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Abstract 
The prediction of protein-protein interactions (PPIs) from primary sequence data remains 

a fundamental challenge in systems biology. While experimental methods are 
resource-intensive, computational approaches offer a scalable alternative to map the complex 
human interactome. This study develops a machine learning framework to not only predict PPIs 
with high accuracy but also to uncover the underlying biochemical principles that govern these 
associations. We constructed a balanced dataset of approximately 1.8 million human protein 
pairs derived from the BioGRID database. For each protein, we engineered a feature set based 
on its Amino Acid Composition (AAC) and Dipeptide Composition (DPC) to represent its global 
and local physicochemical properties. An Extreme Gradient Boosting (XGBoost) classifier was 
trained on these features to distinguish between interacting and non-interacting pairs. The final 
model demonstrated strong predictive performance on a large, held-out test set, achieving an 
accuracy of 78.1% and an Area Under the Curve (AUC) of 0.865. To interpret the model's logic, 
we employed SHAP (SHapley Additive exPlanations). The interpretability analysis revealed that 
the model’s predictions were overwhelmingly driven by AAC features. Specifically, the model 
learned that a high abundance of hydrophobic residues (e.g., Phenylalanine, Isoleucine) 
increased interaction likelihood, while a high abundance of polar residues (e.g., Serine) 
decreased it. Our work successfully validates a highly accurate and, critically, interpretable 
model for PPI prediction. By demonstrating that a machine learning model can independently 
learn fundamental principles of biophysics, such as the hydrophobic effect, from sequence data 
alone, we highlight the power of interpretable AI to generate new biological insights from 
large-scale genomic data. 
 
1. Introduction 

The intricate network of interactions between proteins is the foundation of virtually every 
process within a living cell, from metabolic pathways and signal transduction to cellular 
architecture and immune response. These protein-protein interactions (PPIs) form a complex 
"interactome" that dictates cellular function and phenotype. Consequently, the aberrant 
disruption or formation of PPIs is a hallmark of numerous human diseases, including cancer, 
neurodegenerative disorders, and infectious diseases. Elucidating the complete human 
interactome is therefore a central goal of modern systems biology, offering profound insights into 
disease mechanisms and providing a rich source of potential therapeutic targets. 

Historically, PPIs have been identified through high-throughput experimental methods 
such as yeast two-hybrid (Y2H) screening and affinity purification-mass spectrometry (AP-MS). 
While these techniques have been invaluable, they are often resource-intensive, 
time-consuming, and suffer from significant rates of both false positives and false negatives. 
This experimental bottleneck has created a critical need for robust computational methods that 
can predict potential PPIs at a genomic scale, helping to prioritize candidates for experimental 
validation and to annotate the vast number of uncharacterized proteins discovered through 
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sequencing efforts. 

Early computational approaches often relied on protein structural information, which, 
while accurate, is limited by the small fraction of proteins with known 3D structures. This study 
explores a more universally applicable approach: predicting PPIs directly from primary amino 
acid sequences. We hypothesize that protein sequences contain inherent physicochemical 
patterns that encode a propensity for interaction. 

In this study, we develop a comprehensive machine learning pipeline to test this 
hypothesis. We utilize a large-scale, high-confidence dataset of human PPIs from the BioGRID 
database. We engineer a feature set composed of classical bioinformatics metrics, including 
Amino Acid Composition (AAC) and Dipeptide Composition (DPC), to capture the global and 
local physicochemical properties of protein sequences. Using a powerful gradient boosting 
classifier (XGBoost), we train a model to distinguish between interacting and non-interacting 
protein pairs. Furthermore, we employ SHAP (SHapley Additive exPlanations) to deeply 
interpret the trained model, moving beyond predictive accuracy to understand the specific 
sequence-level features that drive its decisions. The objective is not only to build an accurate 
predictor but also to uncover the fundamental biochemical principles the model learns, thereby 
connecting machine learning predictions with tangible biological insight. 

2. Literature Review 

The computational prediction of PPIs is a well-established field in bioinformatics. Early 
methods, such as protein threading and docking, demonstrated the power of using 3D structural 
information to predict binding interfaces (Shoemaker & Panchenko, 2007). However, the scarcity 
of solved protein structures for the majority of the proteome has driven the development of 
sequence-based methods. 

Initial sequence-based approaches focused on identifying correlated mutations or 
sequence co-evolution, with the rationale that interacting proteins often evolve in concert (Göbel 
et al., 1994). With the advent of machine learning, feature-based methods became prominent. 
Researchers demonstrated that features like Amino Acid Composition (AAC) and Dipeptide 
Composition (DPC) could be used to train classifiers like Support Vector Machines (SVMs) with 
moderate success (Guo et al., 2008). These features act as proxies for the overall 
physicochemical properties of a protein, such as charge, polarity, and hydrophobicity, which are 
known to be critical for interaction. 

