
Combining Artificial Intelligence Methods to Optimize Bus Routes in a Variable
Environment

Soham Patil, Cody Waldecker

Abstract - When there is a task with the freedom of many potential solutions, humans can have a
hard time finding an optimal solution in a sea of options. Computers, however, are faster at

finding solutions because they can analyze all of the available options more rapidly than humans.
This paper will be demonstrating the use of artificial intelligence in the development of bus

routes in an area. For this, we need to consider the bus stops, the distance from one stop to the
other, and the traffic in the area. Using all of that information, we can draw the best bus route for
every bus in a district. In the event of a changing environment such as a missing bus driver or
changes in traffic, a genetic algorithm can adapt quicker to the changes than a human. In this

paper, we will use a combination of a branch and bound search and a genetic algorithm to
determine the optimal route a bus should take to pick up students in a particular area. In addition,

in the event that a machine does not provide the best route due to a lack of time for testing
alternate routes, we demonstrate that it still finds a better route than a human given the same
amount of time. Our use case demonstrates that a machine learning algorithm is capable of
performing a task with more efficiency and better results than humans alone. These results

provide evidence that machine learning using a genetic algorithm may be used throughout the
commercial industry to improve productivity in many fields.

1. Introduction

This paper uses a combination of
two artificial intelligence methods to
determine the fastest route for a bus to
pick up students on the way to school.
The simulation setup involves a
predefined grid of streets, the locations of
the school and the stops, and traffic
conditions between each intersection on
the grid. Once the environment is
constructed, an initially random route is
selected as the baseline and the solution
is further refined. The solution is refined
through the use of a genetic algorithm
that determines the optimal ordering of
each stop along the route. This genetic
algorithm then makes use of a branch
and bound search algorithm which
determines the fastest route from one
stop to another, for example from the
school to stop A.

A genetic algorithm is an
operation in computer science that is
inspired by natural selection. Genetic
algorithms are commonly used to find

solutions for problems where there are
many different possible outcomes.
Genetic Algorithms work by using
selection to refine generations of
solutions to get better results over the
course of many generations. The
process is initialized with a single
generation with a defined number of
population members. Then, each of
those population members is identified
by what is called a genome, it is usually a
set of binary numbers that can be used
to determine an artificial “score” for each
member of the population. Each member
of a generation is evaluated on its score
and, like natural selection, the members
with the best score are used to determine
the members of the next generation. This
selection process continues for a
predetermined number of generations
and ultimately refines the solution space
over time to converge on an optimal
solution. The genome construction and
scoring will be further investigated in a
following chapter.

1

In order to determine the score
for each population member in a
generation, a branch and bound search
is utilized to find the fastest route
between two stops and return that time to
the genetic algorithm. The branch and
bound search used here is a breadth first
search algorithm. The search is best
visualized as a tree structure where each
branch of the tree represents a potential
solution to get from point A to point B.
The branches are differentiated by what
route was taken since there are many
solutions available depending on what
turn is made at each intersection. The
breadth first search starts with an initially
seeded path neglecting the traffic
conditions. Then additional branches are
broken off of the initial route at each
intersection and the process continues
using the same train of thought. The
search down each branch continues until
it reaches the desired point B, where it is
evaluated to see if it is the fastest current
solution, or until the time taken exceeds
the current best time. This method
reduces the need to search a wide
solution space for every option available
by terminating the search when a branch
no longer offers an optimal solution. The
branch and bound algorithm utilized here
will be discussed further in a following
chapter.

2. Analysis

2.1 Simulation Setup

The initial task for this research is
to set up a simulated grid of bus stops
and traffic patterns. Instead of a large
map with many intersections, dead ends,
and changing traffic conditions, an n-by-n
grid with stops and traffic conditions is
generated based on the user input. This
creates the environment in which our
genetic algorithm will find the best route
between 2 or more stops. There were
two main variables factored in to create
the grid, the number of stops and the

number of grid lines. Using these two
variables, a grid of any shape with as
many stops as desired can be generated.
In addition, the generation of the bus
stops is randomized so that the same
seed is never tested twice. To indicate
the traffic conditions, the programmed
time to transfer between grid points is
assigned a value of 1-3 and the traffic
pattern is output to a plot indicating a
green line if there was less traffic, a
yellow line if there was moderate traffic,
and a red line if there was heavy traffic,
see Figure 1 below. These lines are
placed on the grid lines so the genetic
algorithm can also consider traffic.

Fig. 1 Simulation Environment Example

2.2 Branch and Bound Algorithm

With the simulated traffic and
stops, a genetic algorithm may be used
to find the best route between stops,
however, this can be sped up by
implementing a branch and bound
search to collect transfer information. A
branch and bound algorithm is used to
search along different solution path
branches, for example going from one
bus stop to another, and optimizing the
route taken to reduce the time spent
traveling in this scenario.

