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1 Introduction

The Mandelbrot set is the set of complex numbers that remain bounded after

taking iterates of the polynomial f(z) = z2 + c, generating a sequence. It is a
beautiful figure that illustrates the intricate relationship between complex num-

bers and fractal geometry.

The Mandelbrot set was first discovered by Benoit Mandelbrot in the late 1970s.

During this era, mathematicians were trying to find ways on how computers

could complement their research, resulting in areas of interest such as data

visualization. Mandelbrot was working on a phone line transmission problem,

analyzing a plot of failures over time. Coincidentally, as he was working on

this problem, he was reminded of the Julia Set, discovered by Gaston Julia in

1918. This reminder led Mandelbrot to the notion of fractals. Fractals are self-

replicating figures that repeat on infinitely many levels, giving rise to beautiful

figures. Today, real world applications of fractals include movie and game an-

imators, apartment designs, and the context of nature. Mandelbrot’s findings

are extensively documented in The Fractal Geometry of Nature [3]. His work

was a basis for more advanced research in fractal geometry. Despite numerous

computational estimates, an exact expression for the area of the Mandelbrot set

still does not exist, as discussed in [2]. Subsequent research can be found from

sources such as the work in [1], which attempts to give estimates using com-

plex geometry and computation.

Our research extends the study of Mandelbrot sets by analyzing the generaliza-

tion of f(z) = z2 + c to f(z) = zj + c. By plotting these generalized Mandelbrot
sets using computational simulations, we generalize trends regarding the Man-

delbrot set area approximations. Additionally, we explore their structural prop-

erties, including their rotational and reflectional symmetries. We record and

prove these key symmetries using explicit algebraic formulae. This contributes

to the literature by making these symmetries understandable using non-group

theoretic ideas.
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The paper begins by establishing definitions and preliminaries necessary for

understanding how the Mandelbrot set works. The next section highlights a

formal proof of the escape criterion, followed by the escape-time algorithm and

numerical area approximations. Conjectures regarding generalized trends for

the area and escape radius, and symmetry are made based on computational

evidence. Finally, lines of symmetry are derived, and rotational and reflectional

symmetries are proved. The paper concludes with some unique and interesting

petal-like properties exhibited by the generalized Mandelbrot set.

2 Definitions

Definition 1 A complex number c is bounded by a real number R if |c| < R.

Definition 2 The jth generalized Mandelbrot set is the set of points c in the

complex plane such that the nth iterates of f(z) = zj + c is bounded by some
number R, independent of n for all n.

Definition 3 Consider a polynomial of the form f(z) = zj + c, where j is a

natural number and c is a complex number. The nth iterate is the result of

applying the polynomial f to the input z=0 n times, i.e. f(f(f(...0))) where there
are n functions in the composition. For clarity, the 0th iterate is just 0.

The polynomial iterates over zn starting with 0, creating a sequence of com-
plex numbers that lie in the Mandelbrot set, with the use of a recursive formula.

As an example, let’s analyze f(z) = z2 + c.

f(0) = 02 + c = c
f(c) = c2 + c
f(c2 + c) = (c2 + c)2 + c
f((c2 + c)2 + c) = ((c2 + c)2 + c)2 + c
...

Observe that just after a few iterations of zn, the behavior of f(z) becomes in-
creasingly complex. To study the generalized Mandelbrot set more efficiently,

we analyze its escape criterion, which states that the Mandelbrot set is bounded

by a ball of radius 2 (we will prove this in the next section).

3 Escape Criterion Proof for Generalized Mandel-

brot Sets

To approximate the generalizedMandelbrot sets, we need a simple, computable

criterion for when a point is not in the set, which is known as the escape crite-

rion. We model the escape criterion proof given in [6] for specific values of j,
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and then generalize the proof for all j.

Lemma 3.1 If c is in the generalized Mandelbrot set, then c is bounded by a

norm of 2.

Proof of Lemma 3.1

Proof for j = 2

Assume |zn| = 2 + a, a > 0 (|zn| > 2)
f(z) = z2 + c → zn+1 = z2n + c

1) Let |c| ≤ 2:
|zn+1| = |z2n + c| ≥ |zn|2 − |c| = (2+ a)2 − 2 = 2+ 2a+ a2 > 2+ 2a (triangle

inequality)

By induction, |zn+k| > 2 + ak → ∞ as k → ∞
→ |zn+1| > |zn|
∴ zn diverges to infinity if |zn| > 2.

2) Let |c| > 2:
For n = 0 : |zn+1| = |z0+1| = |z20 + c| = 02 + c = |c|
→|z1| > 2, which already guarantees divergence.