More recently, the field has been revolutionized by deep learning. Models using 
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been 
applied to learn features directly from sequence strings (Sun et al., 2017). The most recent 
advance has been the application of large-scale protein language models (PLMs) like ESM-2, 
which are pre-trained on millions of protein sequences and generate rich "embeddings" that 
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capture complex evolutionary and structural context (Rives et al., 2021). While our primary 
model focuses on classical features for interpretability, the context of these advanced deep 
learning methods is crucial for understanding the current state-of-the-art. 

Our study builds upon the foundation of classical, feature-based methods. By combining 
a large, high-quality dataset with a powerful modern classifier (XGBoost) and a rigorous 
interpretability framework (SHAP), we aim to push the boundaries of what can be learned from 
these fundamental physicochemical features alone. 

3. Methods 

The methodology of this study follows a four-phase computational pipeline. All data processing 
and modeling were performed using custom Python scripts leveraging the pandas, scikit-learn, 
xgboost, and biopython libraries. 

3.1. Data Acquisition and Gold Standard Dataset Construction 

Positive Interaction Set: A comprehensive set of experimentally-validated human 
protein-protein interactions was sourced from the Biological General Repository for Interaction 
Datasets (BioGRID) version 4.4.246 (Oughtred et al., 2021). The MITAB-formatted file for Homo 
sapiens was parsed to extract pairs of interacting proteins identified by their UniProt accession 
numbers. To maintain high data quality, only interactions where both proteins had a valid 
UniProt ID were retained. Self-interactions and interactions involving protein isoforms were 
excluded to simplify the feature space. This process yielded an initial set of 921,739 unique 
positive interaction pairs. 

Negative Interaction Set: Creating a reliable negative ("non-interaction") dataset is a 
critical challenge in PPI prediction. For this study, we generated a negative set by randomly 
pairing proteins from the complete set of unique proteins found in the positive dataset. This set 
was constructed to be equal in size to the positive set (n=921,739) and was filtered to ensure 
that no randomly generated pair was already present in the positive interaction set. This resulted 
in a balanced binary classification dataset totaling approximately 1.84 million protein pairs. 

Sequence Retrieval: The canonical amino acid sequence for each unique UniProt ID in 
the dataset was retrieved from the UniProt database using its REST API. A local cache was 
maintained to avoid redundant downloads. Interaction pairs for which a sequence could not be 
retrieved for either protein were removed from the final dataset. 

3.2. Feature Engineering 

To convert the raw amino acid sequences into a format suitable for machine learning, two 
types of classical, sequence-derived features were calculated for each protein in a given pair. 

Amino Acid Composition (AAC): For each protein, the frequency of each of the 20 
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standard amino acids was calculated. This results in a 20-dimensional feature vector that 
represents the global composition of the protein. 

Dipeptide Composition (DPC): To capture information about local sequence order, the 
frequency of all possible 400 dipeptides was calculated. For a protein of length L, the number of 
dipeptides is L-1. This results in a 400-dimensional feature vector. 

For each interaction pair (Protein A, Protein B), the feature vectors for both proteins were 
calculated and concatenated. This resulted in a final feature vector of 840 dimensions for each 
pair. This process was parallelized across multiple CPU cores to efficiently process the large 
dataset. 

3.3. Model Training and Evaluation 

The complete feature set was used to train an Extreme Gradient Boosting (XGBoost) 
classifier, a highly effective tree-based ensemble algorithm (Chen & Guestrin, 2016). 

Data Partitioning: The full dataset (N ≈ 1.84 million) was partitioned into a training set (80%) 
and a held-out test set (20%) using stratified sampling. 

Training: The XGBoost model was trained on the training set using a learning rate of 0.05, a 
maximum tree depth of 5, and 1000 boosting rounds. 

Evaluation: The model's final predictive performance was assessed on the held-out test set 
using several standard metrics: Accuracy, Precision, Recall, F1-Score, and Area Under the 
Receiver Operating Characteristic Curve (AUC). 

3.4. Model Interpretation 

To understand the biological basis of the model's predictions, we employed SHAP 
(SHapley Additive exPlanations), a game-theoretic approach to explain the output of any 
machine learning model (Lundberg & Lee, 2017). A SHAP TreeExplainer was used to calculate 
the SHAP values for each feature on a representative sample of the test set. The results were 
visualized using summary and dependence plots to identify the most globally impactful features. 

4. Results 

4.1. Model Performance on the Full Dataset 

After processing the full dataset of ~1.84 million protein pairs, the XGBoost classifier was 
trained and evaluated. The model demonstrated strong predictive performance on the held-out 
test set (n=368,696), achieving an accuracy of 78.06% and an Area Under the Curve (AUC) 
of 0.865. A detailed breakdown of performance metrics is provided in Table 1. The confusion 
matrix (Figure 2) further illustrates the model's balanced performance, correctly identifying 
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78.5% of true interactions (precision) while successfully capturing 77.3% of all actual 
interactions present in the test set (recall). 

