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Abstract 
Advancements in computer vision have transformed robotic perception, with 
segmentation models offering unprecedented precision over traditional object detection 
methods. This paper explores the application of Meta AI’s Segment Anything Model 
(SAM) in the context of the 2024 FIRST Robotics Competition (FRC) game, 
CRESCENDO. SAM delivers high-resolution, pixel-level object masks with minimal 
input, operating in a zero-shot manner that eliminates the need for extensive retraining. 
In robotics domains characterized by clutter and occlusion—such as competitive FRC 
gameplay—segmentation models like SAM and RISE have proven highly effective, 
especially when labeled data is scarce or conditions evolve over time. We compare 
SAM’s segmentation capabilities with conventional detection models, highlighting its 
advantages in spatial awareness, contextual understanding, and engineering simplicity. 
Real-world FRC examples demonstrate how segmentation-based systems enhance 
localization, alignment, and obstacle avoidance. We propose a vision framework that 
fuses SAM's segmentation with sensor-based data to improve reliability and strategic 
autonomy, presenting SAM as a scalable and adaptable vision solution in dynamic 
robotics environments. 
 

Intro 

Advancements in computer vision have revolutionized numerous domains, enabling 
automation and enhanced decision-making in complex environments. One of the most 
significant recent innovations is the Segment Anything Model (SAM), developed by 
Meta AI. SAM represents a breakthrough in image segmentation, offering the ability to 
generate high-precision, pixel-level object masks with minimal user input (Kirillov et al., 
2023). Unlike traditional detection models that rely on bounding boxes, SAM provides 
detailed segmentation, allowing for more accurate scene understanding. 

SAM is designed as a foundation model for segmentation, capable of generalizing to a 
wide range of tasks without requiring task-specific training. It achieves this by leveraging 
a powerful image encoder, a flexible prompt encoder, and a lightweight mask decoder. 
The model is trained on an extensive dataset, SA-1B, which includes over a billion 
segmentation masks. (Kirillov et al., 2023) Unlike conventional segmentation 
approaches that require extensive manual labeling, SAM can operate in a zero-shot 
manner, producing accurate masks from minimal user interaction. This ability makes 

 



 
 

SAM a highly adaptable tool for robotics applications, where real-time segmentation and 
adaptability to new environments are crucial. 

While object detection models are effective at identifying the presence and location of 
objects, they lack the granularity required for precise interactions with a dynamic 
environment. Detection models typically return bounding boxes, which provide coarse 
localization but fail to account for an object’s exact shape, size, and contours. (Sun et 
al., 2024) In contrast, segmentation models like SAM deliver pixel-level accuracy, 
offering a more refined understanding of object boundaries. This level of precision is 
particularly valuable in robotics, where decisions often depend on precise positioning 
and spatial awareness. 

This paper explores the potential of SAM within the FIRST Robotics Competition (FRC), 
an annual event where teams design, build, and program robots to complete dynamic 
game tasks. Each season, FRC presents a new challenge that requires teams to 
strategize, adapt, and optimize their robots for success in a fast-paced, competitive 
environment. 

In 2024, the FRC game CRESCENDO challenges teams to navigate a music-themed 
competition, where robots must score notes (orange disks) in speakers (high goal) and 
the amp (low goal), amplify their speaker, and climb onstage for endgame bonuses. The 
game features both autonomous and teleoperated phases, demanding precise robot 
alignment, object tracking, and strategic movement. With SAM’s segmentation 
capabilities, teams can enhance their robots’ perception, enabling more accurate 
positioning, real-time obstacle avoidance, and improved path planning—key factors for 
success in this dynamic and competitive environment. 

One of the most promising applications of SAM in FRC is improving robot alignment 
from the driver station. By segmenting field elements, game pieces, and surrounding 
structures, SAM provides real-time visual feedback that enables precise robot 
positioning. Operators can choose between a traditional camera feed or an augmented 
display showing an overlayed path, tailoring the experience to their personal 
preferences. 

SAM’s approach integrates data from multiple sources, not just the raw input from 
onboard cameras. This fusion of sensor data creates a richer, more comprehensive 
view of the field, enhancing the overall perception of the robot’s surroundings. As a 
result, the system offers a more detailed and versatile understanding than basic camera 
feeds alone. 

Unlike traditional object detection methods that simply draw bounding boxes around 
targets, SAM’s segmentation delivers a finer level of detail. This precision allows for 
more intuitive robot adjustments and reduces the need for frequent code updates, as 
the system adapts seamlessly to changes in the field environment. 

In autonomous navigation, SAM enables robots to recognize and track both static and 
dynamic obstacles, facilitating more effective path planning and obstacle avoidance. 



 
 

The detailed segmented maps help robots maintain a clear trajectory, even in 
challenging conditions, ultimately contributing to more reliable performance during 
competition. 