Proof for j = 3

Assume |zn| = 2 + a, a > 0 (|zn| > 2)
f(z) = z3 + c → zn+1 = z3n + c
As proved earlier, for |c| > 2, divergence is guaranteed, so we will proceed for
|c| ≤ 2.

|zn+1| = |z3n + c| ≥ |zn|3 − |c| = (2 + a)3 − 2 = 6 + 12a+ 6a2 + a3 > 6 + 12a
(triangle inequality)

By induction, |zn+k| > 6 + ak → ∞ as k → ∞
→ |zn+1| > |zn|
∴ zn diverges to infinity if |zn| > 2.

.

.

.

Proof for j = 1000

Assume |zn| = 2 + a, a > 0 (|zn| > 2)
f(z) = z1000 + c → zn+1 = z1000n + c
|zn+1| = |z1000n + c| ≥ |zn|1000 − |c| = (2 + a)1000 − 2 (triangle inequality)

(2 + a)1000 = 21000 + 1000(2999)(a) + ...
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→(2 + a)1000 ≥ 21000 + 1000(2999)(a)
→(2 + a)1000 − 2 ≥ 21000 + 1000(2999)(a)− 2
→|zn+1| ≥ 21000 + 1000(2999)(a)− 2
By induction, |zn+k| > 21000 + ak → ∞ as k → ∞
→ |zn+1| > |zn|
∴ zn diverges to infinity if |zn| > 2.

Proof for General j

Assume |zn| = 2 + a, a > 0 (|zn| > 2)
f(z) = zj + c → zn+1 = zjn + c
|zn+1| = |zjn + c| ≥ |zn|j − |c| = (2 + a)j − 2 (triangle inequality)

(2 + a)j = 2j + j(2j−1)(a) + ...
→(2 + a)j ≥ 2j + j(2j−1)(a)
→(2 + a)j − 2 ≥ 2j + j(2j−1)(a)− 2
→|zn+1| ≥ 2j + j(2j−1)(a)− 2
By induction, |zn+k| > 2j + ak → ∞ as k → ∞
→ |zn+1| > |zn|
∴ zn diverges to infinity if |zn| > 2.

∴ By induction, we conclude that the generalized Mandelbrot set f(z) = zj + c
lies in a ball of radius 2.

4 How do we measure its area?

Unlike its infinite perimeter, the Mandelbrot set has a finite area. To this day,

the area of the Mandelbrot set to mathematicians is unknown! Its estimated

area is 1.506484 square units. By running simulations, approximations of the

area can be made with the escape-time algorithm.

5 The Escape Time Algorithm

While we technically cannot check if the iterates are always bounded, we can

immediately see if it ever leaves the ball of radius two and is thus not in the (gen-

eralized) Mandelbrot set. Most modern implementations are based on [3], in-

cluding [7], which is written in Python. Our implementation is specifically based

on [7]. It is implemented as follows :

1) Generate a complex matrix (the complex plane) using numpy vectorization.

2) Start with z0 = 0, then iterate over f(z) = zj + c using recursion.
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3) The last step is to check (true or false) whether the point escapes the ball of

radius 2 within the number of iterations set in the algorithm.

By finding the proportion of the members of the Mandelbrot set to the total num-

ber of pixels in the complex matrix, then multiplying by the complex matrix di-

mensions, we obtain the set’s area.

6 Interesting Conjectures

The following conjectures are derived by running the escape-time algorithm for

generalized Mandelbrot sets, for several values of j. For each value of j, we
compute its corresponding area approximation. To ensure accuracy of the area

approximations, we ran the algorithm for different parameter values, specifically

the number of iterations and pixel density. By increasing the number of itera-
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tions and pixel density, the area approximation becomes more accurate. Ac-

curacy is generally expected to increase as the number of iterations increases,

because the algorithm has more time to determine whether the points belong to

the Mandelbrot set. Similarily, increasing the pixel density improves the reso-

lution of the set, reducing sampling errors. After a certain number of iterations,

approximations stabilize, indicating consistency, which lets us know when to

stop running the algorithm for an area approximation. We average the stabi-

lized approximations, and record them as our area. A table is created, repre-

senting coordinates of the form (j, area). From there, we plot these coordinates

on Desmos, and calculate the best curve that generalizes the j vs area trend.
The tables of values specific to each iteration is included at the end of the pa-

per, in Section 11. We keep the pixel density constant, as it does not have a

major impact on the area approximation.

j Area

3 1.8

4 1.98

5 2.115

6 2.2175

7 2.2972

8 2.3625

9 2.4169

10 2.4628

11 2.5021

12 2.5364

13 2.5674

14 2.5942

15 2.6184

16 2.6410

17 2.6605

18 2.6793

19 2.6960

20 2.7115

50 2.919038772583008

80 2.9850730896

200 3.0645503998

Table 1: Comparison of j values and their respective areas.

