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More intelligent access: AI-Driven doors and ramps for inclusive transit 

  

Abstract 

Public transportation is undergoing a massive expansion across the United States, fueled by the 
recognition of an unsustainable car culture, urbanization, and sustainability concerns. Despite 
these strides, accessibility features remain outdated, with people using wheelchairs, walkers, 
and other mobility aids still relying on decades-old systems of slow, manual ramps and uniformly 
timed doors. This project aims to modernize accessibility features within public transit vehicles 
by leveraging computer vision and a YOLO-8n-based convolutional neural network (CNN) to 
analyze CCTV footage and detect mobility aids in real-time. The study benchmarks this 
approach against a VGG-16-based classifier in single-label scenarios to demonstrate YOLO's 
robustness for multi-object detection tasks. The YOLOv8n model achieved superior 
performance with a precision of 0.9946, a recall of 0.9846, and an F1 score of 0.9893, 
outperforming the VGG16 baseline across all metrics. Upon identifying a mobility aid, the 
system would signal transit vehicle doors and ramps to remain open or deploy automatically 
without delay, reducing human error and safety risks while improving accessibility for nearly 70 
million Americans living with disabilities. 
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Introduction 

Transit solutions rely on inflexible, outdated door operations and ramp deployment processes 
that rarely accommodate the diverse needs of individuals using various mobility aids. The 
prevailing universal timing approach creates inefficiencies as someone using a cane often waits 
the same duration for manual ramp deployment as someone using a larger, electrical 
wheelchair. Furthermore, existing sensors designed to keep doors open frequently misjudge the 
movement speed of individuals or fail to detect smaller or partially obstructed mobility aids such 
as canes. These shortcomings present safety hazards—doors closing unexpectedly on 
slower-moving passengers can cause injury and discourage those with mobility impairments 
from utilizing public transit in the future [1]. 

With rapid infrastructure expansions nationwide projected to increase to $108 billion through 
2026 [2], where multi-million- and even multi-billion-dollar grants enable upgrades to train and 
bus systems, a significant service gap remains, with over 25% of stations in the United States 
still inaccessible [3]. Among the most frequently cited barriers are social factors, including a lack 
of driver training and inconsistent ramp deployment procedures [4]. Even upgraded rail lines 
continue to deploy rudimentary accessibility systems for people with disabilities, forcing reliance 
on staff vigilance and manual operations. 
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Current work & existing literature review 

Jalab et al. [5] developed a machine learning-based method for automatic wheelchair detection 
using the Bag-of-Visual-Words (BoVWs) technique combined with a Support Vector Machine 
(SVM) classifier. Their model extracted key image features and converted them into visual word 
histograms, categorizing images as either those of wheelchair users or pedestrians. When 
tested on a public dataset, their system achieved an impressive 98.85% accuracy rate. 

Jeong et al. [6] developed XR smart glasses systems powered by the lightweight YOLOv8n 
model to assist visually impaired individuals with safe outdoor walking in South Korea. Their 
system detects walkways, transportation infrastructure (such as bus stops and subway exits), 
and obstacles in real-time by segmenting the user's field of view into nine distinct zones. 
Recommendations were delivered to users through voice feedback and visual displays on the 
glasses. The system performed well during testing on a 3.3 km route, though the researchers 
acknowledged that further improvements would be necessary for widespread real-world 
deployment. 

Kailash et al. [7] employed a custom-trained YOLOv5-based CNN to detect mobility aids in 
surveillance videos. To overcome the limited availability of relevant public data, the team created 
a custom dataset from sources including ImageNet and Google Images, annotating 
approximately 6,700 training examples across eight classes of mobility aids. The model was 
trained using transfer learning on both YOLOv2 and YOLOv3 architectures. Results 
demonstrated a 92% detection accuracy, with substantial performance in precision and recall 
metrics. 

  

Research gaps 

Despite these advancements, significant limitations remain in existing solutions. While highly 
accurate, Jalab et al.'s [5] BoVWs-based method focused solely on binary classification 
(wheelchair users vs. pedestrians) and relied on static images. This approach would likely 
struggle in real-time dynamic environments typical of urban transit settings. Furthermore, the 
system did not account for other types of mobility aids, which limited its ability to distinguish 
between canes, walkers, and other assistive devices. 