In order to seed the problem, a
dictionary is created to hold a simulation
of the grid. This dictionary will simulate
all of the intersections and every node

2

that the branch and bound algorithm
goes through. Each intersection then has
a number assigned to it, for example, the
top left corner is indicated “1”. With the
knowledge of which intersections there
are on the grid, the branch and bound
algorithm is initiated. The algorithm is
then initialized with a shortest route by
first locating the closest intersection to
the stop, taking into account the direction
of the desired stop. After the closest
intersection for the first point and the
second point (using the same logic) are
located, a breadth-first-search algorithm
to find the best route between the two
routes is initiated. The initial seed is
generated by creating a queue of the first
point (the nearest intersection for the
starting point) and finding the shortest
route between the two (fewest number of
turns). The route is saved as a list of the
intersections it traveled to, for example, if
there are two points and the route was
going to be “1” to “5”, the path traveled
would be “1”, “2”,“3”, “4”, “5”. Even
though the path was created, there has
to be a way to use directions(URDL) to
make it easier for the user to understand
the simulation. In order to do that, each
one of the intersections is encoded with a
direction. This makes the route much
more readable to the person finding the
best route.

The optimal path depends also on
the traffic conditions and the size of the
grid, where if the size of the grid is
bigger, there might be a better alternative
route. For that, the branch and bound
algorithm is used. With the initial guess,
further options are evaluated and
weighted using the traffic conditions
along each route. By branching at each
intersection and terminating the depth
search when the current best time is
exceeded or it reaches the target
destination, the solution space is reduced
and the true best route is found. A visual
of the branch search may be found in
Figure 2 below where each branch

represents a potential solution for the
transit from A to B.

Fig 2. Branch and Bound Visualization

Above, the orange line indicates
the first solution found, which follows the
path (Up-Left-Left), then, all of the other
branches are continued until they either
reach the target destination or their time
exceeds the current best solution.

2.3 Genetic Algorithm

A genetic algorithm is an
operation in computer science that is
inspired by natural selection. Genetic
algorithms are commonly used to find
solutions for problems where there are
many different possible outcomes.
Genetic algorithms use selection to refine
the current best solution over time.
Genetic algorithms guarantee the best
outcome while humans doing the same
thing takes much longer and may not
guarantee the best outcome.

Now, the optimal path between
two stops has already been found. For
real world scenarios, it is needed to find
the best route between more than two
stops at a time. This is where the genetic
algorithm comes into the picture. The
genetic algorithm allows the user to find
the best combination of stops to visit to

3

have the least amount of time taken over
the course of the route. If there are 4
stops that the bus needs to go through,
then an example final route would look
something like B, C, A, D. This provides
the order of stops for the breadth first
algorithm to go through, not necessarily
the time or route it takes.

The way that the genetic
algorithm works is simple to understand.
First, defining the number of generation
and generation size can increase the
accuracy of the result. If there are few
stops in a small area, it is better to use a
smaller number of generations and
generation size to save time in the
program. The algorithm first defines the
first generation. The first generation is a
random variation of the stops. For
example, (B, C, A, D) may be a member
of the first generation. The algorithm then
finds the score for that route. The score
is the total time traveled considering the
current traffic conditions. For example, if
the route was (A, B, C, D), then the
program would calculate the distance
from A to B then to B to C then from C to
D. If the previous best score requires
more time than the score for this route,
this route is saved as the best option.
The best genome of the first generation
is called a parent.

In the second generation, the
algorithm re-assigns and re-shuffles each
combination of stops and those are
called the children. It does the same
process for the same generation,
replacing each generation if the score is
less than before and assigns it as a
parent. It does it for the remaining
number of predetermined generations.

In order to accurately model the
natural selection process, a mutation
function is applied for each new
generation. Before the random children
are generated, the previous best solution
is mutated by swapping two of the
genomes. Those mutated members are
then included in the next generation

along with the other randomly generated
children.

2.4 Results

After the algorithm is complete, it
outputs the best route and best time
along with a plot of the best route on the
graph between two points. Every time the
bus moves to the next stop, it plots the
route it took on the grid, telling the user
where the bus went and making it easier
to understand where it is going next. An
example of one optimal route may be
found in the figure below, which was
converged on after less than 2 seconds
of computer run-time. This trivial amount
of time to converge on an optimal
solution is not only faster than a human,
but also likely presents a better solution
than a human may be able to find in any
reasonable amount of time.

Fig 3. Example Optimal Route

3. Conclusion

In conclusion, a combination of machine
learning algorithms are demonstrated for
the use case of developing an optimal
school bus route. The branch and bound
algorithm creates the graph that the
breadth first algorithm traverses through,
finds the closest intersection from the
point and finds the best route between

4

two points. Also, it plots the best route on
a graph so that it is easier for the user to
see. Then, a genetic algorithm was
demonstrated to find the best route
between all of the stops and can be put
together with the breadth first algorithm
to find the best total route. With all of this
put together, an algorithm has been
developed that can traverse through
points with any size grid with any amount
of stops and can find the best route and
plot it for user feedback.

Github Link to Project:
https://github.com/Soham-West/Bus-rout
e-genetic-algorithm

5