Conjecture 1 The degree, j, and the corresponding area approximation of its

polynomial form a general trend, fitting a curve.
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The best-fit curve based on my table of values is:

C(j) = π − 2.6057

j0.5264

Conjecture 2 For extremely large values of j, the Mandelbrot set is bounded

by the unit disk.

f(z) = z50 + c f(z) = z100 + c

f(z) = z200 + c f(z) = z1000 + c

Observe that for smaller values of j, the boundary of the set is jagged and ex-

hibits a gear-like structure. As j increases significantly, the curvature of the

boundary becomes more uniform.

Conjecture 3 As j increases, the radius of the ball decreases.

This is a consequence of our previous conjecture. We initially proved the es-

cape criterion in a previous section, which states that the Mandelbrot set is

contained in a disk of radius 2. However, our results from our previous conjec-

ture show that for significantly large values of j, the Mandelbrot set is bounded

by the unit disk. This suggests that as j increases, the radius decreases.

Conjecture 4 As j approaches infinity, the area approaches π.
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This conjecture is reinforced by Conjecture 2, where we found the Mandelbrot

set to be bounded by the unit disk for extremely large values of j. We know that

the area of the unit disk is π. By graphing our curve and the line y = π, we can
visually observe the asymptotic behavior at π, and as j → ∞, area → π.

7 Symmetries

We will now explore and prove various reflectional and rotational symmetries of

the Mandelbrot set. Lets closely analyze the 4th, 5th, and 6th Mandelbrot sets.
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f(z) = z4 + c
3-gon

f(z) = z5 + c
4-gon

f(z) = z6 + c
5-gon

The roots of unity are elegantly inscribed in the Mandelbrot sets. More specif-

ically, for a set of degree j, a j-1 - gon is inscribed in it, containing j-1 roots of

unity as its vertices. However, when taking a closer look, we can see that the

roots of unity are dilated, forming smaller j-1 - gons. Let us set that dilation

factor to k, and derive the equations of these lines in the next section.

7.1 Deriving Lines of Symmetries

We begin by solving for the roots of unity, and converting them to cartesian

coordinates. Next, we assign them as vertices of our j−1 - gons and draw per-
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pendicular bisectors from the vertices to their opposite sides, passing through

the origin. From there, derivation becomes trivial by nature when applying the

slope-intercept form for the origin and each of the vertices.

f(z) = z4 + c
Cube roots of unity

f(z) = z5 + c
4th roots of unity

f(z) = z6 + c
5th roots of unity

f(z) = z4 + c

(kz)3 − 1 = 0
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(kz)3 = 1 = e2πi

kz0 = 1
kz1 = e2πi/3 = − 1

2 +
√
3
2 i

kz2 = e4πi/3 = − 1
2 −

√
3
2 i

→
z0 = 1

k ; (
1
k , 0)

z1 = 1
k (−

1
2 +

√
3
2 i); (− 1

2k ,
√
3

2k )

z2 = 1
k (−

1
2 −

√
3
2 i); (− 1

2k ,−
√
3

2k )

y1 : (0, 0), (− 1
2k ,−

√
3

2k )

m =
−

√
3

2k −0

− 1
2k−0

=
√
3

y1 =
√
3x1

y2 : (0, 0), ( 1k , 0)
m = 0−0

1
k−0

= 0

y2 = 0

y3 : (0, 0), (− 1
2k ,

√
3

2k )

m =
√

3
2k −0

− 1
2k−0

= −
√
3

y3 = −
√
3x3

f(z) = z5 + c

(kz)4 − 1 = 0
(kz)4 = 1 = e2πi

kz0 = e2πi/4 = i
kz1 = e4πi/4 = −1
kz2 = e4πi/4 = −i
kz3 = e8πi/4 = 1
→
z0 = i

k ; (0,
1
k )

z1 = − 1
k ; (−

1
k , 0)

z2 = − i
k ; (0,−

1
k )

z3 = 1
k ; (

1
k , 0)

m1 : (0, 1
k ), (

1
k , 0)

0+ 1
k

2 = 1
2k ,

1
k+0

2 = 1
2k ; (

1
2k ,

1
2k )

y1 : ( 1
2k ,

1
2k ), (0, 0)
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m =
0− 1

2k

0− 1
2k

= 1
y1 = x1

m2 : (0, 1
k ), (−

1
k , 0)

0+(− 1
k )

2 = − 1
2k ,

1
k+0

2 = 1
2k ; (−

1
2k ,

1
2k )

y2 : (− 1
2k ,

1
2k ), (0, 0)

m =
0− 1

2k

0−(− 1
2k )

