 89 with mild cognitive impairment (MCI), 
and 20 cognitively healthy controls. Participants were assessed using cognitive testing, 
cerebrospinal fluid (CSF) biomarkers (Aβ42, total tau, phosphorylated tau), and genotyping for 
APOE ε4 status. The age distribution of participants is illustrated in the bar plot below.  

2 

https://doi.org/10.34810/data614
https://doi.org/10.34810/data614


Figure 2: Bar Plot illustrating Age Frequency in Subject Population 

Lipidomic profiling for the dataset was performed on plasma samples using liquid 
chromatography–mass spectrometry (LC-ESI-QTOF-MS/MS). Since the dataset is publicly 
available and fully de-identified, no additional ethical approval was required for our analysis. 

 
2.3 Cohort Selection and Data Preparation 

For the purpose of our analysis, we focused on participants who had a baseline diagnosis of 
MCI. Within this group, we examined whether each individual eventually progressed to AD. 
Participants with missing progression labels were excluded, resulting in a refined dataset of 89 
participants containing only MCI patients with a known outcome — they either did progress to 
develop AD or did not. 

To better isolate the predictive value of plasma lipidomic data, we removed most conventional 
clinical and demographic variables, such as age, sex, MMSE scores, APOE status, and raw 
CSF biomarker concentrations. However, we retained a single engineered feature: the Tau 
Ratio, calculated by dividing phosphorylated tau by total tau in CSF. This ratio is widely used as 
a marker of tau pathology specific to AD, rather than reflecting general neurodegeneration. 
Including the Tau Ratio provided a reference point for evaluating how lipidomic patterns relate to 
established AD-associated biochemical changes, without reintroducing the full clinical profile. 

No scaling or normalization was applied to the features, and missing data were handled by 
simply removing rows with any missing values. Categorized outcome labels ("Yes"/"No" for AD 
progression) were retained in their original form. 
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2.4 Exploratory Correlation Analysis 

As part of our early analysis, we explored how lipid features correlated with established AD 
biomarkers (CSF Aβ42, p-tau, total tau), cognitive score (MMSE), and age. We used Pearson 
correlation to identify features with consistent associations across multiple clinical variables. 
Features with an absolute correlation above 0.3 in at least three comparisons were flagged for 
further attention, serving as a rough filter for analytical relevance. The correlation visualization 
did not reveal patterns or associations as shown below. The absence of strong linear 
correlations further justifies the use of nonlinear classifiers that can detect higher-order 
interactions among features. 

 

Figure 3: Correlation Matrix Heatmap 

 

2.5 Machine Learning Models 

To evaluate the predictive value of lipidomic data in determining which MCI patients progressed 
to Alzheimer's disease, we trained six common classification models: Logistic Regression, 
Random Forest, Support Vector Machine (SVM), Decision Tree, Naive Bayes, and a 
feedforward Neural Network. The dataset was split 80/20 into training and testing sets. Model 
performance was assessed using accuracy, precision, recall, and F1-score, with separate 
scores reported for each class (progressors vs. non-progressors). 
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Logistic Regression is a linear classification algorithm that models the probability of an 
outcome using a logistic function. It is widely used for its interpretability and low computational 
cost, particularly when data relationships are approximately linear (Hosmer et al., 2013). 
However, it can underperform on complex, nonlinear patterns, which are common in biological 
data. 

Random Forest is an ensemble model that builds multiple decision trees and averages their 
outputs to reduce overfitting and improve generalizability (Breiman, 2001). It handles 
high-dimensional data well, tolerates multicollinearity, and provides interpretable feature 
importance rankings. Its main drawback is reduced transparency compared to single-tree 
models, as the ensemble structure obscures specific decision pathways. 

Support Vector Machines (SVMs) classify data by finding the optimal separating hyperplane 
with maximum margin. SVMs perform well in high-dimensional settings and are effective even 
with limited data, but they require careful parameter tuning and are less interpretable than 
tree-based models (Cortes & Vapnik, 1995). Their performance can also suffer when class 
distributions are imbalanced. 