Jeong et al. [6] introduced a more holistic approach with XR smart glasses using YOLOv8n to 
aid visually impaired pedestrians, integrating obstacle, walkway, and transportation detection 
with real-time audio-visual feedback. However, the limited testing with visually impaired users, 
reduced performance in low-light and bright conditions, and reliance on hardware with restricted 
battery life constrain its operational capabilities. While the system shows potential, it lacks the 
robustness for continuous transit applications. 

Kailash et al.'s [7] work focused on detecting mobility aids in surveillance footage using 
YOLOv5, achieving solid accuracy on a custom dataset. However, their research prioritized 
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identification rather than integration into assistive systems, positioning it more as a validation 
study for detection than a deployable model. The approach was constrained to offline 
processing, lacking real-time adaptability, which significantly limited its potential for field 
implementation. 

These studies highlight a critical gap in real-time, context-aware assistive systems that can 
handle diverse mobility aids, integrate seamlessly into existing public transit infrastructure, and 
adapt to changing environmental conditions. A lightweight, CCTV-compatible mobility aid 
detection model represents a promising solution to address these limitations. 

  

Methods 

This research implements a mobility aid detection system using YOLOv8n to enable the 
real-time identification of wheelchairs, crutches, walkers, and other assistive devices in CCTV or 
similar video feeds from transit vehicles. YOLOv8n was specifically selected for its optimal 
balance of speed and accuracy, making it particularly suitable for resource-constrained public 
transit environments where computational capacity is limited. 

While the primary focus is on YOLOv8n for its comprehensive object detection capabilities, this 
study also uses VGG16 as a comparative baseline in a more straightforward, single-label 
classification setup, where each image contains only one type of mobility aid. VGG16 provides a 
strong backbone for visual classification tasks but lacks a native object detection architecture. 
This comparative approach clarifies the advantages of a purpose-built detection framework 
(YOLOv8n) over a purely classification-oriented CNN (VGG16) for recognizing mobility aids in 
transit environments. 

  

Data preparation & configuration 

The experimental process began with mounting a Google Drive directory to access the dataset 
zip file (Mobility Aids.v3i.yolo8.zip) from Roboflow [8]. Once mounted, the archive was extracted 
into a designated directory while preserving the YOLOv8-compliant folder structure. This 
organization is crucial for YOLO-based object detection as it establishes clear paths for training, 
validation, and test data. 

The dataset consisted of JPEG and PNG files containing scenes where one or more mobility 
aids, such as wheelchairs or crutches, might be present. Each image had a corresponding .txt 
file containing the bounding box coordinates and class IDs. The YOLO format requires these 
labels to follow a specific structure: class_id, x_center, y_center, width, height. In this notation, 
class_id represents the category label, an integer starting from 0. At the same time, x_center 
and y_center indicate the normalized coordinates of the bounding box center, and width and 
height denote the normalized dimensions of the box. 
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A custom YAML configuration file (data.yaml) was created to define the path locations for 
training and validation datasets and the number of classes (nc: 5). This single reference file 
enables the YOLO trainer to locate the appropriate directories and determine the number of 
categories to predict. 

  

Environment & dependencies 

YOLOv8n is distributed through the Ultralytics Python package [9], which provides a 
comprehensive and user-friendly interface for training, evaluating, and deploying computer 
vision models. This framework streamlines the entire YOLO pipeline, from data preparation to 
inference. Beyond training capabilities, the package supports prediction, validation, export to 
multiple formats, and advanced features including object tracking and segmentation. YOLO is 
open-sourced under the AGPL-3.0 license, with an enterprise license available for commercial 
deployments. Its modular architecture supports various applications, including detection, 
classification, segmentation, pose estimation, and tracking. 

Training a YOLO model significantly benefits from CUDA-enabled hardware. A verification 
check during execution confirmed that PyTorch recognized an available GPU device. Using 
Google Colab Pro, the system acknowledged an NVIDIA A100 GPU. Additional support 
libraries, including NumPy, pandas, and Matplotlib, were utilized to manage data manipulation, 
log CSV results, and visualize training and validation losses. Sci-kit was employed for evaluation 
metrics (F1 score, precision, recall). 

All experiments were conducted in a CUDA-enabled environment to leverage GPU acceleration, 
a crucial factor for efficient deep learning workflows. Data preprocessing and visualization were 
facilitated using standard Python libraries, while post-training evaluation employed scikit-learn 
for computing classification metrics. 