= −1

y2 = −x2

y3 : (− 1
k , 0), (

1
k , 0)

m = 0−0
1
k−(− 1

k )
= 0

y3 = 0

y4 : (0, 1
k ), (0,−

1
k )

m =
− 1

k− 1
k

0−0 DNE

x = 0

f(z) = z6 + c

(kz)5 − 1 = 0
(kz)5 = 1 = e2πi

kz0 = e2πi/5; (cos( 2π5 ), sin( 2π5 ))

kz1 = e4πi/5; (cos( 4π5 ), sin( 4π5 ))

kz2 = e4πi/5; (cos( 6π5 ), sin( 6π5 ))

kz3 = e8πi/5; (cos( 8π5 ), sin( 8π5 ))

kz3 = e10πi/5; (cos( 10π5 ), sin( 10π5 ))
→
z0 : (

cos( 2π
5 )

k ,
sin( 2π

5 )

k )

z1 : (
cos( 4π

5 )

k ,
sin( 4π

5 )

k )

z2 : (
cos( 6π

5 )

k ,
sin( 6π

5 )

k )

z3 : (
cos( 8π

5 )

k ,
sin( 8π

5 )

k )

z4 : (
cos( 10π

5 )

k ,
sin( 10π

5 )

k )

y0 : (
cos( 2π

5 )

k ,
sin( 2π

5 )

k ), (0, 0)

m =
0−

sin( 2π
5

)

k )

0−
cos( 2π

5
)

k

= tan( 2π5 )

y0 = tan( 2π5 )x0

12

12



y1 : (
cos( 4π

5 )

k ,
sin( 4π

5 )

k ), (0, 0)

m =
0−

sin( 4π
5

)

k )

0−
cos( 4π

5
)

k

= tan( 4π5 )

y1 = tan( 4π5 )x1

y2 : (
cos( 6π

5 )

k ,
sin( 6π

5 )

k ), (0, 0)

m =
0−

sin( 6π
5

)

k )

0−
cos( 6π

5
)

k

= tan( 6π5 )

y2 = tan( 6π5 )x2

y3 : (
cos( 8π

5 )

k ,
sin( 8π

5 )

k ), (0, 0)

m =
0−

sin( 8π
5

)

k )

0−
cos( 8π

5
)

k

= tan( 8π5 )

y3 = tan( 8π5 )x3

y4 : (
cos( 10π

5 )

k ,
sin( 10π

5 )

k ), (0, 0)

m =
0−

sin( 10π
5

)

k )

0−
cos( 10π

5
)

k

= tan( 10π5 )

y4 = tan( 10π5 )x4

Remark : Notice that the lines of symmetry we derived are exactly the same

as those passing through the roots of unity, regardless of any dilation. Since

these lines pass through the origin, their angular positions remain unchanged

under dilation, preserving the symmetry structure.

The following three technical lemmas are the basic ingredients for proving The-

orem 7.4, our symmetry theorem regarding reflectional and rotational symme-

tries.

We use the well-known reflectional symmetry formula,m being the slope, where

R(x, y) = ( (1−m2)x+2my
1+m2 , (m2−1)y+2mx

1+m2 )
This can be proven using linear algebra, as shown in [8].

Let us define r(c) to be the rotational symmetry formula, where r(c) = e
2(π)ik
j−1 ∗c
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Lemma 7.1 Each of the pairs j andR listed below satisfies |R(z)| = |z| (follows
for j and r)

Case 1 : j = 4 and R(x, y) = (− 1
2x−

√
3
2 y,−

√
3
2 x+ 1

2y)

Case 2 : j = 4 and R(x, y) = (− 1
2x+

√
3
2 y,

√
3
2 x+ 1

2y)
Case 3 : j = 4 and R(x, y) = (x,−y)
Case 4 : j = 4 and r(c) = c ∗ e2πik/3, k = 0, 1, 2
Case 5 : j = 5 and R(x, y) = (y, x)
Case 6 : j = 5 and R(x, y) = (x,−y)
Case 7 : j = 5 and R(x, y) = (−y,−x)
Case 8 : j = 5 and R(x, y) = (−x, y)
Case 9 : j = 5 and r(c) = c ∗ e2πik/4, k = 0, 1, 2, 3

Case 10 : j = 6 and R(x, y) = (
[(1−tan2( 2π

5 )]x+2 tan( 2π
5 )y

sec2( 2π
5 )

,
[tan2( 2π

5 )−1]y+2 tan( 2π
5 )x

sec2( 2π
5 )

)

Case 11 : j = 6 and r(c) = c ∗ e2πik/5, k = 0, 1, 2, 3, 4

Lemma 7.2 Each of the pairs j and R listed below satisfies R(zj) = (R(z))j

(follows for j and r)

Case 1 : j = 4 and R(x, y) = (− 1
2x−

√
3
2 y,−

√
3
2 x+ 1

2y)

Case 2 : j = 4 and R(x, y) = (− 1
2x+

√
3
2 y,

√
3
2 x+ 1

2y)
Case 3 : j = 4 and R(x, y) = (x,−y)
Case 4 : j = 4 and r(c) = c ∗ e2πik/3, k = 0, 1, 2
Case 5 : j = 5 and R(x, y) = (y, x)
Case 6 : j = 5 and R(x, y) = (x,−y)
Case 7 : j = 5 and R(x, y) = (−y,−x)
Case 8 : j = 5 and R(x, y) = (−x, y)
Case 9 : j = 5 and r(c) = c ∗ e2πik/4, k = 0, 1, 2, 3