Comparing Utility and Tradeoffs between Segmentation and Detection 

In the field of computer vision, segmentation and detection serve as two fundamental 
approaches for identifying and analyzing objects within an image. While both methods 
contribute to decision-making in robotics, they differ significantly in their execution and 
the level of detail they provide. Instance segmentation classifies every pixel in an image, 
effectively dividing it into distinct regions corresponding to specific objects or 
backgrounds (Kirillov et al., 2023). This fine-grained approach is particularly useful for 
robot localization, as it enables precise identification of field elements, other robots, and 
obstacles—contributing to better path planning, collision avoidance, and strategic 
decision-making. Multiple studies in autonomous navigation and robotics have 
demonstrated that increased spatial detail from segmentation can lead to measurable 
improvements in these areas (Kimhi et al., 2025). 

Table 1: Comparison of Segmentation vs. Detection for System Design Decisions 

 Segmentation Detection 

Definition / Summary Classifies each pixel in an 
image, generating masks 
that outline exact shapes 
and boundaries of objects 

Identifies objects and 
draws bounding boxes 
around them to indicate 
approximate location 

Speed Generally slower per frame 
due to higher 
computational load, 
especially on less powerful 
hardware 

Typically faster and more 
lightweight, especially 
suitable for real-time 
applications on edge 
devices 

Accuracy High pixel-level accuracy; 
better in cluttered scenes 
and for precise localization 

Lower spatial precision; 
struggles with occlusion, 
dense clusters, and 
irregular shapes 

Ease of use Zero-shot models like SAM 
reduce setup effort, 
integration may require 
geometry-based 
post-processing 

Simpler outputs but often 
requires custom training, 
bounding box tuning, and 
NMS 

 



 
 

 

In contrast, detection identifies and classifies objects by placing bounding boxes around 
them, providing a more generalized representation of their locations without delineating 
exact boundaries. Although detection is commonly used to locate game pieces, 
obstacles, or competing robots, it often struggles with distinguishing individual objects in 
tightly clustered scenarios (Sun et al., 2024). Research indicates that detection models 
may merge adjacent objects into a single bounding box, while segmentation generally 
offers improved separation of closely spaced items, although in very dense clusters 
even segmentation can face challenges. 

From a technical standpoint, detection pipelines are often more code-intensive, as they 
require custom models and complex processing steps—such as generating, refining 
bounding boxes, and applying Non-Maximum Suppression (NMS) to remove 
duplicates—to achieve high accuracy (Sun et al., 2024). While modern zero-shot 
detection models are emerging, many still demand additional fine-tuning and exhibit 
variable performance across different datasets. In contrast, segmentation models like 
SAM operate in a zero-shot manner with minimal retraining. Furthermore, although 
segmentation outputs provide pixel-level detail, useful metrics such as object size, 
centers, and derived bounding boxes can be efficiently extracted through computational 
geometry methods, thereby transforming raw masks into actionable information without 
extensive postprocessing. 

Additionally, segmentation is critical for localization and mapping tasks such as visual 
odometry and SLAM. By segmenting key field features—boundary lines, goal zones, 
and obstacles—robots can generate detailed reference landmarks for accurate 
positioning without relying on heavily pre-trained detection models. One significant 
advantage of segmentation is the rich contextual information it provides; rather than 
merely reporting object positions, segmentation delivers detailed shape and texture data 
(Kirillov et al., 2023) that enables robots, and their vision systems to infer spatial 
relationships between objects. This additional context is invaluable when distinguishing 
between allied and opposing robots or closely spaced obstacles, thereby optimizing 
navigation, shooting angles, and autonomous routines. In contrast, as highlighted by 
Sun et al. (2024) , detection pipelines often involve multi-stage processes—such as 
designing anchor boxes, hyperparameter tuning, and applying post processing 
techniques like non-maximum suppression—that demand extensive custom coding and 
model-specific engineering. While detection may offer a lighter per-frame computational 
footprint, these additional engineering challenges can hinder adaptability in dynamic 
competition environments. 

Sample Use Case and Implementation Details  
FRC 971, a high school robotics team from Mountain View, 
California, utilizes a custom machine learning model combined 
with cameras to determine the exact position of their robot on 
the field. By leveraging this precise localization, their system 
can autonomously aim a turret toward the goal and compute 



 
 

the optimal shooting speed to propel the “note” (an orange disk) accurately. Additionally, 
FRC 971 employs camera-based object detection to locate the “stage,” a trussed 
structure that can obstruct a direct shot into the goal, in 3D space. If the system detects 
an obstruction, it either provides a prompt to the driver for manual intervention or 
autonomously directs the shot over the stage into a predetermined corner of their zone. 
This approach ensures a high degree of accuracy in scoring while minimizing wasted 
shots. 
 
 
FRC 6328, another high school robotics team from Littleton, 
Massachusetts, follows a slightly different methodology, relying on 
positional data derived from sensors like magnetic encoders to track the 
rotation of the wheels in their drive base. Rather than depending on full 
camera-based localization, their approach triggers alignment only when 
the shoot button is pressed. Cameras are primarily used to detect 
“notes” on the ground to activate their intake mechanism. This strategy 
simplifies the system architecture, reduces computational overhead, and 
maintains consistency, albeit at the cost of requiring more driver 
involvement for alignment tasks. 
 