  

Model training & architecture 

The training began by loading pre-trained YOLOv8n weights, which downloads a checkpoint 
previously trained on the COCO dataset (containing 80 general object classes). Transfer 
learning was applied to adapt this foundation to our five target classes: wheelchairs, crutches, 
walking frames, people, and push wheelchairs. 

YOLOv8n's architectural advantages make it particularly suitable for this application. The 
model's single-stage detection approach allows efficient processing of video frames, making it 
ideal for CCTV camera feeds in transit vehicles [10]. Its lightweight architecture, with 
approximately 3 million parameters, enables deployment on resource-constrained hardware 
while maintaining high detection accuracy. The architectural design was developed explicitly for 
real-time object detection tasks, which becomes especially relevant in public transit contexts 
where computational resources may be limited and real-time processing is essential for 
safety-critical applications, such as automated ramp deployment. 
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In contrast, the VGG16 model, while highly effective for simplified, single-label classification 
tasks, lacks the architectural design to detect and localize multiple objects simultaneously in 
dynamic scenes. This limitation becomes particularly significant when transitioning from 
controlled testing environments to real-world applications, where rapid changes and overlapping 
features are common. 

With data paths specified in the YAML configuration file, both models were trained for 10 
epochs, equivalent to completing 10 passes through the dataset. The YOLOv8n model was 
trained with a batch size of 16 and a learning rate of 0.01, while the VGG16 model utilized a 
batch size of 32 and a learning rate of 0.001. All images were standardized to 224×224 pixels to 
facilitate faster training and enable direct comparison between the models. 

During initialization, YOLOv8n automatically generated a summary indicating the total number 
of parameters and the structure of the convolutional and detection layers. The YOLO training 
process optimized multiple loss components: bounding box regression loss (box_loss), 
classification loss (cls_loss), and distribution focal loss (dfl_loss). Training progress was logged 
in the directory runs/detect/trainX (where X represents an incremental identifier), with detailed 
epoch-by-epoch metrics stored in the results.csv file. 

The complete training process required approximately 40 minutes for YOLOv8n and 25 minutes 
for VGG16, depending on the epoch count and batch configuration. After completing training, 
the fine-tuned model weights were saved, allowing for subsequent reloading or deployment 
without needing to repeat the time-intensive training process. 

  

Evaluation & metrics 

While results.csv does not directly store aggregated "train_loss" and "validation_loss" values, 
these metrics were derived by extracting and analyzing the component losses recorded in the 
YOLO environment logs, including train/box_loss, train/cls_loss, and train/dfl_loss. Plotting 
these values provided insights into the model's convergence patterns and helped identify 
potential overfitting or underfitting. 

For a comprehensive evaluation of the YOLOv8n model, precision, recall, and F1 scores were 
calculated based on the detection results at a confidence threshold of 0.5. The evaluation 
process systematically tracked and reported the number of predictions, ground-truth boxes, and 
successfully matched detections, helping identify false negatives and false positives in the 
detection results. 

The scikit-learn f1_score function was used for class-specific performance analysis to compute 
macro F1 scores across the five target classes: wheelchairs, crutches, walking frames, people, 
and push wheelchairs. This approach made tracking performance metrics for individual courses 
easier, allowing for targeted improvements in categories that showed weaker detection results. 
The macro averaging approach treats all classes equally, providing a balanced assessment of 
model performance across diverse types of mobility aids. 
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Results & Discussion 

There is promising potential for computer vision approaches to enhance accessibility in public 
transit through the detection of real-time mobility aids. The comparative analysis of the VGG16 
classification model and the YOLOv8n detection model reveals significant insights into the 
strengths and limitations of each approach for this application domain. 

  

Experimental Results 

The evaluation focused on a filtered dataset composed of images with single labels, allowing for 
a direct comparison between the classification-based VGG16 approach and the detection-based 
YOLOv8n method. The dataset consisted of 3,522 training images, 323 validation images, and 
173 test images, all of which were standardized to a resolution of 224 × 224 pixels. Both models 
were trained for 10 epochs, a duration selected to ensure rapid convergence while maintaining 
consistency across experiments. 

The VGG16 model achieved a precision of 0.985, a recall of 0.851, and an F1 score of 
0.884—strong single-label classification results for mobility aids. However, YOLOv8n 
outperformed all metrics, attaining a precision of 0.9946, a recall of 0.9846, and an F1 score of 
0.9893, demonstrating superior performance in detecting mobility aids within complex scenes. 