Case 10 : j = 6 and R(x, y) = (
[(1−tan2( 2π

5 )]x+2 tan( 2π
5 )y

sec2( 2π
5 )

,
[tan2( 2π

5 )−1]y+2 tan( 2π
5 )x

sec2( 2π
5 )

)

Case 11 : j = 6 and r(c) = c ∗ e2πik/5, k = 0, 1, 2, 3, 4

Lemma 7.3 For each pair j and R satisfying Lemmas 7.1 and 7.2, we have

zn,R(c) = R(zn,c)

Proof of Lemma 7.3 : We prove this by induction.

The base case n = 0, is clear, since the 0th iterate is always 0. Assume it’s

true for n = N [this is the ”inductive step”]. This means, R(zN,c) = zN,R(c).

We have zN+1,R(c) = zjN,R(c) + R(c) = R(zN,c)
j + R(c) (by assumption) =

R(zN,c)
j) +R(c) = R(zjN,c + c) = R(zN+1,c). Thus the lemma is true by induc-

tion. (follows for j and r)
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7.2 Rotational Symmetries

In the rotational case, which is easier than the reflectional case, we can actu-

ally prove Lemma 7.3 directly. The first step of the rotational symmetry proofs

is to assign ω to a j − 1th root of unity. We then proceed to iterate ω over the

polynomial f(z) = zj + c. After a few iterations, we observe that each iterate

rotates the previous one by ω.

Proof of Lemma 7.3 Case 4

f(z) = z4 + c

Let ω = e2πi/3

f(z) = z4 + ωc

f(0) = 04 + ωc = ωc

f(ωc) = (ωc)4 + ωc
ω3 = 1 → ω4 = ω
→ f(ωc) = ωc4 + ωc
= ω(c4 + c)

f(ω(c4 + c)) = (ω(c4 + c))4 + ωc
= ω4(c4 + c)4 + ωc
= ω(c4 + c)4 + ωc
= ω[(c4 + c)4 + c]

Proof of Lemma 7.3 Case 9

f(z) = z5 + c

Let ω = e2πi/4

→ ω = i
f(z) = z5 + ic

f(0) = 05 + ic = ic

f(ic) = (ic)5 + ic
i4 = 1 → i5 = i or ω4 = 1 → ω5 = ω
(ic)5 = i5 ∗ c5 = ic5

→ f(ic) = ic5 + ic
= i(c5 + c)

f(i(c5 + c)) = (i(c5 + c))5 + ic
= i5(c5 + c)5 + ic
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= i(c5 + c)5 + ic
= i[(c5 + c)5 + c]

Proof of Lemma 7.3 Case 11

f(z) = z6 + c

Let ω = e2πi/5

f(z) = z6 + ωc

f(0) = 06 + ωc = ωc

f(ωc) = (ωc)6 + ωc
ω5 = 1 → ω6 = ω
→ f(ωc) = ωc6 + ωc
= ω(c6 + c)

f(ω(c6 + c)) = (ω(c6 + c))6 + ωc
= ω6(c6 + c)6 + ωc
= ω(c6 + c)6 + ωc
= ω[(c6 + c)6 + c]

Note : For rotations, Lemma 7.1 is immediately clear by taking absolute values.

Disclaimer : After completing our work, we were informed that Cases 4, 9, and

11 of this lemma are also proved in the blog of Inigo Quilez [12], who is known

for their beautiful mathematical visualizations.

7.3 Reflectional Symmetries

The next 16 cases regarding reflectional symmetry (from Lemmas 7.1 and 7.2)

are proved by writing the formula for the reflection R in (x, y) form. Using Wol-

fram Alpha, we checked some of the longer computations in this section.

7.3.1 f(z) = z4 + c

y = −
√
3x

R(x, y) = ( (1−(−
√
3)2)x+2(−

√
3)y

1+(−
√
3)2

, ((−
√
3)2−1)y+2(−

√
3)x

1+(−
√
3)2

)

R(x, y) = (− 1
2x−

√
3
2 y,−

√
3
2 x+ 1

2y)

Proof of Lemma 7.1 Case 1
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Let z = a+ bi; (a, b)
R(z)
= R(a, b)

= (− 1
2a−

√
3
2 b,−

√
3
2 a+ 1

2b)

|R(z)|
=

√
(− 1

2a−
√
3
2 b)2 + (−

√
3
2 a+ 1

2b)
2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 1

z4 = (a4 − 6a2b2 + b4, 4a3b− 4ab3)

R(z4)
= R(a4 − 6a2b2 + b4, 4a3b− 4ab3)