 
 

Diagram 1: Comparison of Vision Strategies: FRC 971 vs. FRC 6328 vs. SAM 

 
A hypothetical FRC team integrating the Segment Anything Model (SAM) could achieve 
a synergy between these two approaches. SAM provides the reliability and high-fidelity 



 
 

spatial awareness seen in FRC 971’s camera-based system, while offering the 
adaptability and simplicity valued by FRC 6328. Through precise segmentation, SAM 
can identify and outline field elements, game pieces, and even other robots, providing 
rich pixel-level information for decision-making. Its zero-shot capability removes the 
need for extensive dataset collection and training, making it ideal for teams that want 
flexibility and power without a significant development burden. 
 
An alternative and widely used vision solution in FRC is the Limelight system, which 
offers a robust and production-tested library for both Java and C++. Limelight supports 
a wide range of targeting, localization, and pose estimation features—ranging from 
basic retroreflective target detection to advanced AprilTag tracking with MegaTag2 
integration. Teams can access simplified targeting information like horizontal offset for 
basic alignment or use pose estimation methods to update their robot's position using 
vision data. Limelight also supports dynamic pipeline switching, LED control, Python 
script integration, and even neural network-based object detection pipelines. 
 
While Limelight excels in structured vision tasks with pre-defined tags and pipelines, it 
differs from SAM in its approach to adaptability and data richness. SAM provides 
high-resolution, generalized segmentation of any visible object, enabling applications in 
game scenarios where elements are not tagged or may vary in appearance. 
Conversely, Limelight’s strength lies in its speed, low latency, and plug-and-play support 
for retroreflective and fiducial targets, with rich pose estimation tools and simplified 
deployment via NetworkTables. 
 

Table 2: Comparison of Limelight vs. Custom SAM Integration 
 
 Limelight Custom SAM 

Ease of Use Very easy to set up and 
integrate with FRC 
codebases; robust 
documentation and 
plug-and-play support 

Requires external 
hardware and custom code 
to run inference and 
integrate outputs. 

Benefits Low latency, optimized 
pipelines, AprilTag support, 
direct NetworkTables 
integration 

High-resolution masks of 
any object, zero-shot 
segmentation, contextual 
understanding of scenes. 

Drawbacks Limited to known targets 
(tags, retroreflective 
elements); less useful 
when objects are 
untagged, for 
object/gamepiece 
detection 

Slower inference and more 
complex integration 
pipeline; needs hardware 
acceleration for real-time 
use 



 
 

 
 
 
Ultimately, both SAM and Limelight represent valuable tools in a team's vision arsenal. 
SAM excels in flexible, zero-shot segmentation with deep contextual understanding, 
while Limelight offers a proven, performance-optimized framework for fast and reliable 
targeting and localization. A well-rounded vision strategy might even combine 
both—using Limelight for tag-based localization and SAM for game piece segmentation 
and driver-assist overlays—pushing the boundaries of what is possible in FRC robot 
perception. 

Conclusion 
 
The Segment Anything Model (SAM) from Meta introduces a powerful shift in how 
robots perceive and interact with their environment, offering a significant upgrade over 
traditional object detection approaches. Its ability to generate high-resolution, 
pixel-accurate segmentation masks in a zero-shot manner—with minimal need for 
retraining or custom datasets—positions it as a highly adaptable tool for competitive 
robotics applications like the FIRST Robotics Competition (FRC). 
 
Throughout this paper, we have explored how SAM’s segmentation capabilities provide 
key advantages in robot localization, path planning, obstacle avoidance, and 
decision-making. Unlike detection models, which rely on bounding boxes and often 
struggle in cluttered or dynamic environments, SAM delivers detailed object boundaries 
and contextual cues that enhance a robot's spatial awareness. These qualities are 
particularly valuable in FRC games like CRESCENDO, where precise alignment and 
real-time responsiveness are crucial for scoring and mobility. 
 
We also compared the engineering demands of segmentation versus detection. While 
detection may offer a simpler per-frame computational profile, it typically requires more 
extensive custom coding, complex model tuning, and post-processing to achieve robust 
performance. SAM, by contrast, minimizes engineering overhead while maintaining high 
accuracy across diverse scenarios. Its segmentation outputs can be easily converted 
into actionable metrics—like object centers or bounding boxes—through lightweight 
computational geometry, bridging the gap between raw visual input and robot control 
systems. 
 
Real-world examples from FRC teams such as 971 and 6328 illustrate the spectrum of 
current localization strategies, from advanced camera-based pipelines to simpler 
sensor-driven systems. A SAM-based solution could bridge these approaches, 
delivering the robustness of vision-based localization with the ease of deployment 
typically associated with sensor-based methods. By combining visual segmentation with 
sensor fusion, teams can enhance both autonomous and driver-controlled performance 
with minimal added complexity. 
 



 
 

Ultimately, SAM represents a foundational shift in how vision can be integrated into 
robotics. For FRC teams aiming to improve adaptability, precision, and efficiency, SAM 
offers a scalable, plug-and-play solution that reduces development time while unlocking 
new levels of strategic potential on the field. As segmentation models continue to 
advance, their role in robotics will likely expand—enabling smarter, faster, and more 
responsive autonomous systems in both competition and real-world environments. 
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