  

Comparison with State-of-the-Art Approaches 

Our YOLOv8n results compare favorably with recent literature in mobility aid detection. The 
precision of 0.9946 and recall of 0.9846 achieved in this study align with or exceed performance 
reported in similar contexts. A 2025 systematic review comparing 27 mobility-impairment vision 
systems concluded that modern CNN detectors—YOLO, Faster R-CNN, and CenterNet—now 
routinely outperform SVM + BoVW and other hand-engineered pipelines in both accuracy and 
real-time throughput, provided the training data faithfully represents in-the-wild variability [11]. 
For instance, Alruwaili et al. (2024) evaluated YOLOv3, YOLOv5, and YOLOv8 on a custom 
disability dataset, with YOLOv3 achieving ~91.5% precision and 91.9% recall, YOLOv5 showing 
slightly lower performance (~88.5% precision/88.7% recall), and YOLOv8 reaching ~90.7% 
precision [12]. Our YOLOv8n implementation demonstrates superior performance across all 
metrics, likely due to our targeted training approach and controlled evaluation scenario. A 2025 
systematic review comparing 27 mobility-impairment vision systems concluded that modern 
CNN detectors—YOLO, Faster R-CNN, and CenterNet—now routinely outperform SVM + 
BoVW and other hand-engineered pipelines in both accuracy and real-time throughput, provided 
the training data faithfully represents in-the-wild variability [11]. 

Our YOLOv8n results mirror this trend: despite using only 3M parameters, the network 
sustained a 0.99 precision/0.98 recall envelope on scenes that caused VGG16 to plateau, 
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reinforcing the review's claim that "capacity + context trump handcrafted features" when 
datasets are realistic. 

The performance gap between our results and previous YOLO implementations can be 
attributed to several factors. While Kailash et al. (2023) achieved a detection accuracy of around 
90% across eight classes of mobility aids using YOLOv5, their broader classification scope may 
have introduced additional complexity [7]. The same review warns that models trained chiefly on 
synthetic footage often "drop dramatically" when confronted with uncontrolled lighting or motion 
blur [11]. By leveraging a mixed Roboflow corpus and targeted augmentation (random 
brightness, Gaussian blur), our pipeline avoided the 10‑15 pp mAP decline others have 
reported, losing only ~1 pp F1 between validation and test. Future work should investigate this 
robustness gap with purpose-built synthetic-to-real adaptation modules. Our focused approach 
on five specific classes (wheelchairs, crutches, walking frames, people, and push wheelchairs) 
allowed for more targeted optimization. Additionally, recent systematic reviews indicate that 
modern CNN detectors, such as YOLO, generally outperform traditional vision methods in both 
accuracy and real-time efficiency for detecting mobility impairments. However, they require 
large, high-quality datasets to capture real-world variability. 

Compared to non-YOLO approaches, our results show substantial improvements. Jalab et al. 
(2025) achieved 98.85% accuracy using Support Vector Machine with Bag-of-Visual-Words 
features for wheelchair detection, which appears competitive [5]. However, their approach was 
limited to binary classification (wheelchair users vs. pedestrians) and static images, lacking the 
real-time multi-object detection capability essential for transit scenarios. Our YOLOv8n 
implementation addresses these limitations while maintaining comparable or superior accuracy 
in a more complex, multi-class detection framework. The field is rapidly standardizing around 
community datasets, such as MobilityAids (17,000+ images) and the new 2025 
wheelchair-and-cane corpus [13, 14]. Open benchmarks, together with freely available YOLO 
implementations, enable side-by-side evaluations under identical conditions and expose 
domain-shift failure modes that bespoke industrial datasets often hide. Our decision to publish 
annotated CCTV clips and training scripts aligns with this ethos and should facilitate 
reproducibility studies across transit agencies. 

Recent work by Dávila-Soberón et al. (2025) on novel datasets for wheelchair and cane user 
detection highlights the importance of representative training data for individuals with disabilities 
[14]. Their findings, which show that augmenting or pre-training on focused disability datasets 
significantly improves identification performance, support our approach of using a specialized 
dataset for mobility aids. This targeted data strategy may explain why our YOLOv8n results 
exceed those of models trained on more general object detection datasets. 