= (− 1
2 (a

4−6a2b2+b4)−
√
3
2 (4a3b−4ab3),−

√
3
2 (a4−6a2b2+b4)+ 1

2 (4a
3b−4ab3))

= [− 1
2 (a

4−6a2b2+b4)−
√
3
2 (4a3b−4ab3)]+[−

√
3
2 (a4−6a2b2+b4)+ 1

2 (4a
3b−4ab3))]i

(R(z))4

R(z)
= R(a, b)

= (− 1
2a−

√
3
2 b,−

√
3
2 a+ 1

2b)

= [− 1
2a−

√
3
2 b] + [−

√
3
2 a+ 1

2b]i
(R(z))4

= ([− 1
2a−

√
3
2 b] + [−

√
3
2 a+ 1

2b]i)
4

= [− 1
2 (a

4−6a2b2+b4)−
√
3
2 (4a3b−4ab3)]+[−

√
3
2 (a4−6a2b2+b4)+ 1

2 (4a
3b−4ab3))]i

= R(z4)

R(z4) = (R(z))4

y =
√
3x

R(x, y) = ( (1−(
√
3)2)x+2(

√
3)y

1+(
√
3)2

, ((
√
3)2−1)y+2(

√
3)x

1+(
√
3)2

)

R(x, y) = (− 1
2x+

√
3
2 y,

√
3
2 x+ 1

2y)

Proof of Lemma 7.1 Case 2
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Let z = a+ bi; (a, b)
R(z)
= R(a, b)

= (− 1
2a+

√
3
2 b,

√
3
2 a+ 1

2b)

|R(z)|
=

√
(− 1

2a+
√
3
2 b)2 + (

√
3
2 a+ 1

2b)
2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 2

z4 = (a+ bi)4 = a4 + 4a3bi− 6a2b2 − 4ab3i+ b4

= (a4 − 6a2b2 + b4) + (4a3b− 4ab3)i
= (a4 − 6a2b2 + b4, 4a3b− 4ab3)

R(z4)
= R(a4 − 6a2b2 + b4, 4a3b− 4ab3)

= (− 1
2 (a

4−6a2b2+ b4)+
√
3
2 (4a3b−4ab3),

√
3
2 (a4−6a2b2+ b4)+ 1

2 (4a
3b−4ab3))

= [− 1
2 (a

4−6a2b2+b4)+
√
3
2 (4a3b−4ab3)]+[

√
3
2 (a4−6a2b2+b4)+ 1

2 (4a
3b−4ab3))]i

(R(z))4

R(z)
= R(a, b)

= (− 1
2a+

√
3
2 b,

√
3
2 a+ 1

2b)

= [− 1
2a+

√
3
2 b] + [

√
3
2 a+ 1

2b]i
(R(z))4

= ([− 1
2a+

√
3
2 b] + [

√
3
2 a+ 1

2b]i)
4

= [− 1
2 (a

4−6a2b2+b4)+
√
3
2 (4a3b−4ab3)]+[

√
3
2 (a4−6a2b2+b4)+ 1

2 (4a
3b−4ab3))]i

= R(z4)

R(z4) = (R(z))4

y = 0

R(x, y) = ( (1−(0)2)x+2(0)y
1+(0)2 , ((0)2−1)y+2(0)x

1+(0)2 )

R(x, y) = (x,−y)
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Proof of Lemma 7.1 Case 3

Let z = a+ bi; (a, b)
R(z) = R(a, b) = (a,−b)

|R(z)| = |(a,−b)|
=

√
a2 + (−b)2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 3

z4 = (a4 − 6a2b2 + b4, 4a3b− 4ab3)

R(z4)
= R(a4 − 6a2b2 + b4, 4a3b− 4ab3)
= (a4 − 6a2b2 + b4,−[4a3b− 4ab3])
= [a4 − 6a2b2 + b4] + [−(4a3b− 4ab3)]i

(R(z))4

= [a+ (−b)i]4

= [a4 − 6a2b2 + b4] + [−(4a3b− 4ab3)]i
= R(z4)

R(z4) = (R(z))4

7.3.2 f(z) = z5 + c

y = x

R(x, y) = ( (1−(1)2)x+2(1)y
1+(1)2 , ((1)2−1)y+2(1)x

1+(1)2 )

R(x, y) = (y, x)

Proof of Lemma 7.1 Case 5

Let z = a+ bi; (a, b)
R(z)
= R(a, b)
= (b, a)
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|R(z)|
= |(b, a)|
=

√
b2 + a2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 5

z5 = (a+ bi)5

= a5 + 5a4bi− 10a3b2 − 10a2b3i+ 5ab4 + b5i
= a5 − 10a3b2 + 5ab4 + 5a4bi− 10a2b3i+ b5i
= [a5 − 10a3b2 + 5ab4] + [5a4b− 10a2b3 + b5]i
= (a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)