Metric Score 

AUC 0.8649 

Accuracy 0.7806 

Precision 0.7853 

Recall 0.7725 

F1-Score 0.7788 

Table 1: Performance metrics of the final XGBoost model evaluated on the held-out test set. 
Figure 2: 
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4.2. Feature Importance Analysis Reveals Dominance of Amino Acid Composition 

To identify the features most influential to the model's predictions, we conducted a SHAP 
analysis. The summary plot (Figure 3A) ranks features by their mean absolute SHAP value, 
representing their overall impact on the model's output. The analysis revealed a clear and 
striking pattern: the top 25 most important features were exclusively Amino Acid Composition 
(AAC) features. This indicates that the global physicochemical properties of the proteins, as 
captured by AAC, are the primary drivers of the model's predictive power, superseding the more 
granular local-sequence information from Dipeptide Composition. 
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4.3. Interpretation of Feature Dependencies Aligns with Biophysical Principles 

To further probe the model's logic, SHAP dependence plots were generated for the 
top-ranked features. These plots visualize how the value of a single feature influences its 
contribution to the prediction. 

The plot for A_AAC_S (the abundance of Serine in Protein A), the single most important 
feature, shows a strong negative correlation (Figure 3B). As the percentage of Serine 
increases, its SHAP value becomes more negative, pushing the model to predict a 
non-interaction. This suggests the model learned that proteins with highly polar surfaces, rich in 
amino acids like Serine, are less likely to form stable interactions. 

Conversely, the dependence plot for A_AAC_F (the abundance of Phenylalanine in 
Protein A) reveals the opposite trend (Figure 3C). High values of this feature correspond to 
positive SHAP values, increasing the likelihood of a predicted interaction. This aligns perfectly 
with the hydrophobic effect, a fundamental principle in molecular biology where the desire to 
shield non-polar residues like Phenylalanine from water is a major driving force of protein folding 
and binding. The model's independent discovery of these opposing effects demonstrates that it 
has learned a generalizable and biophysically-sound model of protein interaction. 

5. Discussion 

The results of this study demonstrate that a machine learning model trained on simple, 
sequence-derived physicochemical features can predict protein-protein interactions with high 
accuracy (78.1%) and a strong AUC of 0.865. The key contribution of this work, however, lies 
not just in the predictive performance but in the interpretability of the model. The SHAP analysis 
revealed that the model's decisions are overwhelmingly driven by the Amino Acid Composition 
of the interacting proteins, providing a direct link between the model's predictions and 
fundamental biochemical principles. 

Our model's reliance on AAC features suggests that for a general PPI prediction task 
across the entire proteome, the global biophysical properties of a protein are more informative 
than granular, local sequence patterns. The model independently learned that a high abundance 
of hydrophobic amino acids (such as Phenylalanine and Isoleucine) is strongly associated with 
an increased likelihood of interaction. This finding empirically validates the central role of the 
hydrophobic effect in driving protein association. Conversely, the model learned that a high 
abundance of polar amino acids (like Serine) is associated with a decreased likelihood of 
interaction, possibly due to the energetic favorability of these residues remaining exposed to the 
aqueous solvent rather than being buried in a protein-protein interface. 

It is significant that the 800 Dipeptide Composition features had less global importance 
than the 40 AAC features. This may indicate that while local sequence context is critical for 
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specifying a unique binding interface, the general propensity for a protein to interact at all is 
more strongly governed by its overall composition. 

Limitations and Future Directions: This study has several limitations that open 
avenues for future research. Firstly, the negative dataset was generated by random pairing. 
While this is a standard baseline, a more biologically rigorous negative set could be constructed 
by pairing proteins known to exist in different subcellular compartments (e.g., a nuclear protein 
and a mitochondrial protein), which would likely improve model performance and specificity. 
Secondly, our feature set, while powerful, could be expanded. Incorporating features that 
describe the charge, polarity, and secondary structure propensity of the sequences could 
provide the model with even more direct physicochemical information. Finally, while our 
interpretable model performed exceptionally well, a comparative study against state-of-the-art 
deep learning models like ESM-2 on this specific dataset would be valuable to quantify the 
trade-off between performance and interpretability. Future work should focus on these areas to 
refine the model and further unravel the sequence-based rules of the human interactome. 

6. Conclusion 

This study successfully developed and validated an interpretable machine learning 
framework for the large-scale prediction of protein-protein interactions from sequence data 
alone. By combining a large, high-confidence dataset with a powerful XGBoost classifier and a 
rigorous SHAP-based interpretation, we demonstrated that the model's impressive predictive 
accuracy (AUC 0.865) is driven by its ability to learn fundamental biophysical principles. This 
work underscores the value of interpretable machine learning in computational biology, not only 
as a tool for prediction but as a means to generate testable hypotheses and gain deeper 
insights into the complex rules governing molecular systems. 
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