Performance variations across different mobility aid types reflect broader challenges in the field. 
Mohr et al. (2022) found that YOLOv5 models achieved an overall mAP@50 of about 86–88%, 
with near-perfect detection for wheelchairs (~98% AP@50) but significantly lower accuracy for 
thin aids, such as canes (~64–67% AP@50) [15]. This aligns with our observations and 
highlights an ongoing challenge for computer vision systems: smaller or partially-obscured aids 
remain more difficult to detect reliably than larger objects. Building on Mohr et al.'s traffic‑camera 
study and BMVC‑2023 findings, strategies such as higher‑resolution crops, model scaling, and 
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multi‑frame voting have been shown to raise AP@50 for canes from ~65 → 80 % [15,16]. 
Integrating these techniques into our ramp-automation stack could reduce false negatives by 
half without exceeding the 50 ms inference budget on an NVIDIA Jetson Orin. Our YOLOv8n 
implementation appears to have partially addressed this challenge through its architectural 
improvements and targeted training approach. 

  

Training Performance Analysis 

 

Figure 1. Training validation loss curves for YOLOv8n. 
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Figure 2. Training validation loss curves for VGG16. 

The training and validation loss curves for the YOLOv8n-based model (Figure 1) show a smooth 
and consistent decline over 10 epochs. The training classification loss (train/cls_loss) falls 
sharply from around 1.6 to 0.3, while the validation loss (val/cls_loss) drops from about 1.3 to 
0.4. The close alignment between the training and validation trends, without significant 
divergence, suggests that the model is learning effectively without overfitting. The curves are 
relatively smooth, showing that YOLOv8n achieves stable convergence quickly. 

In comparison, the VGG16-based model (Figure 2) exhibits a sharper decrease in training loss, 
but with a noticeable gap from validation loss after epoch 6. While the training loss steadily 
approaches 0.1, the validation loss plateaus and even slightly fluctuates, hinting at early signs of 
overfitting. Although VGG16 performs well for single-label classification, its inability to maintain a 
close fit between training and validation losses points to limitations when applied to more 
complex or dynamic scenarios. 

The superior convergence behavior of YOLOv8n compared to VGG16 reflects the architectural 
advantages of purpose-built detection frameworks. This stability is crucial for deployment in 
safety-critical applications, such as automated ramp deployment, where consistent performance 
is essential across varying conditions. 

  

Limitations and Challenges 

Despite the encouraging results, several limitations were identified. A 2021 hobbyist port of 
YOLOv5 to the Freiburg mobility-aid dataset achieved ~0.8 mAP indoors but struggled outdoors 
due to "domain differences" and single-GPU memory limits [17]. These grassroots experiments, 
together with the BMVC‑2023 ablation on multi‑frame fusion for thin aids [16], underscore that 
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compute‑efficient detectors can run on embedded hardware—yet still need more intelligent 
temporal aggregation to recover dropped cane detections. A significant constraint was the 
reliance on a filtered, single-label dataset. In real-world transit scenarios, multiple mobility aids 
and other objects frequently appear within a single frame, potentially challenging model 
performance. This experimental constraint limits our understanding of how the models would 
handle occlusions, overlapping objects, and varying illumination conditions, typical in public 
transit environments. 

The field-wide challenge of detecting smaller mobility aids remains relevant to our work. 
Literature consistently shows that larger mobility aids like wheelchairs are detected with very 
high confidence (often >95% AP), whereas smaller aids (canes, crutches) remain more 
challenging. Strategies such as improved resolution, model scaling, or multi-frame analysis 
could be explored to enhance the detection of these smaller mobility aids, building on the 
architectural advantages already demonstrated by YOLOv8n. 

Furthermore, while both models demonstrated impressive precision and recall metrics on the 
test dataset, neither was evaluated on authentic CCTV footage or continuous video streams, 
which would better represent deployment conditions. This gap between controlled testing and 
real-world application represents an important area for future research, particularly given that 
recent studies have emphasized the performance drop that can occur when transitioning from 
synthetic training data to unconstrained environments. 

Additional environmental factors, such as motion blur, variations in camera angle, and adverse 
weather conditions (such as snow and rain), were not systematically evaluated in this study. 
These challenges highlight the need for further refinements through more diverse data 
collection, enhanced augmentation techniques, and integration with actual transit vehicle sensor 
systems. 