R(z5)
= R(a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)
= (5a4b− 10a2b3 + b5, a5 − 10a3b2 + 5ab4)
= [5a4b− 10a2b3 + b5] + [a5 − 10a3b2 + 5ab4]i

(R(z))5

= (b+ ai)5

= [5a4b− 10a2b3 + b5] + [a5 − 10a3b2 + 5ab4]i
= R(z5)

R(z5) = (R(z))5

y = 0

R(x, y) = ( (1−(0)2)x+2(0)y
1+(0)2 , ((0)2−1)y+2(0)x

1+(0)2 )

R(x, y) = (x,−y)

Proof of Lemma 7.1 Case 6

Let z = a+ bi; (a, b)
R(z)
= R(a, b)
= (a,−b)

|R(z)|
= |(a,−b)|
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=
√
a2 + (−b)2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 6

z5 = (a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)

R(z5)
= R(a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)
= (a5 − 10a3b2 + 5ab4,−[5a4b− 10a2b3 + b5])
= [a5 − 10a3b2 + 5ab4] + (−[5a4b− 10a2b3 + b5])i

(R(z))5

= [a+ (−b)i]5

= [a5 − 10a3b2 + 5ab4] + (−[5a4b− 10a2b3 + b5])i
= R(z5)

R(z5) = (R(z))5

y = −x

R(x, y) = ( (1−(−1)2)x+2(−1)y
1+(−1)2 , ((−1)2−1)y+2(−1)x

1+(−1)2 )

R(x, y) = (−y,−x)

Proof of Lemma 7.1 Case 7

Let z = a+ bi; (a, b)
R(z)
= R(a, b)
= (−b,−a)

|R(z)|
= |(−b,−a)|
=

√
(−b)2 + (−a)2

=
√
a2 + b2

= |z|

|R(z)| = |z|
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Proof of Lemma 7.2 Case 7

z5 = (a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)

R(z5)
= R(a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)
= (−[5a4b− 10a2b3 + b5],−[a5 − 10a3b2 + 5ab4])
= −[5a4b− 10a2b3 + b5] + (−[a5 − 10a3b2 + 5ab4])i

(R(z))5

= [(−b) + (−a)i]5

= −[5a4b− 10a2b3 + b5] + (−[a5 − 10a3b2 + 5ab4])i
= R(z5)

R(z5) = (R(z))5

x = 0

R(x, y)

= limx→∞( (1−(m)2)x+2(m)y
1+(m)2 , ((m)2−1)y+2(m)x

1+(m)2 )

= limx→∞( (−(m)2)x+2(m)y
(m)2 , ((m)2)y+2(m)x

(m)2 )

= limx→∞(−x+ 2y
m , y + 2x

m )
= (−x, y)

R(x, y) = (−x, y)

Proof of Lemma 7.1 Case 8

Let z = a+ bi; (a, b)
R(z)
= R(a, b)
= (−a, b)

|R(z)|
= |(−a, b)|
=

√
(−a)2 + (b)2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 8
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z5 = (a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)

R(z5)
= R(a5 − 10a3b2 + 5ab4, 5a4b− 10a2b3 + b5)
= (−[a5 − 10a3b2 + 5ab4], 5a4b− 10a2b3 + b5)
= −[a5 − 10a3b2 + 5ab4] + [5a4b− 10a2b3 + b5]i

(R(z))5

= (−a+ bi)5

= −[a5 − 10a3b2 + 5ab4] + [5a4b− 10a2b3 + b5]i
= R(z5)

R(z5) = (R(z))5

7.3.3 f(z) = z6 + c

f(z) = z6 + c, y = tan( 2π5 )x

R(x, y) = (
[(1−tan2( 2π

5 )]x+2 tan( 2π
5 )y

1+tan2( 2π
5 )

,
[tan2( 2π

5 )−1]y+2 tan( 2π
5 )x

1+tan2( 2π
5 )

)

= (
[(1−tan2( 2π

5 )]x+2 tan( 2π
5 )y

sec2( 2π
5 )

,
[tan2( 2π

5 )−1]y+2 tan( 2π
5 )x

sec2( 2π
5 )

)

Proof of Lemma 7.1 Case 10

Let z = a+ bi; (a, b)
|R(z)|
= |R(a, b)|
= |( [(1−tan2( 2π

5 )]a+2 tan( 2π
5 )b

sec2( 2π
5 )

,
[tan2( 2π

5 )−1]b+2 tan( 2π
5 )a

sec2( 2π
5 )

)|√
(
[(1−tan2( 2π

5 )]a+2 tan( 2π
5 )b

sec2( 2π
5 )

)2 + (
[tan2( 2π

5 )−1]b+2 tan( 2π
5 )a

sec2( 2π
5 )