Decision Trees create a sequence of binary splits based on input features to predict outcomes. 
They are easy to visualize and interpret, making them useful for uncovering which features 
contribute most to classification. However, they are prone to overfitting, especially when used 
without pruning or regularization (Quinlan, 1986). 

Naive Bayes classifiers apply Bayes’ theorem with the assumption that all input features are 
conditionally independent. This assumption rarely holds in real-world data, especially in 
biological systems where many variables are correlated, but the method remains popular for its 
simplicity and speed (Rish, 2001). In our case, its performance was significantly lower than 
other models, likely due to the interdependence among lipidomic features. 

Neural Networks, implemented here via a Multi-layer Perceptron (MLP), consist of layers of 
interconnected nodes that allow the model to learn nonlinear and complex relationships. While 
powerful and flexible, they require larger datasets, are sensitive to parameter selection, and are 
generally considered less interpretable than other methods used here (Goodfellow et al., 2016). 

 

2.6 Feature Importance 

To better understand which features most heavily influenced the model's predictions, we trained 
a Decision Tree model and used its built-in feature importances method (see Fig. 3). This 
approach scores each feature based on how much it reduces impurity in the data when used to 
split nodes in the tree. Decision Trees were chosen for this analysis because of their 
interpretability, simplicity, and ability to handle unscaled, high dimensional data like lipidomics. 
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3. Results 

We evaluated six different classification models for predicting progression to Alzheimer's 
disease in MCI patients, using lipidomic features and the Tau Ratio as predictors. The models 
included Random Forest, Logistic Regression, SVM, Decision Tree, Naive Bayes, and a MLP 
neural network. 

Model performance (as shown in the table below) varied, with the highest classification accuracy 
(0.7778) achieved by both the Random Forest and Decision Tree models. Logistic Regression 
and the MLP both achieved 0.7222 accuracy, followed by SVM (0.6667) and Naive Bayes 
(0.5000). The Random Forest model demonstrated strong class balance, with perfect precision 
for non-progressors (1.00) and high recall for progressors (1.00), yielding F1-scores of 0.78 for 
both classes. The Decision Tree model also showed strong recall for non-progressors (0.91) but 
had slightly lower precision for progressors (0.80). 

Table 1: Derived Accuracy and Efficacy of Different ML Models 
ML Model Accurac

y 
Precision 
(no) 

Precision 
(yes) 

Recall  
(no) 

Recall  
(yes) 

F1-score 
(no) 

F1-score 
(yes) 

Random 
Forest 

0.7778 1.00 0.64 0.64 1.00 0.78 0.78 

Logistic 
Regressio
n 

0.7222 0.88 0.60 0.64 0.86 0.74 0.71 

SVM 
 

0.6667 0.78 0.56 0.64 0.71 0.70 0.62 

Neural 
Network 

0.7222 0.88 0.60 0.64 0.86 0.74 0.71 

Decision 
Trees 

0.7778 0.77 0.80 0.91 0.57 0.83 0.67 

Naive  
Bayes 

0.5000 0.62 0.40 0.45 0.57 0.53 0.47 

 

We evaluated feature importance using the Decision Tree model. Features with the highest Gini 
importance scores were lipidomic markers labeled by their mass-to-charge ratio and retention 
time. The top ten most influential features, supporting the interpretation that lipidomic variation 
independent of traditional clinical markers, contains signals relevant to AD risk (Figure 4). As 
shown in Figure 4, seven specific lipid features account for nearly all the predictive importance 
in the Decision Tree ML model. 
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Figure 4: Relative Feature Importance of Lipids in Decision Tree ML Model 

 

4. Discussion and Conclusion 

This study supports the feasibility of using plasma lipidomic data to predict Alzheimer’s disease 
progression in patients with MCI using standard machine learning models. While no single 
model excelled across all metrics, Random Forest and Decision Tree classifiers consistently 
demonstrated strong classification performance, especially in balancing recall between both 
progression classes.  

Notably, this study excludes traditional clinical and cognitive predictors, instead emphasizing the 
predictive potential of molecular signatures alone. Our findings mostly align with those of 
Dakterzada et al. (2023), who identified several neutral and ether-linked lipids (including 
plasmalogens and triglycerides) as correlated to both AD biomarkers and disease progression. 
While their work used classical regression models to establish statistical associations, our 
approach extends their findings by demonstrating that lipidomic patterns alone can effectively 
train machine learning models that reach high predictive accuracy. 