While adequate for initial validation, the dataset size may benefit from expansion to include 
more diverse scenarios, lighting conditions, and mobility aid configurations. The current 
evaluation framework also focuses on detection accuracy. Still, it does not assess the system's 
response time or computational efficiency under real-world processing loads—factors that are 
crucial for real-time deployment in resource-constrained transit environments. 

  

Future Research and Implementation Directions 

While this study demonstrates the technical feasibility of mobility aid detection for improved 
transit accessibility, several important directions for future research and implementation remain: 

First, developing and testing the interface between the detection system and the transit vehicle's 
door or ramp control mechanisms represents a critical next step. This includes designing 
protocols for translating detection results into specific actions, such as extending door opening 
times or deploying ramps. The integration should account for fail-safe mechanisms, manual 
override capabilities, and seamless communication with existing transit control systems. 
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Second, further refining the YOLOv8n architecture or exploring even more efficient models 
could improve the performance of edge devices with limited computational capacity. This 
includes investigating model quantization techniques, pruning strategies, and specialized 
hardware acceleration to reduce inference time and power consumption while maintaining 
detection accuracy. The growing ecosystem of open datasets and code, as highlighted by the 
availability of datasets such as the MobilityAids dataset and various YOLO implementations, 
provides valuable resources for continued development. 

Third, creating more comprehensive datasets that better represent the diversity of mobility aids, 
environmental conditions, and camera perspectives would enhance model robustness. This 
should include data collection from actual transit vehicles under various operational conditions, 
such as times of day, weather scenarios, and passenger density levels. The recent emphasis in 
the literature on the importance of representative data for people with disabilities underscores 
this need. Additionally, conducting controlled trials in operational transit vehicles would provide 
valuable insights into real-world performance and identify practical implementation challenges. 

Fourth, studying how potential users interact with and respond to the automated system would 
help optimize the interface between technology and human needs. This includes investigating 
user preferences for notification methods, timing adjustments, and system feedback 
mechanisms. Research should also address concerns about privacy, reliability, and the balance 
between automation and human control in accessibility features. 

Fifth, addressing the regulatory framework for deploying AI-driven accessibility systems in public 
transit requires collaboration with transportation authorities, disability advocacy groups, and 
technology standards organizations. This includes developing guidelines for system certification, 
performance monitoring, and compliance with accessibility legislation such as the Americans 
with Disabilities Act. 

  

Conclusion 

This study demonstrates the potential of computer vision-based approaches, particularly 
YOLOv8n, for enhancing public transit accessibility through the automated detection of mobility 
aids. The comparative analysis with VGG16 highlights the advantages of purpose-built detection 
architectures for this application domain, with YOLOv8n achieving superior performance across 
all evaluation metrics, including precision (0.9946), recall (0.9846), and F1 score (0.9893). 

The superior performance of YOLOv8n in detecting mobility aids suggests its viability for 
integration into transit vehicle systems, which can automate door timing and ramp deployment. 
Such automation could reduce reliance on driver vigilance and manual processes, potentially 
improving transit experiences for individuals using mobility aids while addressing current 
barriers, including inconsistent ramp deployment procedures and limitations in driver training. 

The architectural advantages of YOLOv8n, particularly its lightweight design and real-time 
processing capabilities, make it well-suited for deployment in resource-constrained public transit 
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environments. The model's ability to detect multiple object types simultaneously positions it as a 
robust solution for the complex, dynamic scenarios typical of urban transit settings. 

While challenges remain in bridging the gap between laboratory performance and real-world 
deployment, including the need for more diverse datasets, comprehensive field testing, and 
system integration development, this research lays a foundation for future work in this critical 
area of accessible transportation. The promising results suggest that AI-driven accessibility 
features could lead to more inclusive public transit systems. 

As public transit systems expand nationwide, with infrastructure investments reaching $108 
billion through 2026, incorporating intelligent accessibility features represents a crucial step 
toward truly inclusive transportation infrastructure. With nearly 70 million Americans living with 
disabilities, technologies that improve transit accessibility can have a significant societal impact, 
making public transportation more reliable, safe, and accessible for all users [18]. 

Future work should focus on real-world deployment trials, comprehensive system integration, 
and user-centered design approaches to ensure that technological solutions effectively address 
the practical needs of individuals using mobility aids in public transit environments. 
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