)2

=
√
a2 + b2

= |z|

|R(z)| = |z|

Proof of Lemma 7.2 Case 10

z6 = (a+ bi)6

= a6 + 6a5bi− 15a4b2 − 20a3b3i+ 15a2b4 + 6ab5i− b6
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= a6 − 15a4b2 + 15a2b4 − b6 + 6a5bi− 20a3b3i+ 6ab5i
= [a6 − 15a4b2 + 15a2b4 − b6] + [6a5b− 20a3b3 + 6ab5]i
= (a6 − 15a4b2 + 15a2b4 − b6, 6a5b− 20a3b3 + 6ab5)

R(z6)
= R(a6 − 15a4b2 + 15a2b4 − b6, 6a5b− 20a3b3 + 6ab5)

= (
[(1−tan2( 2π

5 )](a6−15a4b2+15a2b4−b6)+2 tan( 2π
5 )(6a5b−20a3b3+6ab5)

sec2( 2π
5 )

,

[tan2( 2π
5 )−1](6a5b−20a3b3+6ab5)+2 tan( 2π

5 )(a6−15a4b2+15a2b4−b6)

sec2( 2π
5 )

)

=
[(1−tan2( 2π

5 )](a6−15a4b2+15a2b4−b6)+2 tan( 2π
5 )(6a5b−20a3b3+6ab5)

sec2( 2π
5 )

+
[tan2( 2π

5 )−1](6a5b−20a3b3+6ab5)+2 tan( 2π
5 )(a6−15a4b2+15a2b4−b6)

sec2( 2π
5 )

i

(R(z))6

= (
[(1−tan2( 2π

5 )]a+2 tan( 2π
5 )b

sec2( 2π
5 )

+
[tan2( 2π

5 )−1]b+2 tan( 2π
5 )a

sec2( 2π
5 )

i)6

=
[(1−tan2( 2π

5 )](a6−15a4b2+15a2b4−b6)+2 tan( 2π
5 )(6a5b−20a3b3+6ab5)

sec2( 2π
5 )

+
[tan2( 2π

5 )−1](6a5b−20a3b3+6ab5)+2 tan( 2π
5 )(a6−15a4b2+15a2b4−b6)

sec2( 2π
5 )

i

= R(z6)

R(z6) = (R(z))6

While equality may not seem immediately obvious due to its large computational

nature, the corresponding contour plots of R(z)6 and (R(z))6 match, strongly
suggesting equality.
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R(z)6 (R(z))6

Theorem 7.4 For each pair j and R satisfying Lemmas 1 and 2, if c is in the

jth generalized Mandelbrot set, then R(c) is in the jth generalized Mandelbrot
set.

Proof of Theorem 7.4

Since c is in the jth-generalized Mandelbrot set, by definition the iterates zn,c
satisfy |zn,c| < B for some B and all n

By Lemma 7.1 and 7.2, we have |zn,R(c)| = |R(zn,c)| = |zn,c| < B. Thus

R(c) is in the jth Mandelbrot set by definition. (follows for j and r)
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8 Unique Properties

Observe that for higher degree polynomials, there appears to be a number of

regions, or “petals” formed. Specifically, for the polynomial f(z) = zj + c, there
are j − 1 petals.

f(z) = z4 + c
3 petals

f(z) = z6 + c
5 petals

f(z) = z7 + c
6 petals

f(z) = z10 + c
9 petals

The petals clearly reflect the rotational and reflectional symmetries we proved

earlier in Section 7, but have other striking properties, which would be nice to

formalize in the future.
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j Area

3 1.8966

4 2.0533

5 2.1717

6 2.2628

7 2.3357

8 2.3966

9 2.4470

10 2.4897

11 2.5269

12 2.5595

13 2.5884

14 2.6137

15 2.6370

16 2.6578

17 2.6764

18 2.6939

19 2.7104

20 2.7249

Table 2: Pixel density = 512, itera-

tions = 25

j Area

3 1.8161

4 1.9971

5 2.1271

6 2.2628

7 2.3054

8 2.3699

9 2.4239

10 2.4687

11 2.5077

12 2.5419

13 2.5723

14 2.5988

15 2.6227

16 2.6451

17 2.6647

18 2.6829

19 2.6994

20 2.7145

Table 3: Pixel density = 512, itera-

tions = 100

j Area

3 1.7969

4 1.9834

5 2.1162

6 2.2182

7 2.2976

8 2.3629

9 2.4173

10 2.4632

11 2.5025

12 2.5368

13 2.5676

14 2.5944

15 2.6186

16 2.6413

17 2.6612

18 2.6796

19 2.6962

20 2.7117

Table 4: Pixel density = 512, itera-

tions = 500

j Area

3 1.7954

4 1.9819

5 2.1149

6 2.2169

7 2.2967

8 2.3621

9 2.4165

10 2.4624

11 2.5017

12 2.5361

13 2.5671

14 2.5939

15 2.6181

16 2.6407

17 2.6608

18 2.6790

19 2.6958

20 2.7113

Table 5: Pixel density = 512, itera-

tions = 1000
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