These findings have significant implications for the future of AD screening. Current diagnostic 
modalities such as neuroimaging (e.g., PET scans), cognitive testing (e.g., MMSE), and CSF 
analysis are effective but have important drawbacks. They are invasive, time-consuming, costly, 
or difficult to scale for population-level screening (Jack et al., 2018). In contrast, lipidomic 
profiling offers a more scalable and cost-effective screening technology. While it is unlikely that 
lipidomics alone will entirely replace existing clinical tools, our results suggest that it could play a 
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vital supplementary role, particularly in stratifying MCI patients early in the diagnostic process 
and prioritizing them for further evaluation. This would help address a current bottleneck in early 
diagnosis, enabling more proactive and personalized treatment interventions (Toledo et al., 
2017). 

However, several limitations merit discussion. First, this analysis did not incorporate genetic 
carrier status, such as APOE ε4, despite its well-documented influence on lipid metabolism, 
amyloid accumulation, and AD risk (Huynh et al., 2017). Excluding APOE status helped us 
isolate the predictive power of plasma-derived features alone, but future work should test how 
layering in genetic data may improve model accuracy and help define distinct molecular 
subtypes of MCI patients. Additionally, the study’s modest sample size, lack of external 
validation cohort, and default hyperparameter settings limit generalizability. Follow-up studies 
with larger and more diverse populations—ideally across multiple clinical sites—are needed to 
validate these findings and optimize model performance. 

Another relevant clinical question concerns the role of amyloid deposition in the absence of 
Alzheimer’s disease. Amyloid plaques have long been considered a central hallmark of AD, yet 
numerous studies have shown that some cognitively normal older adults present with amyloid 
accumulation without ever developing clinical dementia (Aizenstein et al., 2008; Jack et al., 
2018). This dissociation complicates biomarker interpretation, especially in the early stages of 
the disease. Because our approach does not directly depend on amyloid status but instead 
relies on plasma lipid profiles, it may offer additional value in detecting clinically relevant 
neurodegeneration, even in individuals with ambiguous amyloid findings. As new research 
continues to highlight tau as a more direct correlate of symptom progression (Ossenkoppele et 
al., 2018), lipidomics may serve as an informative adjunct to both amyloid and tau markers in a 
broader diagnostic framework. 

In conclusion, this work demonstrates the potential efficacy of machine learning applied to 
lipidomic data as a scalable, biologically grounded approach for predicting AD development risk 
in MCI patients. When integrated with existing clinical diagnostic tools, this method could 
support earlier intervention and more personalized care strategies while remaining minimally 
invasive in the preliminary stages of diagnosis. As biomarker research continues to evolve, the 
fusion of omics-based modeling with established clinical tools may shift Alzheimer’s diagnostics 
toward a multi-modal, precision medicine paradigm — supplemented by advances in machine 
learning as explored in this study. 
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5. Figure Legend 

 

Figure 1. Graphical Abstract of Study 

This graphic illustrates the methodology and conception of the study, showing that the 
combination of machine learning and lipidomic profiling can predict Alzheimer's disease 
progression.  

 

Figure 2. Bar Plot Illustrating Age Frequency in Subject Population 

This bar plot displays the age distribution of participants within the MCI subgroup. It was 
generated using Python’s matplotlib and seaborn libraries to visualize the demographic profile of 
the sample used for model training.  

 

Figure 3. Correlation Matrix Heatmap of MCI Progressing to AD 

This heatmap shows pairwise Pearson correlations among lipidomic features in MCI patients 
who progressed to AD. The matrix was created in Python using seaborn.heatmap and helped 
illustrate a lack of collinearity, thus suggesting the need for more advanced models. 

 

Figure 4. Relative Feature Importance of Lipids in Decision Tree ML Model 

This bar graph ranks the top 10 most influential lipidomic features used by the Decision Tree 
model, based on their Gini impurity reduction scores. It was produced using matplotlib and 
illustrates how specific plasma lipids contributed most strongly to prediction of AD progression. 
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